Non-Embedded Ultrasonic Detection for Pressure Cores of Natural Methane Hydrate-Bearing Sediments
Abstract
1. Introduction
2. Materials and Methods
2.1. Apparatus and Materials
2.2. Experimental Procedures
2.3. Theoretical Method
2.4. Calibration Test
3. Results and Discussion
3.1. Effects of the Excess Gas Method on P-Wave Variation
3.2. Effects of the Excess Water Method on P-Wave Variation
3.3. Effects of Hydrate Saturation on Attenuation
3.4. Effects of Hydrate Saturation on P-Wave Velocity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sloan, E.D., Jr. Fundamental principles and applications of natural gas hydrates. Nature 2003, 426, 353. [Google Scholar] [CrossRef] [PubMed]
- Walsh, M.R.; Koh, C.A.; Sloan, E.D.; Sum, A.K.; Wu, D.T. Microsecond simulations of spontaneous methane hydrate nucleation and growth. Science 2009, 326, 1095–1098. [Google Scholar] [CrossRef]
- Christiansen, R.L.; Sloan, E.D., Jr. Mechanisms and kinetics of hydrate formation. Annal. N. Y. Acad. Sci. 1994, 715, 283–305. [Google Scholar] [CrossRef]
- Yang, L.; Falenty, A.; Chaouachi, M.; Haberthür, D.; Kuhs, W.F. Synchrotron X-ray computed microtomography study on gas hydrate decomposition in a sedimentary matrix. Geochem. Geophys. Geosyst. 2016, 17, 3717–3732. [Google Scholar] [CrossRef]
- Zhao, J.; Cheng, C.; Song, Y.; Liu, W.; Liu, Y.; Xue, K.; Zhu, Z.; Yang, Z.; Wang, D.; Yang, M. Heat transfer analysis of methane hydrate sediment dissociation in a closed reactor by a thermal method. Energies 2012, 5, 1292–1308. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, L.; Lv, Q.; Yang, M.; Ling, Z.; Zhao, J. Assessment of gas production from natural gas hydrate using depressurization, thermal stimulation and combined methods. RSC Adv. 2016, 6, 47357–47367. [Google Scholar] [CrossRef]
- Zhao, J.; Song, Y.; Lim, X.L.; Lam, W.H. Opportunities and challenges of gas hydrate policies with consideration of environmental impacts. Renew. Sustain. Energy Rev. 2017, 70, 875–885. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, L.; Wang, J.; Zhao, J.; Dong, H.; Yang, M.; Liu, Y.; Song, Y. Enhanced CH4 recovery and CO2 storage via thermal stimulation in the CH4/CO2 replacement of methane hydrate. Chem. Eng. J. 2017, 308, 40–49. [Google Scholar] [CrossRef]
- Wang, B.; Huo, P.; Luo, T.; Fan, Z.; Liu, F.; Xiao, B.; Yang, M.; Zhao, J.; Song, Y. Analysis of the physical properties of hydrate sediments recovered from the pearl river mouth basin in the South China Sea: Preliminary investigation for gas hydrate exploitation. Energies 2017, 10, 531. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, S.; Wan, Q.; Li, B.; Liu, H.; Han, X. Comparison and optimization of methane hydrate production process using different methods in a single vertical well. Energies 2019, 12, 124. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, J.; Liu, W.; Li, Y.; Yang, M.; Song, Y. Microstructure observations of natural gas hydrate occurrence in porous media using microfocus x-ray computed tomography. Energy Fuels 2015, 29, 4835–4841. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, B.; Sum, A.K. Dynamics of hydrate formation and deposition under pseudo multiphase flow. AIChE J. 2017, 63, 4136–4146. [Google Scholar] [CrossRef]
- Wang, S.; Yang, M.; Wang, P.; Zhao, Y.; Song, Y. In situ observation of methane hydrate dissociation under different backpressures. Energy Fuels 2015, 29, 3251–3256. [Google Scholar] [CrossRef]
- Castagna, J.P.; Batzle, M.L.; Eastwood, R.L. Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks. Geophysics 1985, 50, 571–581. [Google Scholar] [CrossRef]
- Winters, W.J.; Waite, W.F.; Mason, D.H.; Gilbert, L.Y.; Pecher, I.A. Methane gas hydrate effect on sediment acoustic and strength properties. J. Pet. Sci. Eng. 2007, 56, 127–135. [Google Scholar] [CrossRef]
- Yang, J.; Tohidi, B. Determination of hydrate inhibitor concentrations by measuring electrical conductivity and acoustic velocity. Energy Fuels 2013, 27, 736–742. [Google Scholar] [CrossRef]
- Chand, S.; Minshull, T.A.; Gei, D.; Carcione, J.M. Elastic velocity models for gas-hydrate-bearing sediments—A comparison. Geophys. J. Int. 2004, 159, 573–590. [Google Scholar] [CrossRef]
- Konno, Y.; Jin, Y.; Yoneda, J.; Kida, M.; Egawa, K.; Ito, T.; Suzuki, K.; Nagao, J. Effect of methane hydrate morphology on compressional wave velocity of sandy sediments: Analysis of pressure cores obtained in the Eastern Nankai Trough. Mar. Pet. Geol. 2015, 66, 425–433. [Google Scholar] [CrossRef]
- Waite, W.F.; Winters, W.J.; Mason, D.H. Methane hydrate formation in partially water-saturated Ottawa sand. Am. Min. 2004, 89, 1202–1207. [Google Scholar] [CrossRef]
- Yun, T.S.; Francisca, F.M.; Santamarina, J.C.; Ruppel, C. Compressional and shear wave velocities in uncemented sediment containing gas hydrate. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Lee, J.Y.; Francisca, F.M.; Santamarina, J.C.; Ruppel, C. Parametric study of the physical properties of hydrate-bearing sand, silt, and clay sediments: 2. Small-strain mechanical properties. J. Geophys. Res. Solid Earth 2010, 115. [Google Scholar] [CrossRef]
- Winters, W.J.; Pecher, I.A.; Waite, W.F.; Mason, D.H. Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate. Am. Mineral. 2004, 89, 1221–1227. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Marín-Moreno, H.; North, L.J.; Falcon-Suarez, I.; Madhusudhan, B.N.; Best, A.I.; Minshull, T.A. Presence and consequences of co-existing methane gas with hydrate under two phase water-hydrate stability conditions. J. Geophys. Res. Solid Earth 2018, 123, 3377–3390. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Madhusudhan, B.N.; Marín-Moreno, H.; North, L.J.; Ahmed, S.; Falcon-Suarez, I.H.; Minshull, T.A.; Best, A.I. Laboratory Insights into the Effect of Sediment-Hosted Methane Hydrate Morphology on Elastic Wave Velocity from Time-Lapse 4-D Synchrotron X-Ray Computed Tomography. Geochem. Geophys. Geosyst. 2018, 19, 4502–4521. [Google Scholar] [CrossRef]
- Pohl, M.; Prasad, M.; Batzle, M.L. Ultrasonic attenuation of pure tetrahydrofuran hydrate. Geophys. Prospect. 2018, 66, 1349–1357. [Google Scholar] [CrossRef]
- Helgerud, M.B.; Waite, W.F.; Kirby, S.H.; Nur, A. Elastic wave speeds and moduli in polycrystalline ice Ih, sI methane hydrate, and sII methane-ethane hydrate. J. Geophys. Res. Solid Earth 2009, 114. [Google Scholar] [CrossRef]
- Hu, G.; Ye, Y.; Zhang, J.; Liu, C.; Diao, S.; Wang, J. Acoustic properties of gas hydrate-bearing consolidated sediments and experimental testing of elastic velocity models. J. Geophys. Res. Solid Earth 2010, 115, B2. [Google Scholar] [CrossRef]
- Bu, Q.; Hu, G.; Ye, Y.; Liu, C.; Li, C.; Wang, J. Experimental study on 2-D acoustic characteristics and hydrate distribution in sand. Geophys. J. Int. 2017, 211, 990–1004. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, W.; Xue, K.; Wei, R.; Ling, Z. A pressure core ultrasonic test system for on-board analysis of gas hydrate-bearing sediments under in situ pressures. Rev. Sci. Instrum. 2018, 89, 054904. [Google Scholar] [CrossRef]
- Song, Y.; Kuang, Y.; Fan, Z.; Zhao, Y.; Zhao, J. Influence of core scale permeability on gas production from methane hydrate by thermal stimulation. Int. J. Heat Mass Transf. 2018, 121, 207–214. [Google Scholar] [CrossRef]
- Kuang, Y.; Lei, X.; Yang, L.; Zhao, Y.; Zhao, J. Observation of in-situ growth and decomposition of Carbon dioxide hydrate at gas-water interfaces using MRI. Energy Fuels 2018, 32, 6964–6969. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, L.; Chen, X.; Zhang, Y.; Liu, Y.; Song, Y. Combined replacement and depressurization methane hydrate recovery method. Energy Explor. Exploit. 2016, 34, 129–139. [Google Scholar] [CrossRef]
- Natarajan, V.; Bishnoi, P.R.; Kalogerakis, N. Induction phenomena in gas hydrate nucleation. Chem. Eng. Sci. 1994, 49, 2075–2087. [Google Scholar] [CrossRef]
- Toksöz, M.N.; Johnston, D.H.; Timur, A. Attenuation of seismic waves in dry and saturated rocks: 1. Laboratory measurement. Geophysics 1979, 44, 681–690. [Google Scholar] [CrossRef]
- Johnston, D.H.; Toksöz, M.N.; Timur, A. Attenuation of seismic waves in dry and saturated rocks: II. Mechanisms. Geophysics 1979, 44, 691–711. [Google Scholar] [CrossRef]
- Jakobsen, M.; Hudson, J.A.; Minshull, T.A.; Singh, S.C. Elastic properties of hydrate-bearing sediments using effective-medium theory. J. Geophys. Res. Solid Earth 2000, 105, 561–577. [Google Scholar] [CrossRef]
- Gei, D.; Carcione, J.M. Acoustic properties of sediments saturated with gas hydrate, free gas and water. Geophys. Prospect. 2003, 51, 141–158. [Google Scholar] [CrossRef]
- Carcione, J.M.; Tinivella, U. Bottom-simulating reflectors: Seismic velocities and AVO effects. Geophysics 2000, 65, 54–67. [Google Scholar] [CrossRef]
- Ecker, C.; Dvorkin, J.; Nur, A.M. Estimating the amount of gas hydrate and free gas from marine seismic data. Geophysics 2000, 65, 565–573. [Google Scholar] [CrossRef]
- Lee, M.W.; Hutchinson, D.R.; Collett, T.S.; Dillon, W.P. Seismic velocities for hydrate-bearing sediments using weighted equation. J. Geophys. Res. Solid Earth 1996, 101, 20347–20358. [Google Scholar] [CrossRef]
- Priest, J.A.; Best, A.I.; Clayton, C.R.I. A laboratory investigation into the seismic velocities of methane gas hydrate-bearing sand. J. Geophys. Res. Solid Earth 2005, 110. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, F.; Sun, C.; Li, Q.; Wu, X.; Liu, B.; Chen, G. Compressional wave velocity measurements through sandy sediments containing methane hydrate. Am. Mineral. 2011, 96, 1425–1432. [Google Scholar] [CrossRef]
- Priest, J.A.; Rees, E.V.L.; Clayton, C.R.I. Influence of gas hydrate morphology on the seismic velocities of sands. J. Geophys. Res. Solid Earth 2009, 114. [Google Scholar] [CrossRef]
- Ren, S.; Liu, Y.; Liu, Y.; Zhang, W. Acoustic velocity and electrical resistance of hydrate bearing sediments. J. Pet. Sci. Eng. 2010, 70, 52–56. [Google Scholar] [CrossRef]
- Ecker, C.; Dvorkin, J.; Nur, A.M. Sediments with gas hydrates: Internal structure from seismic AVO. Geophysics 1998, 63, 1659–1669. [Google Scholar] [CrossRef]
- Kleinberg, R.L.; Dai, J. Estimation of the mechanical properties of natural gas hydrate deposits from petrophysical measurements. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 2–5 May 2005. [Google Scholar]
- Guerin, G.; Goldberg, D.; Meltser, A. Characterization of in situ elastic properties of gas hydrate-bearing sediments on the Blake Ridge. J. Geophys. Res. Solid Earth 1999, 104, 17781–17795. [Google Scholar] [CrossRef]
- Helgerud, M.B.; Dvorkin, J.; Nur, A.; Sakai, A.; Collett, T. Elastic-wave velocity in marine sediments with gas hydrates: Effective medium modeling. Geophys. Res. Lett. 1999, 26, 2021–2024. [Google Scholar] [CrossRef]
- Murray, D.R.; Fukuhara, M.; Osawa, O.; Endo, T.; Kleinberg, R.L.; Sinha, B.K.; Namikawa, T. Saturation, acoustic properties, growth habit, and state of stress of a gas hydrate reservoir from well logs. Petrophysics 2006, 47, 129–137. [Google Scholar]
Case | ||||||
---|---|---|---|---|---|---|
Standard | - | - | 195,843 | - | - | 6320 |
Blank | 0 | 0 | 42,684 ± 116 | 2.54 ± 0.15 | 1.007 ± 0.005 | 1793 ± 15 |
1 | 7 | 2 | 43,562 ± 189 | 3.04 ± 0.20 | 1.326 ± 0.010 | 2023 ± 11 |
2 | 28 | 8 | 42,090 ± 223 | 3.15 ± 0.26 | 1.488 ± 0.018 | 2183 ± 33 |
3 | 53 | 15 | 39,738 ± 158 | 3.30 ± 0.24 | 1.464 ± 0.028 | 2277 ± 27 |
4 | 70 | 20 | 39,596 ± 175 | 3.34 ± 0.26 | 1.636 ± 0.020 | 2477 ± 19 |
5 | 105 | 30 | 42,399 ± 195 | 3.55 ± 0.28 | 1.863 ± 0.040 | 2552 ± 44 |
6 | 140 | 40 | 43,111 ± 145 | 3.76 ± 0.36 | 2.210 ± 0.017 | 2836 ± 32 |
7 | 175 | 50 | 42,090 ± 197 | 4.00 ± 0.45 | 2.241 ± 0.023 | 3047 ± 42 |
8 | 210 | 60 | 42,826 ± 134 | 4.25 ± 0.54 | 2.603 ± 0.036 | 3114 ± 53 |
Case | (mol) | |||||
---|---|---|---|---|---|---|
Standard | - | - | 195,843 | - | - | 6320 |
Blank | 0 | 0 | 75,801 ± 116 | 1.40 ± 0.13 | 1.811 ± 0.015 | 1807 ± 9 |
9 | 0.130 | 4 | 69,982 ± 189 | 1.84 ± 0.20 | 2.446 ± 0.013 | 1813 ± 13 |
10 | 0.259 | 8 | 66,508 ± 223 | 2.01 ± 0.21 | 2.737 ± 0.041 | 1857 ± 23 |
11 | 0.324 | 10 | 69,804 ± 158 | 1.95 ± 0.26 | 2.991 ± 0.035 | 1886 ± 36 |
12 | 0.486 | 15 | 67,785 ± 175 | 2.11 ± 0.28 | 3.291 ± 0.025 | 1945 ± 24 |
13 | 0.648 | 20 | 63,747 ± 195 | 2.18 ± 0.25 | 3.607 ± 0.062 | 2152 ± 46 |
14 | 0.810 | 25 | 66,865 ± 145 | 2.35 ± 0.35 | 4.248 ± 0.048 | 2362 ± 18 |
15 | 0.972 | 30 | 65,558 ± 197 | 2.26 ± 0.30 | 4.852 ± 0.067 | 2488 ± 25 |
16 | 1.296 | 40 | 63,569 ± 134 | 2.45 ± 0.34 | 5.269 ± 0.090 | 2669 ± 37 |
Parameter | Value |
---|---|
Critical porosity | 0.35 |
Quartz bulk modulus | 36 GPa |
Quartz shear modulus | 45 GPa |
Quartz density | 2580 kg m−3 |
Hydrate bulk modulus | 7.7 GPa |
Hydrate shear modulus | 3.2 GPa |
Hydrate density | 910 kg m−3 |
Water bulk modulus | 2.3 GPa |
Water density | 1030 kg m−3 |
Gas bulk modulus | 0.1 GPa |
Gas density | 230 kg m−3 |
Viscosity of water | 2.04 × 10−3 Pa s |
Viscosity of gas | 1.34 × 10−3 Pa s |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Liu, Y.; Zhang, H.; Xiao, B.; Lv, X.; Yao, H.; Pang, W.; Li, Q.; Yang, L.; Song, Y.; et al. Non-Embedded Ultrasonic Detection for Pressure Cores of Natural Methane Hydrate-Bearing Sediments. Energies 2019, 12, 1997. https://doi.org/10.3390/en12101997
Li X, Liu Y, Zhang H, Xiao B, Lv X, Yao H, Pang W, Li Q, Yang L, Song Y, et al. Non-Embedded Ultrasonic Detection for Pressure Cores of Natural Methane Hydrate-Bearing Sediments. Energies. 2019; 12(10):1997. https://doi.org/10.3390/en12101997
Chicago/Turabian StyleLi, Xingbo, Yu Liu, Hanquan Zhang, Bo Xiao, Xin Lv, Haiyuan Yao, Weixin Pang, Qingping Li, Lei Yang, Yongchen Song, and et al. 2019. "Non-Embedded Ultrasonic Detection for Pressure Cores of Natural Methane Hydrate-Bearing Sediments" Energies 12, no. 10: 1997. https://doi.org/10.3390/en12101997
APA StyleLi, X., Liu, Y., Zhang, H., Xiao, B., Lv, X., Yao, H., Pang, W., Li, Q., Yang, L., Song, Y., & Zhao, J. (2019). Non-Embedded Ultrasonic Detection for Pressure Cores of Natural Methane Hydrate-Bearing Sediments. Energies, 12(10), 1997. https://doi.org/10.3390/en12101997