# Analysis, Modeling, and Control of Half-Bridge Current-Source Converter for Energy Management of Supercapacitor Modules in Traction Applications

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Special Characteristics of the HBCS Converter

## 3. Synchronous Rectification in the HBCS Converter

## 4. Full Model of the Converter under Synchronous Rectification

## 5. Proposed Control Scheme for the HBCS Converter

#### 5.1. Feedback Control Loop for the SC current

#### 5.2. Generation of the SC Current Reference

## 6. Experimental Results

## 7. Conclusions and Future Developments

## Author Contributions

## Funding

## Conflicts of Interest

## Abbreviations

CA | Control action |

DC | Direct current |

ESR | Equivalent series resistor |

LV | Low-voltage |

HBCS | Half-bridge current-source |

HF | High-frequency |

HSS | Hybrid storage system |

HV | High-voltage |

IGBT | Insulated-gate bipolar transistor |

MOSFET | Metal-oxide-semiconductor field-effect transistor |

SC | Supercapacitor |

SR | Synchronous rectification |

## References

- Ostadi, A.; Kazerani, M.; Chen, S.K. Hybrid Energy Storage System (HESS) in vehicular applications: A review on interfacing battery and ultra-capacitor units. In Proceedings of the 2013 IEEE Transportation Electrification Conference and Expo (ITEC), Detroit, MI, USA, 16–19 June 2013; pp. 1–7. [Google Scholar]
- Amjadi, Z.; Williamson, S.S. Digital Control of a Bidirectional DC/DC Switched Capacitor Converter for Hybrid Electric Vehicle Energy Storage System Applications. IEEE Trans. Smart Grid
**2014**, 5, 158–166. [Google Scholar] [CrossRef] - Kuperman, A.; Mellincovsky, M.; Lerman, C.; Aharon, I.; Reichbach, N.; Geula, G.; Nakash, R. Supercapacitor Sizing Based on Desired Power and Energy Performance. IEEE Trans. Power Electron.
**2014**, 29, 5399–5405. [Google Scholar] [CrossRef] - Cohen, I.J.; Kelley, J.P.; Wetz, D.A.; Heinzel, J. Evaluation of a Hybrid Energy Storage Module for Pulsed Power Applications. IEEE Trans. Plasma Sci.
**2014**, 42, 2948–2955. [Google Scholar] [CrossRef] - Farooque, M.; Maru, H.C. Fuel cells-the clean and efficient power generators. Proc. IEEE
**2001**, 89, 1819–1829. [Google Scholar] [CrossRef] - Di Napoli, A.; Caricchi, F.; Crescimbini, F. Fuel cells-the clean and efficient power generators. In Proceedings of the 6th European Conference on Power Electronics, Seville, Spain, 19–21 September 1995. [Google Scholar]
- Mestre, P.; Astier, S. Application of supercapacitors and influence of the drive control strategies on the performances of on electric vehicle. In Proceedings of the 15th Electric Vehicle Symposium (EVS-15), Bruxelles, Belgium, 29 September–3 October 1998. [Google Scholar]
- Grbovic, P.J.; Delarue, P.; Moigne, P.L.; Bartholomeus, P. Modeling and Control of the Ultracapacitor-Based Regenerative Controlled Electric Drives. IEEE Trans. Ind. Electron.
**2011**, 58, 3471–3484. [Google Scholar] [CrossRef] - Schmidt, M. EV Mini-Van Featuring Series Conjunction of Ultracapacitors and Batteries for Load Leveling of its Batteries. In Proceedings of the 15th Electric Vehicle Symposium (EVS-15), Bruxelles, Belgium, 29 September–3 October 1998. [Google Scholar]
- Itani, K.; Bernardinis, A.D.; Khatir, Z.; Jammal, A.; Oueidat, M. Regenerative Braking Modeling, Control, and Simulation of a Hybrid Energy Storage System for an Electric Vehicle in Extreme Conditions. IEEE Trans. Transp. Electr.
**2016**, 2, 465–479. [Google Scholar] [CrossRef] - King, R.; Schwartz, J.; Cardinal, M.; Garrigan, K. Development and system test of high efficiency ultracapacitor/battery electronic interface. In Proceedings of the 15th Electric Vehicle Symposium (EVS-15), Bruxelles, Belgium, 29 September–3 October 1998. [Google Scholar]
- Di Napoli, A.; Crescimbini, F.; Solero, L.; Caricchi, F.; Giulii Capponi, F. Multiple-input DC-DC power converter for power-flow management in hybrid vehicles. In Proceedings of the Conference Record of the 2002 IEEE Industry Applications Conference, 37th IAS Annual Meeting (Cat. No.02CH37344), Pittsburgh, PA, USA, 13–18 October 2002; Volume 3, pp. 1578–1585. [Google Scholar]
- Di Napoli, A.; Giulii Capponi, F.; Solero, L. Power Converter Arrangements with Ultracapacitor Tank for Battery Load Leveling in EV Motor Drives. In Proceedings of the 8th European Conference on Power Electronics, Lausanne, Switzerland, 7–9 September 1999. [Google Scholar]
- Herath, N.; Binduhewa, P.; Samaranayake, L.; Ekanayake, J.; Longo, S. Design of a dual energy storage power converter for a small electric vehicle. In Proceedings of the 2017 IEEE International Conference on Industrial and Information Systems (ICIIS), Peradeniya, Sri Lanka, 15–16 December 2017; pp. 1–6. [Google Scholar]
- Kouchachvili, L.; Yaïci, W.; Entchev, E. Hybrid battery/supercapacitor energy storage system for the electric vehicles. J. Power Sources
**2018**, 374, 237–248. [Google Scholar] [CrossRef] - Song, Z.; Li, J.; Hou, J.; Hofmann, H.; Ouyang, M.; Du, J. The battery-supercapacitor hybrid energy storage system in electric vehicle applications: A case study. Energy
**2018**, 154, 433–441. [Google Scholar] [CrossRef] - Cabrane, Z.; Ouassaid, M.; Maaroufi, M. Analysis and evaluation of battery-supercapacitor hybrid energy storage system for photovoltaic installation. Int. J. Hydrogen Energy
**2016**, 41, 20897–20907. [Google Scholar] [CrossRef] - Hernández, J.; Sanchez-Sutil, F.; Vidal, P.; Rus-Casas, C. Primary frequency control and dynamic grid support for vehicle-to-grid in transmission systems. Int. J. Electr. Power Energy Syst.
**2018**, 100, 152–166. [Google Scholar] [CrossRef] - Thounthong, P.; Piegari, L.; Pierfederici, S.; Davat, B. Nonlinear intelligent DC grid stabilization for fuel cell vehicle applications with a supercapacitor storage device. Int. J. Electr. Power Energy Syst.
**2015**, 64, 723–733. [Google Scholar] [CrossRef] - Sun, L.; Feng, K.; Chapman, C.; Zhang, N. An Adaptive Power-Split Strategy for Battery-Supercapacitor Powertrain-Design, Simulation, and Experiment. IEEE Trans. Power Electron.
**2017**, 32, 9364–9375. [Google Scholar] [CrossRef] - Bougrine, M.; Benalia, A.; Delaleau, E.; Benbouzid, M. Minimum time current controller design for two-interleaved bidirectional converter: Application to hybrid fuel cell/supercapacitor vehicles. Int. J. Hydrogen Energy
**2018**, 43, 11593–11605. [Google Scholar] [CrossRef] - He, H.W.; Xiong, R.; Chang, Y.H. Dynamic Modeling and Simulation on a Hybrid Power System for Electric Vehicle Applications. Energies
**2010**, 3, 1821–1830. [Google Scholar] [CrossRef] [Green Version] - Shah, N.; Czarkowski, D. Supercapacitors in Tandem with Batteries to Prolong the Range of UGV Systems. Electronics
**2018**, 7, 6. [Google Scholar] [CrossRef] - Zhang, Q.; Deng, W. An Adaptive Energy Management System for Electric Vehicles Based on Driving Cycle Identification and Wavelet Transform. Energies
**2016**, 9, 341. [Google Scholar] [CrossRef] - Passalacqua, M.; Lanzarotto, D.; Repetto, M.; Marchesoni, M. Advantages of Using Supercapacitors and Silicon Carbide on Hybrid Vehicle Series Architecture. Energies
**2017**, 10, 920. [Google Scholar] [CrossRef] - Wang, Y.; Hu, H.; Zhang, L.; Zhang, N.; Sun, X. Real-Time Vehicle Energy Management System Based on Optimized Distribution of Electrical Load Power. Appl. Sci.
**2016**, 6, 285. [Google Scholar] [CrossRef] - Wang, B.; Xu, J.; Wai, R.J.; Cao, B. Adaptive Sliding-Mode With Hysteresis Control Strategy for Simple Multimode Hybrid Energy Storage System in Electric Vehicles. IEEE Trans. Ind. Electron.
**2017**, 64, 1404–1414. [Google Scholar] [CrossRef] - Thounthong, P.; Rael, S. The benefits of hybridization. IEEE Ind. Electron. Mag.
**2009**, 3, 25–37. [Google Scholar] [CrossRef] - Lai, J.; Nelson, D.J. Energy Management Power Converters in Hybrid Electric and Fuel Cell Vehicles. Proc. IEEE
**2007**, 95, 766–777. [Google Scholar] [CrossRef] - Trovão, J.P.; Silva, M.A.; Dubois, M.R. Coupled energy management algorithm for MESS in urban EV. IET Electr. Syst. Transp.
**2017**, 7, 125–134. [Google Scholar] [CrossRef] - Jain, M.; Daniele, M.; Jain, P.K. A bidirectional DC-DC converter topology for low power application. IEEE Trans. Power Electron.
**2000**, 15, 595–606. [Google Scholar] [CrossRef] - Kazimierczuk, M.K.; Vuong, D.Q.; Nguyen, B.T.; Weimer, J.A. Topologies of bidirectional PWM dc-dc power converters. In Proceedings of the IEEE 1993 National Aerospace and Electronics Conference-NAECON 1993, Dayton, OH, USA, 24–28 May 1993; Volume 1, pp. 435–441. [Google Scholar]
- Giulii Capponi, F.; Cacciato, F. Using Super Capacitors in Combination with Bi-Directional DC/DC Converters for Active Load Management in Residential Fuel Cell Applications. In Proceedings of the 1st European Symposium on Supercapacitors (ESSCAP’04), Belfort, France, 4–5 November 2004. [Google Scholar]
- Cacciato, M.; Caricchi, F.; Giulii Capponi, F.; Santini, E. A critical evaluation and design of bi-directional DC/DC converters for super-capacitors interfacing in fuel cell applications. In Proceedings of the Conference Record of the 2004 IEEE Industry Applications Conference, 39th IAS Annual Meeting, Seattle, WA, USA, 3–7 October 2004; Volume 2, pp. 1127–1133. [Google Scholar]
- Giulii Capponi, F.; Santoro, P.; Crescenzi, E. HBCS Converter: A Bidirectional DC/DC Converter for Optimal Power Flow Regulation in Supercapacitor Applications. In Proceedings of the 2007 IEEE Industry Applications Annual Meeting, New Orleans, LA, USA, 23–27 September 2007; pp. 2009–2015. [Google Scholar]
- Zhang, Y.; Guo, Z.; Zhang, Y.; Zhan, T.; Jin, L. Active battery/ultracapacitor hybrid energy storage system based on soft-switching bidirectional converter. In Proceedings of the 2013 International Conference on Electrical Machines and Systems (ICEMS), Busan, South Korea, 26–29 October 2013; pp. 2177–2182. [Google Scholar]
- Wai, R.J.; Duan, R.Y. High-Efficiency Bidirectional Converter for Power Sources with Great Voltage Diversity. IEEE Trans. Power Electron.
**2007**, 22, 1986–1996. [Google Scholar] [CrossRef] - Yamamoto, K.; Hiraki, E.; Tanaka, T.; Nakaoka, M.; Mishima, T. Bidirectional DC-DC converter with full-bridge/push-pull circuit for automobile electric power systems. In Proceedings of the 2006 37th IEEE Power Electronics Specialists Conference, Jeju, South Korea, 18–22 June 2006; pp. 1–5. [Google Scholar]
- Dusmez, S.; Hasanzadeh, A.; Khaligh, A. Comparative Analysis of Bidirectional Three-Level DC DC Converter for Automotive Applications. IEEE Trans. Ind. Electron.
**2015**, 62, 3305–3315. [Google Scholar] [CrossRef] - Garcia, J.; Giulii Capponi, F.; Borocci, G.; Garcia, P. Control strategy for Bidirectional HBCS Converter for supercapacitor applications. In Proceedings of the 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), Istanbul, Turkey, 1–4 June 2014; pp. 1794–1799. [Google Scholar]
- Garcia, J.; Garcia, P.; Giulii Capponi, F.; Borocci, G.; De Donato, G. Analysis, modeling and control of half-bridge current-source converter for supercapacitor applications. In Proceedings of the 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 14–18 September 2014; pp. 3786–3793. [Google Scholar]

**Figure 1.**Parallel configuration for interfacing supercapacitors (SCs) with primary energy source (battery stack).

**Figure 2.**Layout of Half-Bridge Current-Source (HBCS) bidirectional converter. The references for the current and voltage considered for the analysis are shown.

**Figure 3.**Main voltage (black) and current (red) waveforms of the half-bridge current-source (HBSC) for charging (

**a**) and discharging (

**b**) operation modes.

**Figure 4.**Switching modes of the half-bridge current-source (HBCS) converter operating during supercapacitor (SC) charging operation mode. (

**a**) Switch ${S}_{1}$ on and switch ${S}_{2}$ off. (

**b**) Both switches ${S}_{1}$ and ${S}_{2}$ off. (

**c**) Switch ${S}_{1}$ off and switch ${S}_{2}$ on.

**Figure 5.**Switching modes of the half-bridge current-source (HBCS) converter operating during supercapacitor (SC) discharging operation mode. (

**a**) Switch ${S}_{3}$ on and switch ${S}_{4}$ off. (

**b**) Both switches ${S}_{3}$ and ${S}_{4}$ turned on. (

**c**) Switch ${S}_{3}$ off and switch ${S}_{4}$ on.

**Figure 6.**Drain-to-source voltage (${V}_{DS}$, dashed lines) and conduction losses (${P}_{COND}$, filled lines) for both diode conduction (gray) and MOSFET conduction (black), for the half-bridge current-source (HBCS) prototype.

**Figure 7.**Graphical relationship of experimental efficiency measurements between standard and synchronous rectification switching schemes, as a function of load resistance. (

**a**) ${V}_{SC}$ = 25 V. (

**b**) ${V}_{SC}$ = 30 V. (

**c**) ${V}_{SC}$ = 34 V.

**Figure 9.**Simulation waveforms (gray) and averaged value of model based on ideal components (black), for filter current (${I}_{L}$), load output current (${I}_{SC}$), load voltage (${V}_{SC}$), and input current (${I}_{BC}$).

**Figure 10.**Half-bridge current-source (HBCS) converter equivalent circuit, including the overall leakage inductor at the primary side of the transformer.

**Figure 11.**(

**a**) Switching waveforms with ideal transformer. (

**b**) Switching waveforms with overall leakage inductor at the primary side.

**Figure 12.**Full averaged large-signal model based on real components, parasitic elements, and snubbers.

**Figure 13.**Simulation waveforms (gray) and averaged value of model based on the parameters of real components (black), for filter current (${I}_{L}$), load output current (${I}_{SC}$), load voltage (${V}_{SC}$) and input current (${I}_{BC}$).

**Figure 16.**Inner control loop approach (

**a**) for designing and tuning the regulator and (

**b**) for implementing the control scheme.

**Figure 17.**Simulation of inductor current ${I}_{L}$ (gray, upper plot) and supercapacitor (SC) voltage ${V}_{SC}$ (black, lower plot) during step changes in the commanded current (black, lower plot). Positive current corresponds to charging mode, negative to discharging mode.

**Figure 20.**Experimental waveforms (gray) and averaged value of model based on ideal components (black, dashed), for filter current (${I}_{L}$), load output current (${I}_{SC}$), load voltage (${V}_{SC}$), and input current (${I}_{BC}$).

**Figure 21.**Experimental waveforms (gray) and averaged value of model based on real components (black), for filter current (${I}_{L}$), load output current (${I}_{SC}$), load voltage (${V}_{SC}$), and input current (${I}_{BC}$).

**Figure 22.**Inductor current ${I}_{L}$ (black, upper plot) and supercapacitor (SC) voltage ${V}_{SC}$ (black, lower plot) during step changes in the commanded current ${I}_{L}^{*}$ (referenced by dashed gray lines). Positive current corresponds to charging mode, negative to discharging mode.

**Figure 23.**Inductor current ${I}_{L}$ (black) and reference ${I}_{L}^{*}$ (grey) during one step change.

Parameter | Max. | Min. |
---|---|---|

SC voltage | 45 V | 25 V |

HV DC-link voltage | 350 V | |

Switching frequency | 20 kHz | |

SC discharge-mode duty ratio | 0.75 | 0.55 |

SC charge-mode duty ratio | 0.45 | 0.25 |

Output power (SC disch. mode) | 3 kW | 1.6 kW |

Output power (SC chrg mode) | 3 kW | 1.6 kW |

SC current | 65 A | −65 A |

Transformer turns ratio | 3.5:1:1 |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Garcia, J.; Garcia, P.; Giulii Capponi, F.; De Donato, G.
Analysis, Modeling, and Control of Half-Bridge Current-Source Converter for Energy Management of Supercapacitor Modules in Traction Applications. *Energies* **2018**, *11*, 2239.
https://doi.org/10.3390/en11092239

**AMA Style**

Garcia J, Garcia P, Giulii Capponi F, De Donato G.
Analysis, Modeling, and Control of Half-Bridge Current-Source Converter for Energy Management of Supercapacitor Modules in Traction Applications. *Energies*. 2018; 11(9):2239.
https://doi.org/10.3390/en11092239

**Chicago/Turabian Style**

Garcia, Jorge, Pablo Garcia, Fabio Giulii Capponi, and Giulio De Donato.
2018. "Analysis, Modeling, and Control of Half-Bridge Current-Source Converter for Energy Management of Supercapacitor Modules in Traction Applications" *Energies* 11, no. 9: 2239.
https://doi.org/10.3390/en11092239