# Design and Experimental Verification of 400-W Class LED Driver with Cooperative Control Method for Two-Parallel Connected DC/DC Converters

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

- Design of the smoothing capacitor for satisfying the standard of Electrical Applications and Materials Safety Act in Japan,
- Dynamic response of the proposed LED driver when the reference LED current is changed,
- Comparison of power conversion efficiency between Si- and SiC-MOSFETs,
- Improvement of power conversion efficiency in low current range by the proposed variable switching frequency method.

## 2. Conventional Control Method

## 3. System Configuration

## 4. Proposed Cooperative Control Method

## 5. Simulation Results

## 6. Experimental Results

## 7. Comparison of Power Conversion Efficiency between Si- and SiC-MOSFETs

## 8. Improvement of Power Conversion Efficiency for Low LED Current Region

## 9. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Abbreviations

LED | Light-emitting diode |

DCM | Discontinuous conduction mode |

THD | Total harmonic distortion |

MOSFET | Metal-oxide-semiconductor field-effect transistor |

PFC | Power factor correction |

FFT | Fast Fourier Transform |

DSP | Digital signal processor |

## References

- International Energy Agency. Energy Matters. Available online: https://www.iea.org/publications/freepublications/publication/EnergyMattersBrochure.2.pdf (accessed on 25 July 2016).
- United Nations Environment. Minamata Convention on Mercury. Available online: http://www.unep.org/hazardoussubstances/Portals/9/Mercury/Documents/dipcon/CONF3Minamata%20Convention%20on%20Mercuryfinal%2026%2008e.pdf (accessed on 25 July 2016).
- Schratz, M.; Gupta, C.; Struhs, T.J.; Gray, K. Improving light quality with cost-effective LED technology. IEEE Ind. Appl. Mag.
**2016**, 22, 55–62. [Google Scholar] [CrossRef] - Lee, J.-Y.; Moon, G.-W.; Park, H.-J.; Youn, M.-J. Integrated ZCS Quasi-Resonant Power Factor Correction Converter Based on Flyback Topology. IEEE Trans. Power Electron.
**2000**, 15, 634–643. [Google Scholar] - Arias, M.; Lamar, D.G.; Linera, F.F.; Balocco, D.; Diallo, A.A.; Sebastian, J. Design of a Soft-Switching Asymmetrical Half-Bridge Converter as Second Stage of an LED Driver for Street Lighting Application. IEEE Trans. Power Electron.
**2012**, 27, 1608–1621. [Google Scholar] [CrossRef] - Xie, X.; Li, J.; Peng, K.; Xhao, C.; Lu, Q. Study on the Single-Stage Forward-Flyback PFC Converter with QR Control. IEEE Trans. Power Electron.
**2016**, 31, 430–442. [Google Scholar] [CrossRef] - Cheng, C.-A.; Cheng, H.-L.; Chung, T.-Y. A Novel Single-Stage High-Power-Factor LED Street-Lighting Driver With Coupled Inductors. IEEE Trans. Ind. Appl.
**2014**, 50, 3037–3045. [Google Scholar] [CrossRef] - Cheng, C.-A.; Chang, C.-H.; Chung, T.-Y.; Yang, F.-L. Design and Implementation of a Single-Stage Driver for Supplying an LED Street-Lighting Module With Power Factor Corrections. IEEE Trans. Power Electron.
**2015**, 30, 956–966. [Google Scholar] [CrossRef] - Moo, C.-S.; Chen, Y.-J.; Yang, W.-C. An Efficient Driver for Dimmable LED Lighting. IEEE Trans. Power Electron.
**2012**, 27, 4613–4618. [Google Scholar] [CrossRef] - Jane, G.; Su, C.-C.; Chiu, H.-J.; Lo, Y.-K. High-Efficiency LED Driver for Street Light Applications. In Proceedings of the International Conference on Renewable Energy Research and Applications (ICRERA), Nagasaki, Japan, 11–14 November 2012; pp. 105–107. [Google Scholar]
- Yada, T.; Yamada, H.; Hanamoto, T. A Novel Cooperational Control Method for LED Driver with Parallel Flyback Converter. J. Jpn. Inst. Power Electron.
**2015**, 40, JIPE-40-19. [Google Scholar] - Katamoto, Y.; Yamada, H.; Tanaka, T.; Okamoto, M.; Yada, T. Experimental Verification of Cooperative Control Method for 400-W Class LED Drivfer With Wide Dimming Range. In Proceedings of the 19th International Conference on Electrical Machines and Systems, Chiba, Japan, 13–16 November 2016; p. DS4G-2-8. [Google Scholar]
- Ministry of Economy, Trade, and Industry. Electrical Appliances and Materials Safety Act; Ministry of Economy, Trade and Industry: Chiyoda, Japan, 2018.

**Figure 1.**Previously proposed circuit diagram of light-emitting diode (LED) driver [4].

**Figure 10.**Simulation results of the proposed cooperative control method when the reference LED current ${I}_{\mathrm{LED}}^{*}$ is 1.5 A.

**Figure 11.**Simulation results of the output current ${I}_{\mathrm{LED}}$ and voltage ${V}_{\mathrm{oB}}$ for the reference LED current ${I}_{\mathrm{LED}}^{*}$.

**Figure 12.**Simulation waveforms when the reference LED current ${I}_{\mathrm{LED}}^{*}$ is changed from 15 mA to 1.5 A.

**Figure 15.**Simulation results of the proposed cooperative control method when the reference LED current ${I}_{\mathrm{LED}}^{*}$ is 15 mA.

**Figure 17.**Experimental results of the proposed cooperative control method when the reference LED current ${I}_{\mathrm{LED}}^{*}$ is 1.5 A.

**Figure 18.**Experimental results of the proposed cooperative control method when the reference LED current ${I}_{\mathrm{LED}}^{*}$ is 15 mA.

**Figure 21.**Experimental results of the output current ${I}_{\mathrm{LED}}$ and voltage ${V}_{\mathrm{oB}}$ for the reference LED current ${I}_{\mathrm{LED}}^{*}$.

**Figure 22.**Experimental results of the proposed cooperative control method when the reference LED current ${I}_{\mathrm{LED}}^{*}$ is 15 mA.

**Figure 23.**Experimental result when the reference LED current ${I}_{\mathrm{LED}}^{*}$ is changed from 15 mA to 1.5 A.

**Figure 29.**Control block of the proposed cooperative control method with variable switching frequency.

**Figure 31.**Experimental results of the efficiency with the switching frequency as 25 kHz and 50 kHz.

Item | Symbol | Value |
---|---|---|

AC source voltage | ${V}_{\mathrm{s}}$ | 100 Vrms |

Inductance of filter inductor | ${L}_{\mathrm{f}}$ | 265 µH |

Capacitance of filter capasitor | ${C}_{\mathrm{f}}$ | 0.1 µF |

Capacitance | ${C}_{1}$, ${C}_{2}$ | 0.1 µF, 0.1 µF |

Capacitance | ${C}_{\mathrm{o}1}$, ${C}_{\mathrm{o}2}$ | 110 µF, 110 µF |

Buck-boost inductance | ${L}_{1}$ | 69 µH |

Turn ratio | ${N}_{1}$:${N}_{2}$ | 24:9 |

Inductance of primary side | ${L}_{\mathrm{p}}$ | 228 µH |

Snubber resistance | ${R}_{\mathrm{SN}}$ | 23.5 k$\mathrm{\Omega}$ |

Snubber Capacitance | ${C}_{\mathrm{SN}}$ | 1 nF |

Switching frequency | ${f}_{\mathrm{sw}}$ | 50 kHz |

**Table 2.**Si- and SiC-metal-oxide-semiconductor field-effect transistors (MOSFETs) parameters in the experimental setup.

${\mathit{Q}}_{\mathbf{A}}$ | ${\mathit{Q}}_{\mathbf{B}}$ | ||||
---|---|---|---|---|---|

Parameter | (SiC-MOSFET) | (Si-MOSFET) | (SiC-MOSFET) | (Si-MOSFET) | |

C3M0065090J | STF20NM65N | C2M0040120D | TK40J60T | ||

Drain-source voltage ${V}_{\mathrm{DS}}$ (V) | 900 | 650 | 1200 | 600 | |

Gate-source voltage ${V}_{\mathrm{GS}}$ (V) | −8/19 | −25/25 | −10/25 | −30/30 | |

Continuous drain current (A) | ${T}_{\mathrm{C}}$ = 25 °C | 35 | 15 | 40 | 40 |

${T}_{\mathrm{C}}$ = 100 °C | 22 | 9.45 | 60 | - | |

Junction temperature ${T}_{\mathrm{j}}$ (°C) | −55 to 150 | −55 to 150 | −55 to 150 | −55 to 150 | |

Drain-source on-state resistance (m$\mathrm{\Omega}$) | ${T}_{\mathrm{C}}$ = 25 °C | 65 | 250 | 40 | 68 |

${T}_{\mathrm{C}}$ = 100 °C | 78 | 270 | 52 | 80 | |

Input capacitance ${C}_{\mathrm{iss}}$ (pF) | 660 | 1280 | 1893 | 3900 | |

Output capacitance ${C}_{\mathrm{oss}}$ (pF) | 60 | 110 | 150 | 9200 | |

Reverse capacitance ${C}_{\mathrm{rss}}$ (pF) | 4.0 | 10 | 10 | 280 |

Item | Conventional Method | Proposed Method | Proposed Method |
---|---|---|---|

with Si-MOSFETs | with SiC-MOSFETs | ||

AC input voltage | 185–265 Vrms | 100 Vrms | 100 Vrms |

Output power | 210 W | 408 W | 408 W |

Dimming type | Step | Linear | Linear |

Dimming range (%) | 50, 75, 100 | 1–100 | 1–100 |

Efficiency at maximum output power | 92.1% | 90.5% | 91.4% |

Efficiency at minimum output power | 90.7% | 62.0% | 69.5% |

Minimum illuminance of LEDs | 1680lx | 257lx | 257lx |

${\mathbf{Q}}_{\mathbf{A}}$ | ${\mathbf{Q}}_{\mathbf{B}}$ | |||
---|---|---|---|---|

Item | Si-MOSFET | SiC-MOSFET | Si-MOSFET | SiC-MOSFET |

Loss | 4.17 W | 1.91 W | 5.92 W | 4.51 W |

Height of the heat sink | 37 mm | 14.4 mm | 61.2 mm | 41.2 mm |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Yada, T.; Katamoto, Y.; Yamada, H.; Tanaka, T.; Okamoto, M.; Hanamoto, T.
Design and Experimental Verification of 400-W Class LED Driver with Cooperative Control Method for Two-Parallel Connected DC/DC Converters. *Energies* **2018**, *11*, 2237.
https://doi.org/10.3390/en11092237

**AMA Style**

Yada T, Katamoto Y, Yamada H, Tanaka T, Okamoto M, Hanamoto T.
Design and Experimental Verification of 400-W Class LED Driver with Cooperative Control Method for Two-Parallel Connected DC/DC Converters. *Energies*. 2018; 11(9):2237.
https://doi.org/10.3390/en11092237

**Chicago/Turabian Style**

Yada, Tomoharu, Yuta Katamoto, Hiroaki Yamada, Toshihiko Tanaka, Masayuki Okamoto, and Tsuyoshi Hanamoto.
2018. "Design and Experimental Verification of 400-W Class LED Driver with Cooperative Control Method for Two-Parallel Connected DC/DC Converters" *Energies* 11, no. 9: 2237.
https://doi.org/10.3390/en11092237