Photovoltaic Integrated Shunt Active Power Filter with Simpler ADALINE Algorithm for Current Harmonic Extraction
Abstract
:1. Introduction
2. Single-Phase Photovoltaic Shunt Active Power Filter
3. Simpler ADALINE-Based Current Harmonics Extraction
4. Self-Charging with Step Size Error Cancellation Algorithm
5. Simulation Results
6. Experimental Results
7. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Nomenclature
ω | Angular frequency |
α | Learning rate |
ts | Sampling period |
e | Average square error |
e(k) | Digital time-varying average square error |
IL | Load current |
IL(k) | Digital time-varying load current |
I1 | Fundamental current |
IS | Source current |
IS(k) | Digital time-varying source current |
W | Weight learning factor |
W(k + 1) | Matrix of next iteration weight |
If(k + 1) | Matrix of next iteration fundamental active current |
Wan | Amplitude of the sine component |
Wbn | Amplitude of the cosine component |
n | Harmonic order |
N | Maximum harmonic order |
Sin (k ωts) | Sine function |
Vdc | DC link capacitor voltage |
Vdc1 | Desired DC link capacitor voltage |
Vdc2 | Instantaneous DC link capacitor voltage |
Vs | Source voltage |
Y(k) | Matrix of sine and cosine function |
IH | Harmonic current |
IH(k) | Digital time-varying harmonic current |
If | Fundamental active current |
Iinj | Injection current |
Iest(k) | Digital time-varying estimation current |
IPV | PV current |
Iinv | Inverter current |
Idc | Capacitor charging current |
ICPV | Capacitor–PV current |
Eac | Charging energy of AC |
P | Real power |
tc | Charging time of the capacitor |
Vrms | RMS value of the supply voltage |
Idc,rms | RMS value of the charging capacitor current |
V | Peak value of the supply voltage |
T | Period |
Ө | Phase angle |
∆E | Energy differential |
∆e | Step size error |
enew | New voltage error |
References
- Institute of Electrical and Electronics Engineers. IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems; IEEE Standard 519; Institute of Electrical and Electronics Engineers: New York, NY, USA, 2014; pp. 1–29. [Google Scholar]
- Qasim, M.; Kanjiya, P.; Khadkikar, V. Artificial-neural-network-based phase-locking scheme for active power filters. IEEE Trans. Ind. Electron. 2014, 61, 3857–3866. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, H. Analysis and Suppression of Leakage Current in Cascaded Multilevel Inverter Based PV Systems. IEEE Trans. Power Electron. 2014, 29, 5265–5277. [Google Scholar] [CrossRef]
- He, G.; Xu, D.; Chen, M. A Novel Control Strategy of Suppressing DC Current Injection to the Grid for Single-Phase PV Inverter. IEEE Trans. Power Electron. 2015, 30, 1266–1274. [Google Scholar] [CrossRef]
- Hamidreza, K.; Hamid, A.T. Single-Stage Multistring PV Inverter with an Isolated High-Frequency Link and Soft-Switching Operation. IEEE Trans. Power Electron. 2014, 29, 3919–3929. [Google Scholar]
- Hoon, Y.; Mohd Radzi, M.A.; Hassan, M.K.; Mailah, N.F. Control Algorithms of Shunt Active Power Filter for Harmonics Mitigation: A Review. Energies 2017, 10, 2038. [Google Scholar] [CrossRef]
- Musa, S.; Radzi, M.A.M.; Hizam, H.; Wahab, N.I.A.; Hoon, Y.; Zainuri, M.A.A.M. Modified Synchronous Reference Frame Based Shunt Active Power Filter with Fuzzy Logic Control Pulse Width Modulation Inverter. Energies 2017, 10, 758. [Google Scholar] [CrossRef]
- Faranda, R.; Leva, S. Energy Comparison of MPPT Techniques for PV Systems. WSEAS Trans. Power Syst. 2008, 3, 446–455. [Google Scholar]
- Vavilapalli, S.; Padmanaban, S.; Subramaniam, U.; Mihet-Popa, L. Power balancing control for grid energy storage system in photovoltaic applications—Real time digital simulation implementation. Energies 2017, 10, 928. [Google Scholar] [CrossRef]
- Barater, D.; Buticchi, G.; Lorenzani, E.; Concari, C. Active Common-Mode Filter for Ground Leakage Current Reduction in Grid-Connected PV Converters Operating with Arbitrary Power Factor. IEEE Trans. Ind. Electron. 2014, 61, 3940–3950. [Google Scholar] [CrossRef]
- Dogan, H.; Akkaya, R. A control scheme employing an adaptive hysteresis current controller and an uncomplicated reference current generator for a single-phase shunt active power filter. Turk. J. Electr. Eng. Comput. Sci. 2014, 22, 1085–1097. [Google Scholar] [CrossRef]
- Akagi, H.; Kanazawa, Y.; Nabae, A. Instantaneous reactive power compensators comprising switching devices without energy storage components. IEEE Trans. Ind. Appl. 2008, 3, 625–630. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, L.; Peng, J.; Wang, Y.; Mao, X. Analysis of Harmonic Current Suppression and Reactive Power Compensation on 125 MVA Motor Generator. IEEE Trans. Plasma Sci. 2012, 40, 705–709. [Google Scholar] [CrossRef]
- Tey, L.H.; Soand, P.L.; Hu, Y.C. Improvement of power quality using adaptive shunt filter. IEEE Trans. Power Deliv. 2005, 20, 1558–1568. [Google Scholar] [CrossRef]
- Abdul Rahman, N.F.; Mohd Radzi, M.A.; Che Soh, A.; Mariun, N.; Abd Rahim, N. Adaptive Hybrid Fuzzy-Proportional Plus Crisp-Integral Current Control Algorithm for Shunt Active Power Filter Operation. Energies 2016, 9, 737. [Google Scholar] [CrossRef]
- Cirrincione, M.; Pucci, M.; Vitale, G. A single-phase DG generation unit with shunt active power filter capability by adaptive neural filtering. IEEE Trans. Ind. Electron. 2008, 55, 2093–2110. [Google Scholar] [CrossRef]
- Singh, B.; Verma, V.; Solanki, J. Neural network-based selective compensation of current quality problems in distribution system. IEEE Trans. Ind. Electron. 2007, 54, 53–60. [Google Scholar] [CrossRef]
- Radzi, M.A.M.; Rahim, N.A. Neural network and band-less hysteresis approach to control switched capacitor active power filter for reduction of harmonics. IEEE Trans. Ind. Electron. 2009, 54, 1477–1484. [Google Scholar] [CrossRef]
- Abdul Rahman, N.F.A.; Radzi, M.A.M.; Mariun, N.; Che Soh, A.; Rahim, N.A. Integration of dual intelligent algorithms in shunt active power filter. In Proceedings of the 2013 IEEE Conference on Clean Energy and Technology (CEAT), Langkawi, Malaysia, 8–20 November 2013; pp. 259–264. [Google Scholar]
- Bhattacharya, A.; Chakraborty, C. ADALINE controlled 3-phase 3-wire shunt active power filter with enhanced performance using the capacitor voltage feedback. In Proceedings of the IEEE International Conference on Industrial Technology, Churchill, Victoria, Australia, 10–13 February 2009; pp. 1–6. [Google Scholar]
- Mikkili, S.; Panda, A.K. Types-1 and -2 fuzzy logic controllers-based shunt active filter Id-Iq control strategy with different fuzzy membership functions for power quality improvement using RTDS hardware. IET Power Electron. 2013, 6, 818–833. [Google Scholar] [CrossRef]
- Farahat, M.A.; Zobah, A. Active Filter for Power Quality Improvement by Artificial Neural Networks Technique. In Proceedings of the 39th International Universities Power Engineering Conference, Bristol, UK, 6–8 September 2004; pp. 878–883. [Google Scholar]
- Abdel Aziz, M.M.; Zobaa, A.F.; Hosni, A.A. Neural network controlled shunt active filter for non linear loads. In Proceedings of the 11th International Middle East Power Systems Conference, El-minia, Egypt, 19–21 December 2006; pp. 180–188. [Google Scholar]
- Priya, S.M.; Keerthana, K. Regulating Unified Power Quality Conditioner Output Using Kalman Filters. Int. J. Mod. Eng. Res. 2013, 62–73. [Google Scholar]
- Khoor, M.S.; Machmoum, M. A low voltage dynamic voltage restorer with self-charging capability. In Proceedings of the European Conference on Power Electronics and Applications, Aalborg, Denmark, 2–5 September 2007; pp. 1–9. [Google Scholar]
- Kwan, K.H.; So, P.L.; Chu, Y.C. An Output Regulation-Based Unified Power Quality Conditioner with Kalman Filters. IEEE Trans. Ind. Electron. 2012, 59, 4248–4262. [Google Scholar] [CrossRef]
- Zainuri, M.A.A.M.; Radzi, M.A.M.; Soh, A.C.; Rahim, N.A. Development of adaptive perturb and observe-fuzzy control maximum power point tracking for photovoltaic boost dc–dc converter. IET Renew. Power Gener. 2013, 8, 183–194. [Google Scholar] [CrossRef]
- Zainuri, M.A.A.M.; Radzi, M.A.M.; Soh, A.C.; Rahim, N.A. Adaptive P&O-fuzzy control MPPT for PV boost dc-dc converter. In Proceedings of the 2012 IEEE International Conference on Power and Energy, Kota Kinabalu, Malaysia, 2–5 December 2012; pp. 524–529. [Google Scholar]
- Daniyal, H.; Lam, E.; Borle, L.J.; Iu, H.H. Hysteresis, PI and ramptime current control techniques for APF: An experimental comparison. In Proceedings of the 2011 6th IEEE Conference on Industrial Electronics and Applications (ICIEA), Beijing, China, 21–23 June 2011; pp. 2151–2156. [Google Scholar]
- Abdul Rahman, N.F.A.; Radzi, M.A.M.; Mariun, N.; Che Soh, A.; Rahim, N.A. Dual Function of Unified Adaptive Linear Neurons Based Fundamental Component Extraction Algorithm for Shunt Active Power Filter Operation. Int. Rev. Electr. Eng. 2015, 10, 544–552. [Google Scholar] [CrossRef]
- Appalanaidu Menda, V.V.; Sankaraprasad, B.; Kalyani, K. Neural network based shunt active filter for harmonic reduction: A technological review. Int. J. Eng. Res. Dev. 2012, 2, 32–41. [Google Scholar]
- Vardar, K.; Akpinar, E. Comparing ADALINE and IRPT methods based on shunt active power filters. Eur. Trans. Electr. Power 2011, 21, 924–936. [Google Scholar] [CrossRef]
- Saponara, S.; Ciarpi, G.; Groza, V.Z. Design and experimental measurement of EMI reduction techniques for integrated switching DC/DC converters. Can. J. Electr. Comput. Eng. 2017, 40, 116–127. [Google Scholar]
- Akagi, H. Active Harmonic Filters. Proc. IEEE 2005, 93, 2128–2141. [Google Scholar] [CrossRef]
- Wamane, S.S.; Baviskar, J.R.; Wagh, S.R. A Comparative Study on Compensating Current Generation Algorithms for Shunt Active Filter under Non-linear Load Conditions. Int. J. Sci. Res. Publ. 2013, 3, 1–6. [Google Scholar]
- Azhar Ghazali, M.; Abdul Malek, A.R. The Performance of Three Different Solar Panels for Solar Electricity Applying Solar Tracking Device under the Malaysian Climate Condition. Energy Environ. Res. 2012, 2, 235–243. [Google Scholar]
Electrical Characteristics | |
---|---|
Maximum power Pmax | 180 W |
Short circuit current Isc | 5.60 A |
Voltage at maximum power Vmp | 35.86 V |
Current at maximum power Imp | 5.02 A |
Open circuit voltage Voc | 44.8 V |
Type | Value |
---|---|
Switching frequency | 20 kHz |
Injection inductor | 10 mH |
DC link voltage | 450 Vdc |
Boost inductor | 600 µH |
PV voltage | 35.86 Vdc × 8 |
Line inductor | 2 mH |
DC link capacitor | 1600 µF |
Voltage source | 230 Vac |
Current Harmonics Extraction Algorithm | Total Harmonics Distortion (%) | |||
---|---|---|---|---|
0 W/m2 | 200 W/m2 | 600 W/m2 | 1000 W/m2 | |
Simpler ADALINE | 1.48 | 1.62 | 1.93 | 2.28 |
Modified W-H ADALINE | 2.12 | 2.25 | 2.57 | 2.85 |
DC Link Capacitor Control Algorithm | Off-On | Change of Irradiance | ||||
---|---|---|---|---|---|---|
Voltage Overshoot (V) | Response Time (s) | Energy Losses (J) | Voltage Overshoot (V) | Response Time (s) | Energy Losses (J) | |
Self-charging with step size error cancellation | 0.5 | 0.1 | 36 | 1 | 0.2 | 112 |
Direct fuzzy-based Self-charging | 4.5 | 1.5 | 540 | 4 | 1.6 | 896 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohd Zainuri, M.A.A.; Mohd Radzi, M.A.; Che Soh, A.; Mariun, N.; Abd Rahim, N.; Teh, J.; Lai, C.-M. Photovoltaic Integrated Shunt Active Power Filter with Simpler ADALINE Algorithm for Current Harmonic Extraction. Energies 2018, 11, 1152. https://doi.org/10.3390/en11051152
Mohd Zainuri MAA, Mohd Radzi MA, Che Soh A, Mariun N, Abd Rahim N, Teh J, Lai C-M. Photovoltaic Integrated Shunt Active Power Filter with Simpler ADALINE Algorithm for Current Harmonic Extraction. Energies. 2018; 11(5):1152. https://doi.org/10.3390/en11051152
Chicago/Turabian StyleMohd Zainuri, Muhammad Ammirrul Atiqi, Mohd Amran Mohd Radzi, Azura Che Soh, Norman Mariun, Nasrudin Abd Rahim, Jiashen Teh, and Ching-Ming Lai. 2018. "Photovoltaic Integrated Shunt Active Power Filter with Simpler ADALINE Algorithm for Current Harmonic Extraction" Energies 11, no. 5: 1152. https://doi.org/10.3390/en11051152