A Hybrid Filtering Technique-Based PLL Targeting Fast and Robust Tracking Performance under Distorted Grid Conditions
Abstract
:1. Introduction
2. Brief Overview of QT1-PLL
3. The Description of the Proposed PLL
4. Modeling and Parameters Design Procedure
4.1. Small-Signal Model
4.2. Parameter Design Procedure
5. Experimental Results
5.1. Phase Jump
5.2. Frequency Step Change
5.3. Frequency Ramp Change
5.4. Unbalanced and Distorted Grid Voltages
5.5. Computational Burden
5.6. Summary
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature
FFNS | Fundamental frequency negative sequence |
MAF | Moving average filter |
LPF | Low-pass filter |
QT1-PLL | Quasi-type-1 PLL |
DSOGI-PLL | Dual second-order generalized integrator-based PLL |
CNF-QT1-PLL | Complex notch filter-based QT1-PLL |
Tω | The window length of MAF |
ωff | The fundamental angular frequency of grid voltage |
Δω | The error of estimated angular frequency of grid voltage |
The estimated angular frequency of grid voltage | |
The estimated phase of grid voltage | |
The value of phase jump | |
vabc | Three-phase grid voltage |
vα, vβ | The α-β-axis components of grid voltage after Clarke transformation |
The direct axis components of vα, vβ | |
The quadrature axis components of vα, vβ | |
The α-β-axis components after prefiltering stage | |
vd, vq | The d-q-axis voltage components after Park transformation |
The d-q-axis voltage components after filtering processing | |
q | The phase shift factor with 90° |
ξ | Damping factor |
kφ | Phase-compensator factor |
k | The only control parameter in the proposed PLL |
kp | Proportional factor in PI controller |
ki | Integral factor in PI controller |
References
- Cao, Y.; Yu, J.; Xu, Y.; Li, Y.; Yu, J. An Efficient Phase-Locked Loop for Distorted Three-Phase Systems. Energies 2017, 10, 280. [Google Scholar] [CrossRef]
- Hui, N.; Wang, D.; Li, Y. An Efficient Hybrid Filter-Based Phase-Locked Loop under Adverse Grid Conditions. Energies 2018, 11, 703. [Google Scholar] [CrossRef]
- Ameli, A.; Bahrami, S.; Khazaeli, F.; Haghifam, M. A Multiobjective Particle Swarm Optimization for Sizing and Placement of DGs from DG Owner’s and Distribution Company’s Viewpoints. IEEE Trans. Power Deliv. 2014, 29, 1831–1840. [Google Scholar] [CrossRef]
- Heydari, J.; Tajer, A. Quickest Localization of Anomalies in Power Grids: A Stochastic Graphical Framework. IEEE Trans. Smart Grid. 2017. [Google Scholar] [CrossRef]
- Ahmadzadeh, M.; Mortazavi, S.; Saniei, M. Applying the Taguchi Method for Investigating the Phase-Locked Loop Dynamics Affected by Hybrid Storage System Parameters. Energies 2018, 11, 226. [Google Scholar] [CrossRef]
- Luo, W.; Jiang, J.; Liu, H. Frequency-Adaptive Modified Comb-Filter-Based Phase-Locked Loop for a Doubly-Fed Adjustable-Speed Pumped-Storage Hydropower Plant under Distorted Grid Conditions. Energies 2017, 10, 737. [Google Scholar] [CrossRef]
- Golestan, S.; Guerrero, J.; Vasquez, J. Three-Phase PLLs: A Review of Recent Advances. IEEE Trans. Power Electron. 2017, 32, 1894–1907. [Google Scholar] [CrossRef]
- Hadjidemetriou, L.; Yang, D.; Kyriakides, E.; Blaabjerg, F. A Synchronization Scheme for Single-Phase Grid-Tied Inverters under Harmonic Distortion and Grid Disturbances. IEEE Trans. Power Electron. 2017, 32, 2784–2793. [Google Scholar] [CrossRef]
- Hadjidemetriou, L.; Kyriakides, E.; Blaabjerg, F. An Adaptive Tuning Mechanism for Phase-Locked Loop Algorithm for Faster Time Performance of Interconnected Renewable Energy Sources. IEEE Trans. Ind. Appl. 2015, 51, 1792–1804. [Google Scholar] [CrossRef]
- Hadjidemetriou, L.; Kyriakides, E.; Blaabjerg, F. A Robust Synchronization to Enhance the Power Quality of Renewable Energy Systems. IEEE Trans. Ind. Electron. 2015, 62, 4858–4868. [Google Scholar] [CrossRef]
- Luna, A.; Rocabert, J.; Candela, J.; Hermoso, J.; Teodorescu, R.; Blaabjerg, F.; Rodriguez, P. Grid Voltage Synchronization for Distributed Generation Systems under Grid Fault Conditions. IEEE Trans. Ind. Appl. 2015, 51, 3414–3425. [Google Scholar] [CrossRef]
- Rodriguez, P.; Teodorescu, R.; Candela, I.; Timbus, A.; Liserre, M.; Blaabjerg, F. New Positive-Sequence Voltage Detector for Grid Synchronization of Power Converters under Faulty Grid Conditions. In Proceedings of the 2006 37th IEEE Power Electronics Specialists Conference, Jeju, Korea, 18–22 June 2006; pp. 1–7. [Google Scholar]
- Guo, X.; Wu, W.; Chen, Z. Multiple-Complex Coefficient-Filter-Based Phase-Locked Loop and Synchronization Technique for Three-Phase Grid-Interfaced Converters in Distributed Utility Networks. IEEE Trans. Ind. Electron. 2011, 58, 1194–1204. [Google Scholar] [CrossRef]
- Xiao, P.; Corzine, K.; Venayagamoorthy, G. Multiple Reference Frame-Based Control of Three-Phase PWM Boost Rectifiers under Unbalanced and Distorted Input Conditions. IEEE Trans. Power Electron. 2008, 23, 2006–2017. [Google Scholar] [CrossRef]
- Rodriguez, P.; Pou, J.; Bergas, J.; Candela, J.; Burgos, R.; Boroyevich, D. Decoupled Double Synchronous Reference Frame PLL for Power Converters Control. IEEE Trans. Power Electron. 2007, 22, 584–592. [Google Scholar] [CrossRef]
- Golestan, S.; Monfared, M.; Freijedo, F. Design-Oriented Study of Advanced Synchronous Reference Frame Phase-Locked Loops. IEEE Trans. Power Electron. 2013, 28, 765–778. [Google Scholar] [CrossRef]
- Golestan, S.; Ramezani, M.; Guerrero, J.; Freijedo, F.; Monfared, M. Moving Average Filter Based Phase-Locked Loops: Performance Analysis and Design Guidelines. IEEE Trans. Power Electron. 2014, 29, 2750–2763. [Google Scholar] [CrossRef]
- Wang, J.; Liang, J.; Gao, F.; Zhang, L.; Wang, Z. A Method to Improve the Dynamic Performance of Moving Average Filter-Based PLL. IEEE Trans. Power Electron. 2015, 30, 5978–5990. [Google Scholar] [CrossRef]
- Tsili, M.; Papathanassiou, S. A Review of Grid Code Technical Requirements for Wind Farms. IET Renew. Power Gener. 2009, 3, 308–332. [Google Scholar] [CrossRef]
- PO-12.3. In Requisitos de Respuesta Frente a Huecos de Tension de las Instalaciones Eolicas; Comisión Nacional de Energía: Madrid, Spain, 2006.
- Golestan, S.; Guerrero, J.; Abusorrah, A.; Al-Turki, Y. Hybrid Synchronous/Stationary Reference-Frame-Filtering-Based PLL. IEEE Trans. Ind. Electron. 2015, 62, 5018–5022. [Google Scholar] [CrossRef]
- Li, Y.; Wang, D.; Han, W.; Sen, T.; Guo, X. Performance Improvement of Quasi-Type-1 PLL by Using a Complex Notch Filter. IEEE Access 2016, 4, 6272–6282. [Google Scholar] [CrossRef]
- Rani, B.; Aravind, C.; Ilango, G.; Nafamani, C. A Three Phase PLL with a Dynamic Feed Forward Frequency Estimator for Synchronization of Grid Connected Converters under Wide Frequency Variations. Int. J. Electr. Power Energy Syst. 2012, 41, 63–70. [Google Scholar] [CrossRef]
- Geng, H.; Sun, J.; Xiao, S.; Yang, G. Modeling and Implementation of an All Digital Phase-Locked-Loop for Grid-Voltage Phase Detection. IEEE Trans. Ind. Inform. 2013, 9, 772–780. [Google Scholar] [CrossRef]
- Golestan, S.; Ramezani, M.; Guerrero, J. An Analysis of the PLLs with Secondary Control Path. IEEE Trans. Ind. Electron. 2014, 61, 4824–4828. [Google Scholar] [CrossRef]
- Golestan, S.; Freijedo, F.; Vidal, A.; Guerrero, J.; Doval-Gandoy, J. A Quasi-Type-1 Phase-Locked Loop Structure. IEEE Trans. Power Electron. 2014, 29, 6264–6270. [Google Scholar] [CrossRef]
- Golestan, S.; Monfared, M.; Freijedo, F.; Guerrero, J. Performance Improvement of a Prefiltered Synchronous-Reference-Frame PLL by Using a PID-Type Loop Filter. IEEE Trans. Ind. Electron. 2014, 61, 3469–3479. [Google Scholar] [CrossRef]
- On, E. Grid Code-High and Extra High Voltage; On Netz Gmbh: Bayreuth, Germany, 2006; Available online: http://www.pvupscale.org/IMG/pdf/D4_2_DE_annex_A-3_EON_HV_grid__connection_requirements_ENENARHS2006de.pdf (accessed on 16 April 2018).
- IEEE Std. IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems; IEEE: New York, NY, USA, 2003. [Google Scholar]
- The Grid Code: Revision 31; National Grid Electricity Transmission: Warwick, UK, 2008.
Voltage Component | Title 2 |
---|---|
Fundamental positive sequence (+1st order) | 1 |
Fundamental negative sequence (−1st order) | 0.1 |
5th harmonic negative sequence (−5th order) | 0.1 |
7th harmonic positive sequence (+7th order) | 0.05 |
11th harmonic negative sequence (−11th order) | 0.05 |
13th harmonic positive sequence (+13th order) | 0.05 |
Header | +/− | ×/÷ | Memory Size |
---|---|---|---|
Proposed PLL | 8 | 10 | 69 |
CNF-QT1-PLL | 48 | 23 | 83 |
QT1-PLL | 6 | 7 | 203 |
DSOGI-PLLPID | 8 | 10 | 6 |
Grid Conditions | DSOGI-PLLPID | QT1-PLL | CNF-QT1-PLL | Proposed PLL |
---|---|---|---|---|
+40° phase jump | - | - | - | - |
2% settling time | ≈1.81 cycles | ≈1.5 cycles | ≈0.84 cycles | ≈0.79 cycles |
Peak phase error | 11.4° | 12.2° | 13.2° | 14.3° |
Peak frequency deviation | 16.1 Hz | 8.9 Hz | 9.7 Hz | 9.5 Hz |
+5 Hz frequency step change | - | - | - | - |
2% settling time of estimated frequency | ≈1.74 cycles | ≈1.7 cycles | ≈1.6 cycles | ≈0.7 cycles |
Peak phase error | 7.9° | 7.6° | 3.2° | 5.1° |
Peak frequency deviation | 1.6 Hz (32%) | 0 Hz (0%) | - | - |
+100 Hz/s frequency ramp change | - | - | - | - |
Phase error | 2.3° | 1.9° | 0.58° | 1.1° |
Unbalanced and distortion | - | - | - | - |
Peak-to-peak phase error | 0.7° | 2° | 3.8° | 0.4° |
Peak-to-peak frequency error | 4.5 Hz | 0.6 Hz | 1.2 Hz | 0.15 Hz |
Computational burden | low | low | high | low |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Yang, J.; Wang, H.; Ge, W.; Ma, Y. A Hybrid Filtering Technique-Based PLL Targeting Fast and Robust Tracking Performance under Distorted Grid Conditions. Energies 2018, 11, 973. https://doi.org/10.3390/en11040973
Li Y, Yang J, Wang H, Ge W, Ma Y. A Hybrid Filtering Technique-Based PLL Targeting Fast and Robust Tracking Performance under Distorted Grid Conditions. Energies. 2018; 11(4):973. https://doi.org/10.3390/en11040973
Chicago/Turabian StyleLi, Yunlu, Junyou Yang, Haixin Wang, Weichun Ge, and Yiming Ma. 2018. "A Hybrid Filtering Technique-Based PLL Targeting Fast and Robust Tracking Performance under Distorted Grid Conditions" Energies 11, no. 4: 973. https://doi.org/10.3390/en11040973
APA StyleLi, Y., Yang, J., Wang, H., Ge, W., & Ma, Y. (2018). A Hybrid Filtering Technique-Based PLL Targeting Fast and Robust Tracking Performance under Distorted Grid Conditions. Energies, 11(4), 973. https://doi.org/10.3390/en11040973