Power Consumption Efficiency Evaluation of Multi-User Full-Duplex Visible Light Communication Systems for Smart Home Technologies
Abstract
:1. Introduction
1.1. Related Work
1.2. Contribution
- A multi-user full-duplex VLC system is proposed.
- The system is capable of handling both user devices and smart devices.
- The downlink section of the system separates the data based on the type of user. A red light is used to transmit user data while green light is used for smart device data. Asymmetrically clipped optical orthogonal frequency-division multiplexing (ACO-OFDM) is used as the modulation scheme to cater to multiple users and minimize interference.
- A resource allocation scheme is also implemented to efficiently assign resources during downlink transmission.
- The uplink section of the system uses blue light to transmit both user and smart device data. The modulation scheme used is on-off keying (OOK).
- Pulse amplitude modulation (PAM)-OOK is used to efficiently assign resources during uplink transmission.
- The performance of the system is analyzed and an in-depth cost-power evaluation is provided to test for feasibility.
- The proposed system is compared with other available systems such as traditional Wi-Fi and hybrid VLC-Wi-Fi implementations.
2. System Model
3. Proposed Multi-User Full-Duplex Visible Light Communication System
3.1. Downlink Section
3.1.1. Asymmetrically-Clipped Optical Orthogonal Frequency-Division Multiplexing
3.2. Uplink
4. Resource Allocation for Downlink and Uplink
4.1. Downlink
4.2. Uplink
5. Cost and Energy Evaluation
6. Result and Analysis
6.1. Multi-User Full-Duplex Visible Light Communication System Performance Analysis
6.2. Cost and Power Consumption Against Data Throughput Analysis
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Qualcomm Incorporated: The Qualcomm 1000x Challenge. Available online: https://www.qualcomm.com/invention/1000x (accessed on 25 November 2016).
- Rahaim, M.B.; Little, T.D.C. Towards practical integration of dual-use VLC within 5G networks. IEEE Wirel. Commun. 2015, 22, 97–103. [Google Scholar] [CrossRef]
- Garber, L. Turning on the lights for wireless communication. Computer 2011, 44, 11–14. [Google Scholar] [CrossRef]
- Elgala, H.; Mesleh, R.; Hass, H. Indoor optical wireless communication: Potential and state-of-the-art. IEEE Commun. Mag. 2011, 49, 56–62. [Google Scholar] [CrossRef]
- O’Brien, D.C.; Zeng, L.; Le-Minh, H.; Faulkner, G.; Walewski, J.W.; Randel, S. Visible light communications: Challenges and possibilities. In Proceedings of the IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Cannes, France, 15–18 September 2008; pp. 1–5.
- Armstrong, J.; Green, R.J.; Higgins, M.D. Comparison of three receiver designs for optical wireless communications using white LEDs. IEEE Commun. Lett. 2012, 16, 748–751. [Google Scholar] [CrossRef]
- O’Brien, D. Optical wireless communications and potential applications in space. In Proceedings of the International Conference on Space Optical Systems and Applications (ICSOS), Corsica, France, 9–12 October 2012.
- Bandara, K.; Chung, Y.H. Novel color-clustered multiuser visible light communication. Trans. Emerg. Telecommun. Technol. 2014, 25, 579–590. [Google Scholar] [CrossRef]
- Luna-Rivera, J.M.; Perez-Jimenez, R.; Rabadan-Borjes, J.; Rufo-Torres, J.; Guerra, V.; Suarez-Rodriguez, C. Multiuser CSK scheme for indoor visible light communications. Opt. Express 2014, 22, 24256–24267. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.F.; Yeh, C.H.; Chow, C.W.; Liu, Y.; Liu, Y.L.; Tsang, H.K. Demonstration of bi-directional LED visible light communication using TDD traffic with mitigation of reflection interference. Opt. Express 2012, 20, 23019–23024. [Google Scholar] [CrossRef] [PubMed]
- Sewaiwar, A.; Tiwari, S.V.; Chung, Y.H. Novel user allocation scheme for full duplex multiuser bidirectional Li–Fi network. Opt. Commun. 2015, 339, 153–156. [Google Scholar] [CrossRef]
- Wang, Z. A novel LED arrangement to reduce SNR fluctuation for multiuser in visible light communication systems. In Proceedings of the 8th International Conference on Information, Communications and Signal Processing (ICICS), Singapore, 13–16 December 2011; pp. 1–4.
- Guerra-Medina, M.F.; Gonzalez, O.; Rojas-Guillama, B.; Martin-Gonzalez, J.A.; Delgado, F.; Rabadan, J. Ethernet-OCDMA system for multi-user visible light communications. Electron. Lett. 2012, 48, 227–228. [Google Scholar] [CrossRef]
- Wu, Z. Network solutions for the line-of-sight problem of new multi-user indoor free-space optical system. IET Commun. 2012, 6, 525–531. [Google Scholar] [CrossRef]
- Higgins, M.D.; Green, R.J.; Leeson, M.S. Genetic algorithm channel control for indoor optical wireless communications. In Proceedings of the International Conference on Transparent Optical Networks, Athens, Greece, 22–26 June 2008; pp. 189–192.
- Yang, Y.; Zhu, B.; Li, Y.; Gao, X.; Yua, J.; Zhu, H.; Wang, Y. Full Duplex Communication Using Visible Light. Available online: https://arxiv.org/abs/1608.05424v1 (accessed on 23 January 2017).
- Bazzi, A.; Masini, B.M.; Zanella, A.; Calisti, A. Visible light communications as a complementary technology for the internet of vehicles. Comput. Commun. 2016, 93, 39–51. [Google Scholar] [CrossRef]
- Cossu, G.; Corsini, R.; Khalid, A.; Balestrino, S.; Coppelli, A.; Caiti, A.; Ciaramella, E. Experimental demonstration of high-speed underwater visible light communications. In Proceedings of the 2013 2nd International Workshop on Optical Wireless Communications (IWOW), Newcastle upon Tyne, UK, 21–23 October 2013; pp. 11–15.
- Cossu, G.; Presi, M.; Corsini, R.; Choudhury, P.; Khalid, A.; Ciaramella, E. A visible light localization aided optical wireless system. In Proceedings of the 2011 IEEE GLOBECOM Workshops (GC Wkshps), Huston, TX, USA, 5–9 December 2011; pp. 802–807.
- Liu, C.B.; Sadeghi, B.; Knightly, E.W. Enabling vehicular visible light communication (V2LC) networks. In Proceedings of the Eighth ACM International Workshop on Vehicular Inter-Networking, Las Vegas, NV, USA, 19–23 September 2011; pp. 41–50.
- Marzband, M.; Ghazimirsaeid, S.S.; Uppal, H.; Fernando, T. A real-time evaluation of energy management systems for smart hybrid home Microgrids. Electr. Power Syst. Res. 2017, 143, 624–633. [Google Scholar] [CrossRef]
- Özkan, H.A. Appliance based control for home power management systems. Energy 2016, 114, 693–707. [Google Scholar] [CrossRef]
- Nguyen, M.Y.; Nguyen, D.M. A new framework of demand response for household customers based on advanced metering infrastructure under smart grids. Electr. Power Compon. Syst. 2016, 44, 165–171. [Google Scholar] [CrossRef]
- Louis, J.N.; Caló, A.; Leiviskä, K.; Pongrácz, E. Modeling home electricity management for sustainability: The impact of response levels, technological deployment & occupancy. Energy Build. 2016, 119, 218–232. [Google Scholar]
- Orsino, A.; Araniti, G.; Militano, L.; Zarate, J.A.; Molinaro, A.; Iera, A. Energy efficient IoT data collection in smart cities exploiting D2D communications. Sensors 2016, 16. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Nie, Y.; Cheng, J.; Leung, V.C.M.; Arumugam, N. Sensing time optimization and power control for energy-efficient cognitive small cell with imperfect hybrid spectrum sensing. IEEE Trans. Wirel. Commun. 2016, 99, 730–743. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, H.; Ren, Y.; Chen, H.H. Energy-efficient non-cooperative cognitive radio networks: Micro, meso, and macro views. IEEE Commun. Mag. 2014, 52, 14–20. [Google Scholar] [CrossRef]
- Niaz, M.T.; Imdad, F.; Kim, H.S. Deployment methods of visible light communication lights for energy efficient buildings. Opt. Eng. 2016, 55. [Google Scholar] [CrossRef]
- Rajagopal, S.; Roberts, R.D.; Lim, S.K. IEEE 802.15.7 visible light communication: Modulation schemes and dimming support. IEEE Commun. Mag. 2012, 50, 72–82. [Google Scholar] [CrossRef]
- Yang, F.; Gao, J.; Liu, S. Novel visible light communication approach based on hybrid OOK and ACO-OFDM. IEEE Photonics Technol. Lett. 2016, 28, 1585–1588. [Google Scholar] [CrossRef]
- Zhao, H.; Li, M.; Wang, R.; Wu, D. Channel estimation for an asymmetrically clipped optical orthogonal frequency division multiplexing communication system. Opt. Eng. 2013, 52, 532–540. [Google Scholar] [CrossRef]
- Li, X.; Zhang, R.; Hanzo, L. Cooperative load balancing in hybrid visible light communications and WiFi. IEEE Trans. Commun. 2015, 63, 1319–1329. [Google Scholar] [CrossRef]
- Chaudhary, S.R.; Patil, A.J.; Yadao, A.V. WLAN-IEEE 802.11ac: Simulation and performance evaluation with MIMO-OFDM. In Proceedings of the Conference on Advances in Signal Processing (CASP), Pune, India, 9–11 June 2016; pp. 440–445.
- Texas Instruments. C6000 Digital Signal Processor Selection. Available online: http://www.ti.com/lsds/ti/processors/dsp/c6000_dsp/products.page#p2094=Communications;Communications and Telecom&p2098=1 C64x;1 C66x;1 C67x;1 C674x;2 C66x;4 C66x;8 C66x (accessed on 25 November 2016).
Light-Emitting Diode Identification Number Selection |
|
Resource Allocation |
|
Architecture | Specification | Signal Processing Power | Approximated Cost (USD $) |
---|---|---|---|
1 | 1 Core | 100 W | 120 |
2 | 2 Core | 100 W | 200 |
3 | 4 Core | 200 W | 300 |
4 | 8 Core | 400 W | 400 |
Device | Consumption in 1 h (kWh) | Cost per Year (USD $) |
---|---|---|
LCD TV | 0.346 | 466.65 |
HDTV set-top box | 0.021 | 28.32 |
Apple iMac | 0.108 | 145.66 |
Video player | 0.028 | 37.76 |
Gaming console | 0.016 | 21.58 |
Linksys WLAN | 0.011 | 14.84 |
D-LINK switch | 0.01 | 13.49 |
Belkin ADSL2 + Modem | 0.005 | 6.74 |
Incandescent lamp (60 W Mirabella) | 0.053 | 71.48 |
Energy-saving LED lamp | 0.009 | 12.14 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niaz, M.T.; Imdad, F.; Kim, H.S. Power Consumption Efficiency Evaluation of Multi-User Full-Duplex Visible Light Communication Systems for Smart Home Technologies. Energies 2017, 10, 254. https://doi.org/10.3390/en10020254
Niaz MT, Imdad F, Kim HS. Power Consumption Efficiency Evaluation of Multi-User Full-Duplex Visible Light Communication Systems for Smart Home Technologies. Energies. 2017; 10(2):254. https://doi.org/10.3390/en10020254
Chicago/Turabian StyleNiaz, Muhammad Tabish, Fatima Imdad, and Hyung Seok Kim. 2017. "Power Consumption Efficiency Evaluation of Multi-User Full-Duplex Visible Light Communication Systems for Smart Home Technologies" Energies 10, no. 2: 254. https://doi.org/10.3390/en10020254
APA StyleNiaz, M. T., Imdad, F., & Kim, H. S. (2017). Power Consumption Efficiency Evaluation of Multi-User Full-Duplex Visible Light Communication Systems for Smart Home Technologies. Energies, 10(2), 254. https://doi.org/10.3390/en10020254