Microsaccadic Rate Signatures Correlate Under Monocular and Binocular Stimulation Conditions
Abstract
:Introduction
Methods
Participants
Stimuli and procedure
Analysis of the fixational eye movements
Data computations and statistics
Results
Eye tracking quality
Main sequence
Directional distribution of microsaccades
SF(cpd) | 0.5 | 4.0 | 11.0 | 22.0 | ||||
GP orient. (°) | 45 | 135 | 45 | 135 | 45 | 135 | 45 | 135 |
mean(°) | 22 | 20 | 22 | 22 | 24 | 21 | 23 | 22 |
SD (°) | 22 | 21 | 23 | 23 | 24 | 22 | 24 | 23 |
SF(cpd) | 0.5 | 4.0 | 11.0 | 22.0 | ||||
GP orient. (°) | 45 | 135 | 45 | 135 | 45 | 135 | 45 | 135 |
mean(°) | 23 | 26 | 24 | 26 | 27 | 24 | 26 | 27 |
SD (°) | 22 | 25 | 25 | 25 | 25 | 23 | 25 | 25 |
Microsaccadic rate signatures
Discussion
Directions of microsaccades
Microsaccadic rate signatures
Limitations
Conclusion
Ethics and Conflict of Interest
Acknowledgments
References
- Ahissar, E., A. Arieli, M. Fried, and Y. Bonneh. 2016. On the possible roles of microsaccades and drifts in visual perception. Vision Research. [Google Scholar] [CrossRef]
- Bahill, A. T., M. R. Clark, and L. Stark. 1975. The main sequence, a tool for studying human eye movements. Mathematical Biosciences. [Google Scholar] [CrossRef]
- Berens, P. 2009. CircStat: A MATLAB Toolbox for Circular Statistics. Journal of Statistical Software. [Google Scholar] [CrossRef]
- Bonneh, Y. S., Y. Adini, and U. Polat. 2015. Contrast sensitivity revealed by microsaccades. Journal of Vision. [Google Scholar] [CrossRef] [PubMed]
- Bowers, N. R., and M. Poletti. 2017. Microsaccades during reading. PLoS ONE. [Google Scholar] [CrossRef] [PubMed]
- Brainard, D. H. 1997. The Psychophysics Toolbox. Spatial Vision. [Google Scholar] [CrossRef]
- Collewijn, H., and E. Kowler. 2008. The significance of microsaccades for vision and oculomotor control. Journal of Vision. [Google Scholar] [CrossRef]
- Corbetta, M., E. Akbudak, T. E. Conturo, A. Z. Snyder, J. M. Ollinger, H. A. Drury, and G. L. Shulman. 1998. A common network of functional areas for attention and eye movements. Neuron. [Google Scholar] [CrossRef]
- Cui, J., M. Wilke, N. K. Logothetis, D. A. Leopold, and H. Liang. 2009. Visibility states modulate microsaccade rate and direction. Vision Research. [Google Scholar] [CrossRef]
- Denniss, J., C. Scholes, P. V. Mcgraw, S. Nam, and N. W. Roach. 2018. Estimation of Contrast Sensitivity From Fixational Eye Movements. Visual Psychophysics and Physiological Optics 59, 13. [Google Scholar] [CrossRef]
- Dumouchel, W., and F. O’brien. 1991. Integrating a Robust Option into a Multiple Regression Computing Environment. [Google Scholar] [CrossRef]
- Ehinger, B. V., K. Groß, I. Ibs, and P. König. 2019. A new comprehensive eye-tracking test battery concurrently evaluating the Pupil Labs glasses and the EyeLink 1000. PeerJ. [Google Scholar] [CrossRef]
- Engbert, R. 2006. Chapter 9 Microsaccades: a microcosm for research on oculomotor control, attention, and visual perception. Progress in Brain Research. [Google Scholar] [CrossRef]
- Engbert, R., and R. Kliegl. 2003a. Microsaccades uncover the orientation of covert attention. Vision Research. [Google Scholar] [CrossRef] [PubMed]
- Engbert, R., and R. Kliegl. 2003b. Microsaccades uncover the orientation of covert attention. Vision Research. [Google Scholar] [CrossRef]
- Fang, Y., C. Gill, M. Poletti, and M. Rucci. 2018. Monocular microsaccades: Do they really occur? Journal of Vision 18, 3: 18–18. [Google Scholar] [CrossRef]
- Foulsham, T., A. Kingstone, and G. Underwood. 2008. Turning the world around: Patterns in saccade direction vary with picture orientation. Vision Research. [Google Scholar] [CrossRef]
- Foulsham, T., R. Teszka, and A. Kingstone. 2011. Saccade control in natural images is shaped by the information visible at fixation: Evidence from asymmetric gaze-contingent windows. Attention, Perception, and Psychophysics. [Google Scholar] [CrossRef]
- Gao, X., H. Yan, and H. J. Sun. 2015. Modulation of microsaccade rate by task difficulty revealed through between-and within-trial comparisons. Journal of Vision. [Google Scholar] [CrossRef]
- Gautier, J., H. E. Bedell, J. Siderov, and S. J. Waugh. 2016. Monocular microsaccades are visual-task related. Journal of Vision. [Google Scholar] [CrossRef]
- Hafed, Z. M., L. Goffart, and R. J. Krauzlis. 2009. A neural mechanism for microsaccade generation in the primate superior colliculus. Science. [Google Scholar] [CrossRef] [PubMed]
- Hafed, Z. M., and A. Ignashchenkova. 2013. On the dissociation between microsaccade rate and direction after peripheral cues: Microsaccadic inhibition revisited. Journal of Neuroscience. [Google Scholar] [CrossRef] [PubMed]
- Hafed, Z. M., and R. J. Krauzlis. 2012. Similarity of superior colliculus involvement in microsaccade and saccade generation. Journal of Neurophysiology. [Google Scholar] [CrossRef] [PubMed]
- Henrich, N., C. d’Alessandro, B. Doval, and M. Castellengo. 2004. On the use of the derivative of electroglottographic signals for characterization of nonpathological phonation. The Journal of the Acoustical Society of America. [Google Scholar] [CrossRef]
- Hering, E. 1977. The theory of binocular vision. Plenum Publishing Corporation. [Google Scholar]
- Hermens, F., and R. Walker. 2010. What determines the direction of microsaccades. Journal of Eye Movement Research 3, 4: 1–20. [Google Scholar] [CrossRef]
- Intoy, J., and M. Rucci. 2020. Finely tuned eye movements enhance visual acuity. Nature Communications. [Google Scholar] [CrossRef]
- Kleiner, M., D. H. Brainard, D. G. Pelli, C. Broussard, T. Wolf, and D. Niehorster. 2007. What’s new in Psychtoolbox-3? Perception. [Google Scholar] [CrossRef]
- Kloke, W. B., W. Jaschinski, and S. Jainta. 2009. Microsaccades under monocular viewing conditions. Journal of Eye Movement Research 3, 1: 1–7. [Google Scholar] [CrossRef]
- Ko, H. K., M. Poletti, and M. Rucci. 2010. Microsaccades precisely relocate gaze in a high visual acuity task. Nature Neuroscience. [Google Scholar] [CrossRef]
- Kowler, E. 2011. Eye movements: The past 25years. Vision Research. [Google Scholar] [CrossRef]
- Krauskopf, J., T. N. Cornsweet, and L. A. Riggs. 1960. Analysis of eye movements during monocular and binocular fixation. Journal of the Optical Society of America. [Google Scholar] [CrossRef] [PubMed]
- Krauzlis, R. J., L. Goffart, and Z. M. Hafed. 2017. Neuronal control of fixation and fixational eye movements. Philosophical Transactions of the Royal Society B: Biological Sciences. [Google Scholar] [CrossRef] [PubMed]
- Kustov, A. A., and D. L. Robinson. 1996. Shared neural control of attentional shifts and eye movements. Nature. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Conde, S., S. L. Macknik, and D. H. Hubel. 2004. The role of fixational eye movements in visual perception. Nature Reviews Neuroscience. [Google Scholar] [CrossRef]
- Martinez-Conde, S., S. L. Macknik, X. G. Troncoso, and T. A. Dyar. 2006. Microsaccades counteract visual fading during fixation. Neuron. [Google Scholar] [CrossRef]
- Martinez-Conde, S., S. L. Macknik, X. G. Troncoso, and D. H. Hubel. 2009. Microsaccades: a neurophysiological analysis. Trends in Neurosciences. [Google Scholar] [CrossRef]
- Martinez-Conde, S., J. Otero-Millan, and S. L. MacKnik. 2013. The impact of microsaccades on vision: Towards a unified theory of saccadic function. Nature Reviews Neuroscience. [Google Scholar] [CrossRef]
- Meyberg, S., M. Werkle-Bergner, W. Sommer, and O. Dimigen. 2015. Microsaccade-related brain potentials signal the focus of visuospatial attention. NeuroImage. [Google Scholar] [CrossRef]
- Møller, F., M. L. Laursen, J. Tygesen, and A. K. Sjølie. 2002. Binocular quantification and characterization of microsaccades. Graefe’s Archive for Clinical and Experimental Ophthalmology. [Google Scholar] [CrossRef]
- Nyström, M., R. Andersson, K. Holmqvist, and J. van de Weijer. 2013. The influence of calibration method and eye physiology on eyetracking data quality. Behavior Research Methods. [Google Scholar] [CrossRef]
- Nyström, M., R. Andersson, D. C. Niehorster, and I. Hooge. 2017. Searching for monocular microsaccades–A red Hering of modern eye trackers? Vision Research. [Google Scholar] [CrossRef] [PubMed]
- Otero-Millan, J., S. L. Macknik, and S. Martinez-Conde. 2014. Fixational eye movements and binocular vision. Frontiers in Integrative Neuroscience. [Google Scholar] [CrossRef]
- Otero-Millan, J., S. L. Macknik, A. Serra, R. J. Leigh, and S. Martinez-Conde. 2011. Triggering mechanisms in microsaccade and saccade generation: A novel proposal. Annals of the New York Academy of Sciences. [Google Scholar] [CrossRef]
- Otero-Millan, J., X. G. Troncoso, S. L. Macknik, I. Serrano-Pedraza, and S. Martinez-Conde. 2008. Saccades and microsaccades during visual fixation, exploration, and search: Foundations for a common saccadic generator. Journal of Vision. [Google Scholar] [CrossRef]
- Poletti, M., C. Listorti, and M. Rucci. 2010. Stability of the Visual World during Eye Drift. Journal of Neuroscience. [Google Scholar] [CrossRef] [PubMed]
- Poletti, M., and M. Rucci. 2016. A compact field guide to the study of microsaccades: Challenges and functions. Vision Research. [Google Scholar] [CrossRef] [PubMed]
- Rolfs, M. 2009. Microsaccades: Small steps on a long way. Vision Research. [Google Scholar] [CrossRef]
- Rolfs, M., R. Kliegl, and R. Engbert. 2008. Toward a model of microsaccade generation: The case of microsaccadic inhibition. Journal of Vision. [Google Scholar] [CrossRef]
- Rucci, M., R. Iovin, M. Poletti, and F. Santini. 2007. Miniature eye movements enhance fine spatial detail. Nature. [Google Scholar] [CrossRef]
- Rucci, M., and M. Poletti. 2015. Control and Functions of Fixational Eye Movements. Annual Review of Vision Science. [Google Scholar] [CrossRef]
- Scholes, C., P. V. McGraw, M. Nyström, and N. W. Roach. 2015. Fixational eye movements predict visual sensitivity. Proceedings of the Royal Society B: Biological Sciences. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, A. G., and F. F. Ghasia. 2017. Fixational saccades are more disconjugate in adults than in children. PLoS ONE. [Google Scholar] [CrossRef]
- Taylor, C. P., P. J. Bennett, and A. B. Sekuler. 2014. Evidence for adjustable bandwidth orientation channels. Frontiers in Psychology. [Google Scholar] [CrossRef]
- Thayaparan, K., M. D. Crossland, and G. S. Rubin. 2007. Clinical assessment of two new contrast sensitivity charts. British Journal of Ophthalmology. [Google Scholar] [CrossRef]
- Wismeijer, D. A., and K. R. Gegenfurtner. 2012. Orientation of noisy texture affects saccade direction during free viewing. Vision Research. [Google Scholar] [CrossRef] [PubMed]
- Yablonski, M., U. Polat, Y. S. Bonneh, and M. Ben-Shachar. 2017. Microsaccades are sensitive to word structure: A novel approach to study language processing. Scientific Reports. [Google Scholar] [CrossRef] [PubMed]
- Zemblys, R., D. C. Niehorster, O. Komogortsev, and K. Holmqvist. 2018. Using machine learning to detect events in eye-tracking data. Behavior Research Methods. [Google Scholar] [CrossRef]
- Zuber, B. L., L. Stark, and G. Cook. 1965. Microsaccades and the velocity-amplitude relationship for saccadic eye movements. Science. [Google Scholar] [CrossRef]
© 2020 by the authors. This article is licensed under a Creative Commons Attribution 4.0 International License.
Share and Cite
Essig, P.; Leube, A.; Rifai, K.; Wahl, S. Microsaccadic Rate Signatures Correlate Under Monocular and Binocular Stimulation Conditions. J. Eye Mov. Res. 2020, 13, 1-13. https://doi.org/10.16910/jemr.13.5.3
Essig P, Leube A, Rifai K, Wahl S. Microsaccadic Rate Signatures Correlate Under Monocular and Binocular Stimulation Conditions. Journal of Eye Movement Research. 2020; 13(5):1-13. https://doi.org/10.16910/jemr.13.5.3
Chicago/Turabian StyleEssig, Peter, Alexander Leube, Katharina Rifai, and Siegfried Wahl. 2020. "Microsaccadic Rate Signatures Correlate Under Monocular and Binocular Stimulation Conditions" Journal of Eye Movement Research 13, no. 5: 1-13. https://doi.org/10.16910/jemr.13.5.3
APA StyleEssig, P., Leube, A., Rifai, K., & Wahl, S. (2020). Microsaccadic Rate Signatures Correlate Under Monocular and Binocular Stimulation Conditions. Journal of Eye Movement Research, 13(5), 1-13. https://doi.org/10.16910/jemr.13.5.3