Microsaccadic Rate Signatures Correlate Under Monocular and Binocular Stimulation Conditions
Abstract
Introduction
Methods
Participants
Stimuli and procedure
Analysis of the fixational eye movements
Data computations and statistics
Results
Eye tracking quality
Main sequence
Directional distribution of microsaccades
SF(cpd) | 0.5 | 4.0 | 11.0 | 22.0 | ||||
GP orient. (°) | 45 | 135 | 45 | 135 | 45 | 135 | 45 | 135 |
mean(°) | 22 | 20 | 22 | 22 | 24 | 21 | 23 | 22 |
SD (°) | 22 | 21 | 23 | 23 | 24 | 22 | 24 | 23 |
SF(cpd) | 0.5 | 4.0 | 11.0 | 22.0 | ||||
GP orient. (°) | 45 | 135 | 45 | 135 | 45 | 135 | 45 | 135 |
mean(°) | 23 | 26 | 24 | 26 | 27 | 24 | 26 | 27 |
SD (°) | 22 | 25 | 25 | 25 | 25 | 23 | 25 | 25 |
Microsaccadic rate signatures
Discussion
Directions of microsaccades
Microsaccadic rate signatures
Limitations
Conclusion
Ethics and Conflict of Interest
Acknowledgments
References
- Ahissar, E., A. Arieli, M. Fried, and Y. Bonneh. 2016. On the possible roles of microsaccades and drifts in visual perception. Vision Research. [Google Scholar] [CrossRef]
- Bahill, A. T., M. R. Clark, and L. Stark. 1975. The main sequence, a tool for studying human eye movements. Mathematical Biosciences. [Google Scholar] [CrossRef]
- Berens, P. 2009. CircStat: A MATLAB Toolbox for Circular Statistics. Journal of Statistical Software. [Google Scholar] [CrossRef]
- Bonneh, Y. S., Y. Adini, and U. Polat. 2015. Contrast sensitivity revealed by microsaccades. Journal of Vision. [Google Scholar] [CrossRef] [PubMed]
- Bowers, N. R., and M. Poletti. 2017. Microsaccades during reading. PLoS ONE. [Google Scholar] [CrossRef] [PubMed]
- Brainard, D. H. 1997. The Psychophysics Toolbox. Spatial Vision. [Google Scholar] [CrossRef]
- Collewijn, H., and E. Kowler. 2008. The significance of microsaccades for vision and oculomotor control. Journal of Vision. [Google Scholar] [CrossRef]
- Corbetta, M., E. Akbudak, T. E. Conturo, A. Z. Snyder, J. M. Ollinger, H. A. Drury, and G. L. Shulman. 1998. A common network of functional areas for attention and eye movements. Neuron. [Google Scholar] [CrossRef]
- Cui, J., M. Wilke, N. K. Logothetis, D. A. Leopold, and H. Liang. 2009. Visibility states modulate microsaccade rate and direction. Vision Research. [Google Scholar] [CrossRef]
- Denniss, J., C. Scholes, P. V. Mcgraw, S. Nam, and N. W. Roach. 2018. Estimation of Contrast Sensitivity From Fixational Eye Movements. Visual Psychophysics and Physiological Optics 59, 13. [Google Scholar] [CrossRef]
- Dumouchel, W., and F. O’brien. 1991. Integrating a Robust Option into a Multiple Regression Computing Environment. [Google Scholar] [CrossRef]
- Ehinger, B. V., K. Groß, I. Ibs, and P. König. 2019. A new comprehensive eye-tracking test battery concurrently evaluating the Pupil Labs glasses and the EyeLink 1000. PeerJ. [Google Scholar] [CrossRef]
- Engbert, R. 2006. Chapter 9 Microsaccades: a microcosm for research on oculomotor control, attention, and visual perception. Progress in Brain Research. [Google Scholar] [CrossRef]
- Engbert, R., and R. Kliegl. 2003a. Microsaccades uncover the orientation of covert attention. Vision Research. [Google Scholar] [CrossRef] [PubMed]
- Engbert, R., and R. Kliegl. 2003b. Microsaccades uncover the orientation of covert attention. Vision Research. [Google Scholar] [CrossRef]
- Fang, Y., C. Gill, M. Poletti, and M. Rucci. 2018. Monocular microsaccades: Do they really occur? Journal of Vision 18, 3: 18–18. [Google Scholar] [CrossRef]
- Foulsham, T., A. Kingstone, and G. Underwood. 2008. Turning the world around: Patterns in saccade direction vary with picture orientation. Vision Research. [Google Scholar] [CrossRef]
- Foulsham, T., R. Teszka, and A. Kingstone. 2011. Saccade control in natural images is shaped by the information visible at fixation: Evidence from asymmetric gaze-contingent windows. Attention, Perception, and Psychophysics. [Google Scholar] [CrossRef]
- Gao, X., H. Yan, and H. J. Sun. 2015. Modulation of microsaccade rate by task difficulty revealed through between-and within-trial comparisons. Journal of Vision. [Google Scholar] [CrossRef]
- Gautier, J., H. E. Bedell, J. Siderov, and S. J. Waugh. 2016. Monocular microsaccades are visual-task related. Journal of Vision. [Google Scholar] [CrossRef][Green Version]
- Hafed, Z. M., L. Goffart, and R. J. Krauzlis. 2009. A neural mechanism for microsaccade generation in the primate superior colliculus. Science. [Google Scholar] [CrossRef] [PubMed]
- Hafed, Z. M., and A. Ignashchenkova. 2013. On the dissociation between microsaccade rate and direction after peripheral cues: Microsaccadic inhibition revisited. Journal of Neuroscience. [Google Scholar] [CrossRef] [PubMed]
- Hafed, Z. M., and R. J. Krauzlis. 2012. Similarity of superior colliculus involvement in microsaccade and saccade generation. Journal of Neurophysiology. [Google Scholar] [CrossRef] [PubMed]
- Henrich, N., C. d’Alessandro, B. Doval, and M. Castellengo. 2004. On the use of the derivative of electroglottographic signals for characterization of nonpathological phonation. The Journal of the Acoustical Society of America. [Google Scholar] [CrossRef]
- Hering, E. 1977. The theory of binocular vision. Plenum Publishing Corporation. [Google Scholar]
- Hermens, F., and R. Walker. 2010. What determines the direction of microsaccades. Journal of Eye Movement Research 3, 4: 1–20. [Google Scholar] [CrossRef]
- Intoy, J., and M. Rucci. 2020. Finely tuned eye movements enhance visual acuity. Nature Communications. [Google Scholar] [CrossRef]
- Kleiner, M., D. H. Brainard, D. G. Pelli, C. Broussard, T. Wolf, and D. Niehorster. 2007. What’s new in Psychtoolbox-3? Perception. [Google Scholar] [CrossRef]
- Kloke, W. B., W. Jaschinski, and S. Jainta. 2009. Microsaccades under monocular viewing conditions. Journal of Eye Movement Research 3, 1: 1–7. [Google Scholar] [CrossRef]
- Ko, H. K., M. Poletti, and M. Rucci. 2010. Microsaccades precisely relocate gaze in a high visual acuity task. Nature Neuroscience. [Google Scholar] [CrossRef]
- Kowler, E. 2011. Eye movements: The past 25years. Vision Research. [Google Scholar] [CrossRef]
- Krauskopf, J., T. N. Cornsweet, and L. A. Riggs. 1960. Analysis of eye movements during monocular and binocular fixation. Journal of the Optical Society of America. [Google Scholar] [CrossRef] [PubMed]
- Krauzlis, R. J., L. Goffart, and Z. M. Hafed. 2017. Neuronal control of fixation and fixational eye movements. Philosophical Transactions of the Royal Society B: Biological Sciences. [Google Scholar] [CrossRef] [PubMed]
- Kustov, A. A., and D. L. Robinson. 1996. Shared neural control of attentional shifts and eye movements. Nature. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Conde, S., S. L. Macknik, and D. H. Hubel. 2004. The role of fixational eye movements in visual perception. Nature Reviews Neuroscience. [Google Scholar] [CrossRef]
- Martinez-Conde, S., S. L. Macknik, X. G. Troncoso, and T. A. Dyar. 2006. Microsaccades counteract visual fading during fixation. Neuron. [Google Scholar] [CrossRef]
- Martinez-Conde, S., S. L. Macknik, X. G. Troncoso, and D. H. Hubel. 2009. Microsaccades: a neurophysiological analysis. Trends in Neurosciences. [Google Scholar] [CrossRef]
- Martinez-Conde, S., J. Otero-Millan, and S. L. MacKnik. 2013. The impact of microsaccades on vision: Towards a unified theory of saccadic function. Nature Reviews Neuroscience. [Google Scholar] [CrossRef]
- Meyberg, S., M. Werkle-Bergner, W. Sommer, and O. Dimigen. 2015. Microsaccade-related brain potentials signal the focus of visuospatial attention. NeuroImage. [Google Scholar] [CrossRef]
- Møller, F., M. L. Laursen, J. Tygesen, and A. K. Sjølie. 2002. Binocular quantification and characterization of microsaccades. Graefe’s Archive for Clinical and Experimental Ophthalmology. [Google Scholar] [CrossRef]
- Nyström, M., R. Andersson, K. Holmqvist, and J. van de Weijer. 2013. The influence of calibration method and eye physiology on eyetracking data quality. Behavior Research Methods. [Google Scholar] [CrossRef]
- Nyström, M., R. Andersson, D. C. Niehorster, and I. Hooge. 2017. Searching for monocular microsaccades–A red Hering of modern eye trackers? Vision Research. [Google Scholar] [CrossRef] [PubMed]
- Otero-Millan, J., S. L. Macknik, and S. Martinez-Conde. 2014. Fixational eye movements and binocular vision. Frontiers in Integrative Neuroscience. [Google Scholar] [CrossRef]
- Otero-Millan, J., S. L. Macknik, A. Serra, R. J. Leigh, and S. Martinez-Conde. 2011. Triggering mechanisms in microsaccade and saccade generation: A novel proposal. Annals of the New York Academy of Sciences. [Google Scholar] [CrossRef]
- Otero-Millan, J., X. G. Troncoso, S. L. Macknik, I. Serrano-Pedraza, and S. Martinez-Conde. 2008. Saccades and microsaccades during visual fixation, exploration, and search: Foundations for a common saccadic generator. Journal of Vision. [Google Scholar] [CrossRef]
- Poletti, M., C. Listorti, and M. Rucci. 2010. Stability of the Visual World during Eye Drift. Journal of Neuroscience. [Google Scholar] [CrossRef] [PubMed]
- Poletti, M., and M. Rucci. 2016. A compact field guide to the study of microsaccades: Challenges and functions. Vision Research. [Google Scholar] [CrossRef] [PubMed]
- Rolfs, M. 2009. Microsaccades: Small steps on a long way. Vision Research. [Google Scholar] [CrossRef]
- Rolfs, M., R. Kliegl, and R. Engbert. 2008. Toward a model of microsaccade generation: The case of microsaccadic inhibition. Journal of Vision. [Google Scholar] [CrossRef]
- Rucci, M., R. Iovin, M. Poletti, and F. Santini. 2007. Miniature eye movements enhance fine spatial detail. Nature. [Google Scholar] [CrossRef]
- Rucci, M., and M. Poletti. 2015. Control and Functions of Fixational Eye Movements. Annual Review of Vision Science. [Google Scholar] [CrossRef]
- Scholes, C., P. V. McGraw, M. Nyström, and N. W. Roach. 2015. Fixational eye movements predict visual sensitivity. Proceedings of the Royal Society B: Biological Sciences. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, A. G., and F. F. Ghasia. 2017. Fixational saccades are more disconjugate in adults than in children. PLoS ONE. [Google Scholar] [CrossRef]
- Taylor, C. P., P. J. Bennett, and A. B. Sekuler. 2014. Evidence for adjustable bandwidth orientation channels. Frontiers in Psychology. [Google Scholar] [CrossRef][Green Version]
- Thayaparan, K., M. D. Crossland, and G. S. Rubin. 2007. Clinical assessment of two new contrast sensitivity charts. British Journal of Ophthalmology. [Google Scholar] [CrossRef]
- Wismeijer, D. A., and K. R. Gegenfurtner. 2012. Orientation of noisy texture affects saccade direction during free viewing. Vision Research. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yablonski, M., U. Polat, Y. S. Bonneh, and M. Ben-Shachar. 2017. Microsaccades are sensitive to word structure: A novel approach to study language processing. Scientific Reports. [Google Scholar] [CrossRef] [PubMed]
- Zemblys, R., D. C. Niehorster, O. Komogortsev, and K. Holmqvist. 2018. Using machine learning to detect events in eye-tracking data. Behavior Research Methods. [Google Scholar] [CrossRef]
- Zuber, B. L., L. Stark, and G. Cook. 1965. Microsaccades and the velocity-amplitude relationship for saccadic eye movements. Science. [Google Scholar] [CrossRef]
© 2020 by the authors. This article is licensed under a Creative Commons Attribution 4.0 International License.
Share and Cite
Essig, P.; Leube, A.; Rifai, K.; Wahl, S. Microsaccadic Rate Signatures Correlate Under Monocular and Binocular Stimulation Conditions. J. Eye Mov. Res. 2020, 13, 1-13. https://doi.org/10.16910/jemr.13.5.3
Essig P, Leube A, Rifai K, Wahl S. Microsaccadic Rate Signatures Correlate Under Monocular and Binocular Stimulation Conditions. Journal of Eye Movement Research. 2020; 13(5):1-13. https://doi.org/10.16910/jemr.13.5.3
Chicago/Turabian StyleEssig, Peter, Alexander Leube, Katharina Rifai, and Siegfried Wahl. 2020. "Microsaccadic Rate Signatures Correlate Under Monocular and Binocular Stimulation Conditions" Journal of Eye Movement Research 13, no. 5: 1-13. https://doi.org/10.16910/jemr.13.5.3
APA StyleEssig, P., Leube, A., Rifai, K., & Wahl, S. (2020). Microsaccadic Rate Signatures Correlate Under Monocular and Binocular Stimulation Conditions. Journal of Eye Movement Research, 13(5), 1-13. https://doi.org/10.16910/jemr.13.5.3