The Delay Phenomenon: A Compilation of Knowledge Across Specialties
Abstract
:Methods
Results
Discussion
Vascular Delay—Reconstructive Surgery Perspective
Biomechanics of Vascular Delay
Indications and Applications
Ischemic Preconditioning—other Perspectives
Diminished Ischemia/Reperfusion Injury
Enhanced Tissue Regeneration
Other Organ Specific Effects
Heart
Gastrointestinal System
Urinary System
Conclusion
Acknowledgments
References
- Myers, M.B.; Cherry, G. Mechanism of the delay phenomenon. Plast Reconstr Surg 1969, 44, 52–57. [Google Scholar] [CrossRef]
- Myers, M.B.; Cherry, G. Differences in the delay phenomenon in the rabbit, rat, and pig. Plast Reconstr Surg 1971, 47, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Myers, M.B.; Cherry, G. Augmentation of tissue survival by delay: an experimental study in rabbits. Plast Reconstr Surg 1967, 39, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Gurunluoglu, R.; Gurunluoglu, A. Giulio Cesare Arantius (1530–1589): a surgeon and anatomist: his role in nasal reconstruction and influence on Gaspare Tagliacozzi. Ann Plast Surg 2008, 60, 717–722. [Google Scholar] [CrossRef]
- Santoni-Rugiu, P.; Sykers, P.A. History of Plastic Surgery; Springer: Berlin, Germany, 2007. [Google Scholar]
- Zimbler, M.S. Gaspare Tagliacozzi (1545–1599): renaissance surgeon. Arch Facial Plast Surg 2001, 3, 283–284. [Google Scholar] [CrossRef]
- Cormack, G.; Lamberry, B. The Arterial Anatomy of Skin Flaps, 2nd ed.; Churchill Livingstone: New York, NY, USA, 1994. [Google Scholar]
- Milton, S.H. The effects of “delay” on the survival of experimental pedicled skin flaps. Br J Plast Surg 1969, 22, 244–252. [Google Scholar] [CrossRef]
- Milton, S.H. Pedicled skin-flaps: the fallacy of the length: width ratio. Br J Surg 1970, 57, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Civelek, B.; Selcuk, T.; Bilgen, E.; Demirbag, E.; Celebioglu, S. Intermittent ischaemia of skin flaps shortens time taken to divide pedicles: an experimental study in rats. Scand J Plast Reconstr Surg Hand Surg 2009, 43, 241–244. [Google Scholar] [CrossRef]
- Wang, H.; Li, Z.; Liu, X. Effects of various protocols of ischemic preconditioning on rat tram flaps. Microsurgery 2008, 28, 37–43. [Google Scholar] [CrossRef]
- Ghali, S.; Butler, P.E.M.; Tepper, O.M.; Gurtner, G.C. Vascular delay revisited. Plast Reconstr Surg 2007, 119, 1735–1744. [Google Scholar] [CrossRef]
- Pearl, R.M. A unifying theory of the delay phenomenon—recovery from the hyperadrenergic state. Ann Plast Surg 1981, 7, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Finseth, F.; Cutting, C. An experimental neurovascular island skin flap for the study of the delay phenomenon. Plast Reconstr Surg 1978, 61, 412–420. [Google Scholar] [CrossRef]
- Cutting, C.B.; Bardach, J.; Finseth, F. Haemodynamics of the delayed skin flap: a total blood-flow study. Br J Plast Surg 1981, 34, 133–135. [Google Scholar] [CrossRef] [PubMed]
- Dhar, S.C.; Taylor, G.I. The delay phenomenon: the story unfolds. Plast Reconstr Surg 1999, 104, 2079–2091. [Google Scholar] [CrossRef] [PubMed]
- Morris, S.F.; Taylor, G.I. The time sequence of the delay phenomenon: when is a surgical delay effective? An experimental study. Plast Reconstr Surg 1995, 95, 526–533. [Google Scholar] [CrossRef]
- Callegari, P.R.; Taylor, G.I.; Caddy, C.M.; Minabe, T. An anatomic review of the delay phenomenon: I. Experimental studies. Plast Reconstr Surg 1992, 89, 397–407, discussion 417–418. [Google Scholar] [CrossRef]
- Murry, C.E.; Jennings, R.B.; Reimer, K.A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986, 74, 1124–1136. [Google Scholar] [CrossRef]
- Marber, M.S.; Latchman, D.S.; Walker, J.M.; Yellon, D.M. Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation 1993, 88, 1264–1272. [Google Scholar] [CrossRef]
- Wan, C.; Maldonado, C.; Papanicolaou, G.; et al. Reducing the vascular delay period in latissimus dorsi muscle flaps for use in cardiomyoplasty. Plast Reconstr Surg 2002, 109, 1630–1637. [Google Scholar] [CrossRef]
- Chen, H.C.; Kuo, Y.R.; Hwang, T.L.; Chen, H.H.; Chang, C.H.; Tang, Y.B. Microvascular prefabricated free skin flaps for esophageal reconstruction in difficult patients. Ann Thorac Surg 1999, 67, 911–916. [Google Scholar] [CrossRef]
- Wang, Z.; Hernandez, F.; Pederiva, F.; et al. Ischemic preconditioning of the graft for intestinal transplantation in rats. Pediatr Transplant 2011, 15, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.S.; Sindram, D.; Perry, D.K.; Clavien, P.A. Ischemic preconditioning protects the mouse liver by inhibition of apoptosis through a caspase-dependent pathway. Hepatology 1999, 30, 1223–1231. [Google Scholar] [CrossRef]
- Wong, M.S.; Erdmann, D.; Sweis, R.; et al. Basic fibroblast growth factor expression following surgical delay of rat transverse rectus abdominis myocutaneous flaps. Plast Reconstr Surg 2004, 113, 2030–2036. [Google Scholar] [CrossRef]
- Lee, T.M.; Lin, M.S.; Tsai, C.H.; Chang, N.C. Effect of ischaemic preconditioning on regional release of inflammatory markers. Clin Sci (Lond) 2005, 109, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Codner, M.A.; Bostwick, J., III; Nahai, F.; Bried, J.T.; Eaves, F.F. TRAM flap vascular delay for high-risk breast reconstruction. Plast Reconstr Surg 1995, 96, 1615–1622. [Google Scholar] [CrossRef]
- Scheufler, O.; Andresen, R.; Kirsch, A.; Banzer, D.; Vaubel, E. Clinical results of TRAM flap delay by selective embolization of the deep inferior epigastric arteries. Plast Reconstr Surg 2000, 105, 1320–1329. [Google Scholar] [PubMed]
- Seify, H.; Bilkay, U.; Jones, G. Improvement of TRAM flap viability using human VEGF-induced angiogenesis: a comparative study of delay techniques. Plast Reconstr Surg 2003, 112, 1032–1039. [Google Scholar] [CrossRef]
- Restifo, R.J.; Ward, B.A.; Scoutt, L.M.; Brown, J.M.; Taylor, K.J. Timing, magnitude, and utility of surgical delay in the TRAM flap: II. Clinical studies. Plast Reconstr Surg 1997, 99, 1217–1223. [Google Scholar] [CrossRef]
- Moghari, A.; Emami, A.; Sheen, R.; O’Brien, B.M. Lower limb reconstruction in children using expanded free flaps. Br J Plast Surg 1989, 42, 649–652. [Google Scholar] [CrossRef]
- Acarturk, T.O.; Glaser, D.P.; Newton, E.D. Reconstruction of difficult wounds with tissue-expanded free flaps. Ann Plast Surg 2004, 52, 493–499, discussion 500. [Google Scholar] [CrossRef]
- Pedersen, K.R.; Ravn, H.B.; Povlsen, J.V.; Schmidt, M.R.; Erlandsen, E.J.; Hjortdal, V.E. Failure of remote ischemic preconditioning to reduce the risk of postoperative acute kidney injury in children undergoing operation for complex congenital heart disease: a randomized single-center study. J Thorac Cardiovasc Surg 2012, 143, 576–583. [Google Scholar] [CrossRef]
- Tapuria, N.; Kumar, Y.; Habib, M.M.; Abu Amara, M.; Seifalian, A.M.; Davidson, B.R. Remote ischemic preconditioning: a novel protective method from ischemia reperfusion injury—a review. J Surg Res 2008, 150, 304–330. [Google Scholar] [CrossRef]
- Farhood, A.; McGuire, G.M.; Manning, A.M.; Miyasaka, M.; Smith, C.W.; Jaeschke, H. Intercellular adhesion molecule 1 (ICAM-1) expression and its role in neutrophil-induced ischemia-reperfusion injury in rat liver. J Leukoc Biol 1995, 57, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, B.J.; Granger, D.N. Oxygen free radicals and the gastrointestinal tract: role in ischemia-reperfusion injury. Hepatogastroenterology 1994, 41, 337–342. [Google Scholar] [PubMed]
- Lazarus, B.; Messina, A.; Barker, J.E.; et al. The role of mast cells in ischaemia-reperfusion injury in murine skeletal muscle. J Pathol 2000, 191, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Oka, N.; Tropak, M.; et al. Remote ischemic preconditioning elaborates a transferable blood-borne effector that protects mitochondrial structure and function and preserves myocardial performance after neonatal cardioplegic arrest. J Thorac Cardiovasc Surg 2008, 136, 335–342. [Google Scholar] [CrossRef]
- Fantinelli, J.C.; Pérez Núñez, I.A.; González Arbeláez, L.F.; et al. Participation of mitochondrial permeability transition pore in the effects of ischemic preconditioning in hypertrophied hearts: Role of NO and mitoK ATP. Int J Cardiol 2013, 166, 173–180. [Google Scholar] [CrossRef]
- Park, H.K.; Seol, I.J.; Kim, K.S. Protective effect of hypoxic preconditioning on hypoxic-ischemic injured newborn rats. J Korean Med Sci 2011, 26, 1495–1500. [Google Scholar] [CrossRef]
- Yamada, F.; Saito, T.; Abe, T.; et al. Ischemic preconditioning enhances regenerative capacity of hepatocytes in long-term ischemically damaged rat livers. J Gastroenterol Hepatol 2007, 22, 1971–1977. [Google Scholar] [CrossRef]
- Xiao, J.S.; Cai, F.G.; Niu, Y.; Zhang, Y.; Xu, X.L.; Ye, Q.F. Preconditioning effects on expression of proto-oncogenes c-fos and c-jun after hepatic ischemia/reperfusion in rats. Hepatobiliary Pancreat Dis Int 2005, 4, 197–202. [Google Scholar]
- Aban, N.; Cinel, L.; Tamer, L.; Aktas, A.; Aban, M. Ischemic preconditioning reduces caspase-related intestinal apoptosis. Surg Today 2005, 35, 228–234. [Google Scholar] [CrossRef]
- Zhou, B.; Zhang, P.J.; Tian, T.; et al. Role of vascular endothelial growth factor in protection of intrahepatic cholangiocytes mediated by hypoxic preconditioning after liver transplantation in rats. Transplant Proc 2010, 42, 2457–2462. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Y.; Gu, X.; Yin, H.Z.; Zhou, Y.; Zhang, W.H.; Qin, Y.M. Protective effect of ischemic preconditioning on hepatic ischemia-reperfusion injury by advancing the expressive phase of survivin in rats. Hepatobiliary Pancreat Dis Int 2008, 7, 615–620. [Google Scholar] [PubMed]
- Yagi, T.; Yoshioka, H.; Wakai, T.; Kato, T.; Horikoshi, T.; Kinouchi, H. Activation of signal transducers and activators of transcription 3 in the hippocampal CA1 region in a rat model of global cerebral ischemic preconditioning. Brain Res 2011, 1422, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, S.; Kamme, F.; Hu, B.R. Ischemic preconditioning prevents protein aggregation after transient cerebral ischemia. Neuroscience 2005, 134, 69–80. [Google Scholar] [CrossRef]
- Vartanian, K.B.; Stevens, S.L.; Marsh, B.J.; Williams-Karnesky, R.; Lessov, N.S.; Stenzel-Poore, M.P. LPS preconditioning redirects TLR signaling following stroke: TRIF-IRF3 plays a seminal role in mediating tolerance to ischemic injury. J Neuroinflammation 2011, 8, 140. [Google Scholar] [CrossRef]
- Jensen, H.A.; Loukogeorgakis, S.; Yannopoulos, F.; et al. Remote ischemic preconditioning protects the brain against injury after hypothermic circulatory arrest. Circulation 2011, 123, 714–721. [Google Scholar] [CrossRef]
- Moskowitz, M.A.; Waeber, C. Remote ischemic preconditioning: making the brain more tolerant, safely and inexpensively. Circulation 2011, 123, 709–711. [Google Scholar] [CrossRef]
- Kim, E.; Raval, A.P.; Defazio, R.A.; Perez-Pinzon, M.A. Ischemic preconditioning via epsilon protein kinase C activation requires cyclooxygenase-2 activation in vitro. Neuroscience 2007, 145, 931–941. [Google Scholar] [CrossRef]
- Winbladh, A.; Björnsson, B.; Trulsson, L.; Offenbartl, K.; Gullstrand, P.; Sandström, P. Ischemic preconditioning prior to intermittent Pringle maneuver in liver resections. J Hepatobiliary Pancreat Sci 2012, 19, 159–170. [Google Scholar] [CrossRef]
- Morita, S. Remote ischemic preconditioning. -Is it time to introduce it in clinical practice? Circ J 2011, 75, 1821–1822. [Google Scholar] [CrossRef]
- Abu-Amara, M.; Yang, S.Y.; Quaglia, A.; et al. Effect of remote ischemic preconditioning on liver ischemia/reperfusion injury using a new mouse model. Liver Transpl 2011, 17, 70–82. [Google Scholar] [CrossRef]
- Cai, F.G.; Xiao, J.S.; Ye, Q.F. Effects of ischemic preconditioning on cyclinD1 expression during early ischemic reperfusion in rats. World J Gastroenterol 2006, 12, 2936–2940. [Google Scholar] [CrossRef]
- Stubbs, S.L.; Hsiao, S.T.; Peshavariya, H.M.; Lim, S.Y.; Dusting, G.J.; Dilley, R.J. Hypoxic preconditioning enhances survival of human adiposederived stem cells and conditions endothelial cells in vitro. Stem Cells Dev 2012, 21, 1887–1896. [Google Scholar] [CrossRef]
- Knudsen, A.R.; Kannerup, A.S.; Dich, R.; et al. Expression of genes involved in rat liver angiogenesis after ischaemia and reperfusion: effects of ischaemic preand post-conditioning. HPB (Oxford) 2010, 12, 554–560. [Google Scholar] [CrossRef]
- Tapuria, N.; Junnarkar, S.P.; Dutt, N.; et al. Effect of remote ischemic preconditioning on hepatic microcirculation and function in a rat model of hepatic ischemia reperfusion injury. HPB (Oxford) 2009, 11, 108–117. [Google Scholar] [CrossRef]
- Saeki, I.; Matsuura, T.; Hayashida, M.; Taguchi, T. Ischemic preconditioning and remote ischemic preconditioning have protective effect against cold ischemia-reperfusion injury of rat small intestine. Pediatr Surg Int 2011, 27, 857–862. [Google Scholar] [CrossRef]
- Franco-Gou, R.; Roselló-Catafau, J.; Casillas-Ramirez, A.; et al. How ischaemic preconditioning protects small liver grafts. J Pathol 2006, 208, 62–73. [Google Scholar] [CrossRef]
- Heizmann, O.; Meimarakis, G.; Volk, A.; Matz, D.; Oertli, D.; Schauer, R.J. Ischemic preconditioning-induced hyperperfusion correlates with hepatoprotection after liver resection. World J Gastroenterol 2010, 16, 1871–1878. [Google Scholar] [CrossRef]
- Shimizu, M.; Tropak, M.; Diaz, R.J.; et al. Transient limb ischaemia remotely preconditions through a humoral mechanism acting directly on the myocardium: evidence suggesting cross-species protection. Clin Sci (Lond) 2009, 117, 191–200. [Google Scholar] [CrossRef]
- Younès, A.; Pepe, S.; Yoshishige, D.; Caffrey, J.L.; Lakatta, E.G. Ischemic preconditioning increases the bioavailability of cardiac enkephalins. Am J Physiol Heart Circ Physiol 2005, 289, H1652–H1661. [Google Scholar] [CrossRef]
- Hochhauser, E.; Leshem, D.; Kaminski, O.; Cheporko, Y.; Vidne, B.A.; Shainberg, A. The protective effect of prior ischemia reperfusion adenosine A1 or A3 receptor activation in the normal and hypertrophied heart. Interact Cardiovasc Thorac Surg 2007, 6, 363–368. [Google Scholar] [CrossRef]
- Claytor, R.B.; Aranson, N.J.; Ignotz, R.A.; Lalikos, J.F.; Dunn, R.M. Remote ischemic preconditioning modulates p38 MAP kinase in rat adipocutaneous flaps. J Reconstr Microsurg 2007, 23, 93–98. [Google Scholar] [CrossRef]
- Barandon, L.; Dufourcq, P.; Costet, P.; et al. Involvement of FrzA/sFRP-1 and the Wnt/frizzled pathway in ischemic preconditioning. Circ Res 2005, 96, 1299–1306. [Google Scholar] [CrossRef]
- Guo, Y.; Sanganalmath, S.K.; Wu, W.; et al. Identification of inducible nitric oxide synthase in peripheral blood cells as a mediator of myocardial ischemia/reperfusion injury. Basic Res Cardiol 2012, 107, 253. [Google Scholar] [CrossRef]
- Vladic, N.; Ge, Z.D.; Leucker, T.; et al. Decreased tetrahydrobiopterin and disrupted association of Hsp90 with eNOS by hyperglycemia impair myocardial ischemic preconditioning. Am J Physiol Heart Circ Physiol 2011, 301, H2130–H2139. [Google Scholar] [CrossRef]
- Gao, J.; Kang, Y.; Lou, J. The optimal strategy of noninvasive limb ischemic preconditioning for protecting heart against ischemia-reperfusion injury in rats. J Surg Res 2012, 174, e47–e54. [Google Scholar] [CrossRef]
- Jebeli, M.; Esmaili, H.R.; Mandegar, M.H.; et al. Evaluation of the effects of ischemic preconditioning with a short reperfusion phase on patients undergoing a coronary artery bypass graft. Ann Thorac Cardiovasc Surg 2010, 16, 248–252. [Google Scholar]
- Vahlhaus, C.; Neumann, J.; Lüss, H.; et al. Ischemic preconditioning by unstable angina reduces the release of CK-MB following CABG and stimulates left ventricular HSP-72 protein expression. J Card Surg 2005, 20, 412–419. [Google Scholar] [CrossRef]
- Karuppasamy, P.; Chaubey, S.; Dew, T.; et al. Remote intermittent ischemia before coronary artery bypass graft surgery: a strategy to reduce injury and inflammation? Basic Res Cardiol 2011, 106, 511–519. [Google Scholar] [CrossRef]
- Hoole, S.P.; Heck, P.M.; Sharples, L.; et al. Cardiac Remote Ischemic Preconditioning in Coronary Stenting (CRISP stent) study: A prospective, randomized control trial. Circulation 2009, 119, 820–827. [Google Scholar] [CrossRef]
- Lin, L.N.; Wang, L.R.; Wang, W.T.; et al. Ischemic preconditioning attenuates pulmonary dysfunction after unilateral thigh tourniquet-induced ischemia-reperfusion. Anesth Analg 2010, 111, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Cheung, M.M.H.; Kharbanda, R.K.; Konstantinov, I.E.; et al. First Clinical Application in Humans. Randomized controlled trial of the effects of remote ischemic preconditioning on children undergoing cardiac surgery: first clinical application in humans. J Am Coll Cardiol 2006, 47, 2277–2282. [Google Scholar] [CrossRef] [PubMed]
- Colak, T.; Turkmenoglu, O.; Dag, A.; et al. The effect of remote ischemic preconditioning on healing of colonic anastomoses. J Surg Res 2007, 143, 200–205. [Google Scholar] [CrossRef]
- Um, J.W.; Matthews, J.B.; Song, J.C.; Mun, E.C. Role of protein kinase C in intestinal ischemic preconditioning. J Surg Res 2005, 124, 289–296. [Google Scholar] [CrossRef]
- Holzner, P.A.; Kulemann, B.; Kuesters, S.; et al. Impact of remote ischemic preconditioning on wound healing in small bowel anastomoses. World J Gastroenterol 2011, 17, 1308–1316. [Google Scholar] [CrossRef]
- Marjanovic, G.; Jüttner, E.; zur Hausen, A.; Theodor Hopt, U.; Obermaier, R. Ischemic preconditioning improves stability of intestinal anastomoses in rats. Int J Colorectal Dis 2009, 24, 975–981. [Google Scholar] [CrossRef]
- Zimmerman, R.F. Remote ischemic preconditioning: is the groove in the heart? Am J Kidney Dis 2010, 56, 1019–1022. [Google Scholar] [CrossRef]
- Reutzel-Selke, A.; Pratschke, J.; Martins, P.N.; et al. Ischemic preconditioning produces systemic protective and adoptively transferable effects. Kidney Int 2008, 74, 622–630. [Google Scholar] [CrossRef] [PubMed]
- Timsit, M.O.; Gadet, R.; Ben Abdennebi, H.; Codas, R.; Petruzzo, P.; Badet, L. Renal ischemic preconditioning improves recovery of kidney function and decreases α-smooth muscle actin expression in a rat model. J Urol 2008, 180, 388–391. [Google Scholar] [CrossRef]
© 2014 by the author. The Author(s) 2014.
Share and Cite
Hamilton, K.; Wolfswinkel, E.M.; Weathers, W.M.; Xue, A.S.; Hatef, D.A.; Izaddoost, S.; Hollier, L.H., Jr. The Delay Phenomenon: A Compilation of Knowledge Across Specialties. Craniomaxillofac. Trauma Reconstr. 2014, 7, 112-118. https://doi.org/10.1055/s-0034-1371355
Hamilton K, Wolfswinkel EM, Weathers WM, Xue AS, Hatef DA, Izaddoost S, Hollier LH Jr. The Delay Phenomenon: A Compilation of Knowledge Across Specialties. Craniomaxillofacial Trauma & Reconstruction. 2014; 7(2):112-118. https://doi.org/10.1055/s-0034-1371355
Chicago/Turabian StyleHamilton, Kristy, Erik M. Wolfswinkel, William M. Weathers, Amy S. Xue, Daniel A. Hatef, Shayan Izaddoost, and Larry H. Hollier, Jr. 2014. "The Delay Phenomenon: A Compilation of Knowledge Across Specialties" Craniomaxillofacial Trauma & Reconstruction 7, no. 2: 112-118. https://doi.org/10.1055/s-0034-1371355
APA StyleHamilton, K., Wolfswinkel, E. M., Weathers, W. M., Xue, A. S., Hatef, D. A., Izaddoost, S., & Hollier, L. H., Jr. (2014). The Delay Phenomenon: A Compilation of Knowledge Across Specialties. Craniomaxillofacial Trauma & Reconstruction, 7(2), 112-118. https://doi.org/10.1055/s-0034-1371355