A Review of Immunotherapy in Non-Small-Cell Lung Cancer
Abstract
:1. Introduction
2. Immunotherapy for Metastatic NSCLC
2.1. Single-Agent Immunotherapy
2.2. Dual Immunotherapy without Chemotherapy
2.3. Single-Agent Immunotherapy Combined with Chemotherapy
2.4. Dual Immunotherapy Combined with Chemotherapy
3. Optimal Duration of ICI Therapy in Advanced Disease
4. Immunotherapy for Earlier-Stage Resectable NSCLC
5. The Effect of Radiation Therapy on Immunotherapy
6. Special Populations: Frailty, Brain Metastases and Hyper-Progressors
6.1. Immunotherapy for Frail Patients with NSCLC
6.2. Patients with Brain Metastases
6.3. Disease Response Assessment/Hyperprogressive Disease
7. Immune-Related Adverse Events in NSCLC
8. Future Perspectives/Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Agency for Research on Cancer. GLOBOCAN Lung Cancer Facts Sheet; International Agency for Research on Cancer: Lyon, France, 2020. [Google Scholar]
- Zappa, C.; Mousa, S.A. Non-small cell lung cancer: Current treatment and future advances. Transl. Lung Cancer Res. 2016, 5, 288–300. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Canadian Cancer Statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Horn, L.; Spigel, D.R.; Vokes, E.E.; Holgado, E.; Ready, N.; Steins, M.; Poddubskaya, E.; Borghaei, H.; Felip, E.; Paz-Ares, L.; et al. Nivolumab versus Docetaxel in Previously Treated Patients with Advanced Non-Small-Cell Lung Cancer: Two-Year Outcomes from Two Randomized, Open-Label, Phase III Trials (CheckMate 017 and CheckMate 057). J. Clin. Oncol. 2017, 35, 3924–3933. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Baas, P.; Kim, D.-W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.-Y.; Molina, J.; Kim, J.-H.; Arvis, C.D.; Ahn, M.-J.; et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016, 387, 1540–1550. [Google Scholar] [CrossRef] [PubMed]
- Rittmeyer, A.; Barlesi, F.; Waterkamp, D.; Park, K.; Ciardiello, F.; von Pawel, J.; Gadgeel, S.M.; Hida, T.; Kowalski, D.M.; Dols, M.C.; et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet 2017, 389, 255–265. [Google Scholar] [CrossRef]
- Nosaki, K.; Saka, H.; Hosomi, Y.; Baas, P.; de Castro, G., Jr.; Reck, M.; Wu, Y.L.; Brahmer, J.R.; Felip, E.; Sawada, T.; et al. Safety and efficacy of pembrolizumab monotherapy in elderly patients with PD-L1-positive advanced non-small-cell lung cancer: Pooled analysis from the KEYNOTE-010, KEYNOTE-024, and KEYNOTE-042 studies. Lung Cancer 2019, 135, 188–195. [Google Scholar] [CrossRef]
- Jassem, J.; de Marinis, F.; Giaccone, G.; Vergnenegre, A.; Barrios, C.H.; Morise, M.; Felip, E.; Oprean, C.; Kim, Y.-C.; Andric, Z.; et al. Updated overall Survival Analysis from IMpower110: Atezolizumab versus Platinum-Based Chemotherapy in Treatment-Naive Programmed Death-Ligand 1-Selected NSCLC. J. Thorac. Oncol. 2021, 16, 1872–1882. [Google Scholar] [CrossRef]
- Carbone, D.P.; Reck, M.; Paz-Ares, L.; Creelan, B.; Horn, L.; Steins, M.; Felip, E.; van den Heuvel, M.M.; Ciuleanu, T.-E.; Badin, F.; et al. First-Line Nivolumab in Stage IV or Recurrent Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 376, 2415–2426. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, N.A.; Cho, B.C.; Reinmuth, N. Durvalumab with or without Tremelimumab vs. Standard Chemotherapy in First-line Treatment of Metastatic Non-Small Cell Lung Cancer: The MYSTIC Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 661–674. [Google Scholar] [CrossRef]
- Barlesi, F.; Vansteenkiste, J.; Spigel, D.; Ishii, H.; Garassino, M.; de Marinis, F.; Özgüroğlu, M.; Szczesna, A.; Polychronis, A.; Uslu, R.; et al. Avelumab versus docetaxel in patients with platinum-treated advanced non-small-cell lung cancer (JAVELIN Lung 200): An open-label, randomised, phase 3 study. Lancet Oncol. 2018, 19, 1468–1479. [Google Scholar] [CrossRef]
- Paz-Ares, L.G.; Ramalingam, S.S.; Ciuleanu, T.-E.; Lee, J.-S.; Urban, L.; Caro, R.B.; Park, K.; Sakai, H.; Ohe, Y.; Nishio, M.; et al. First-Line Nivolumab Plus Ipilimumab in Advanced NSCLC: 4-Year Outcomes from the Randomized, Open-Label, Phase 3 CheckMate 227 Part 1 Trial. J. Thorac. Oncol. 2022, 17, 289–308. [Google Scholar] [CrossRef] [PubMed]
- AstraZeneca. Update on the Phase III NEPTUNE Trial of Imfinzi Plus Tremelimumab in Stage IV Non-Small Cell Lung Cancer. 2019. Available online: https://www.astrazeneca.com/media-centre/press-releases/2019/update-on-the-phase-iii-neptune-trial-of-imfinzi-plus-tremelimumab-in-stage-iv-non-small-cell-lung-cancer-21082019.html# (accessed on 1 May 2024).
- Rodriguez-Abreu, D.; Powell, S.; Hochmair, M.; Gadgeel, S.; Esteban, E.; Felip, E.; Speranza, G.; De Angelis, F.; Dómine, M.; Cheng, S.; et al. Pemetrexed plus platinum with or without pembrolizumab in patients with previously untreated metastatic nonsquamous NSCLC: Protocol-specified final analysis from KEYNOTE-189. Ann. Oncol. 2021, 32, 881–895. [Google Scholar] [CrossRef]
- West, H.; McCleod, M.; Hussein, M.; Morabito, A.; Rittmeyer, A.; Conter, H.J.; Kopp, H.-G.; Daniel, D.; McCune, S.; Mekhail, T.; et al. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019, 20, 924–937. [Google Scholar] [CrossRef] [PubMed]
- Jotte, R.; Cappuzzo, F.; Vynnychenko, I.; Stroyakovskiy, D.; Rodríguez-Abreu, D.; Hussein, M.; Soo, R.; Conter, H.J.; Kozuki, T.; Huang, K.C.; et al. Atezolizumab in Combination with Carboplatin and Nab-Paclitaxel in Advanced Squamous NSCLC (IMpower131): Results from a Randomized Phase III Trial. J. Thorac. Oncol. 2020, 15, 1351–1360. [Google Scholar] [CrossRef] [PubMed]
- Nishio, M.; Barlesi, F.; West, H.; Ball, S.; Bordoni, R.; Cobo, M.; Longeras, P.D.; Goldschmidt, J., Jr.; Novello, S.; Orlandi, F.; et al. Atezolizumab Plus Chemotherapy for First-Line Treatment of Nonsquamous NSCLC: Results from the Randomized Phase 3 IMpower132 Trial. J. Thorac. Oncol. 2021, 16, 653–664. [Google Scholar] [CrossRef] [PubMed]
- Nogami, N.; Barlesi, F.; Socinski, M.A.; Reck, M.; Thomas, C.A.; Cappuzzo, F.; Mok, T.S.; Finley, G.; Aerts, J.G.; Orlandi, F.; et al. IMpower150 Final Exploratory Analyses for Atezolizumab Plus Bevacizumab and Chemotherapy in Key NSCLC Patient Subgroups with EGFR Mutations or Metastases in the Liver or Brain. J. Thorac. Oncol. 2022, 17, 309–323. [Google Scholar] [CrossRef]
- Park, S.; Kim, T.M.; Han, J.Y.; Lee, G.W.; Shim, B.Y.; Lee, Y.G.; Kim, S.W.; Kim, I.H.; Lee, S.; Kim, Y.J.; et al. Phase III, Randomized Study of Atezolizumab Plus Bevacizumab and Chemotherapy in Patients with EGFR- or ALK-Mutated Non-Small-Cell Lung Cancer (ATTLAS, KCSG-LU19-04). J. Clin. Oncol. 2023, 42, JCO2301891. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.; Vicente, D.; Tafreshi, A.; Robinson, A.; Parra, H.S.; Mazières, J.; Hermes, B.; Cicin, I.; Medgyasszay, B.; Rodríguez-Cid, J.; et al. A Randomized, Placebo-Controlled Trial of Pembrolizumab Plus Chemotherapy in Patients with Metastatic Squamous NSCLC: Protocol-Specified Final Analysis of KEYNOTE-407. J. Thorac. Oncol. 2020, 15, 1657–1669. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.G.; Ciuleanu, T.-E.; Cobo-Dols, M.; Bennouna, J.; Cheng, Y.; Mizutani, H.; Lingua, A.; Reyes, F.; Reinmuth, N.; De Menezes, J.J.; et al. First-line (1L) nivolumab (NIVO) + ipilimumab (IPI) + 2 cycles of chemotherapy (chemo) versus chemo alone (4 cycles) in patients (pts) with metastatic non–small cell lung cancer (NSCLC): 3-year update from CheckMate 9LA. J. Clin. Oncol. 2022, 40, LBA9026. [Google Scholar] [CrossRef]
- Johnson, M.L.; Cho, B.C.; Luft, A.; Alatorre-Alexander, J.; Geater, S.L.; Laktionov, K.; Kim, S.-W.; Ursol, G.; Hussein, M.; Lim, F.L.; et al. Durvalumab with or without Tremelimumab in Combination with Chemotherapy as First-Line Therapy for Metastatic Non-Small-Cell Lung Cancer: The Phase III POSEIDON Study. J. Clin. Oncol. 2023, 41, 1213–1227. [Google Scholar] [CrossRef]
- Waterhouse, D.M.; Garon, E.B.; Chandler, J.; McCleod, M.; Hussein, M.; Jotte, R.; Horn, L.; Daniel, D.B.; Keogh, G.; Creelan, B.; et al. Continuous versus 1-Year Fixed-Duration Nivolumab in Previously Treated Advanced Non-Small-Cell Lung Cancer: CheckMate 153. J. Clin. Oncol. 2020, 38, 3863–3873. [Google Scholar] [CrossRef] [PubMed]
- Shaverdian, N.; Lisberg, A.E.; Bornazyan, K.; Veruttipong, D.; Goldman, J.W.; Formenti, S.C.; Garon, E.B.; Lee, P. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: A secondary analysis of the KEYNOTE-001 phase 1 trial. Lancet Oncol. 2017, 18, 895–903. [Google Scholar] [CrossRef]
- Forde, P.M.; Spicer, J.; Lu, S.; Provencio, M.; Mitsudomi, T.; Awad, M.M.; Felip, E.; Broderick, S.R.; Brahmer, J.R.; Swanson, S.J.; et al. Neoadjuvant Nivolumab Plus Chemotherapy in Resectable Lung Cancer. N. Engl. J. Med. 2022, 386, 1973–1985. [Google Scholar] [CrossRef]
- O’Brien, M.; Paz-Ares, L.; Marreaud, S.; Dafni, U.; Oselin, K.; Havel, L.; Esteban, E.; Isla, D.; Martinez-Marti, A.; Faehling, M.; et al. Pembrolizumab versus placebo as adjuvant therapy for completely resected stage IB-IIIA non-small-cell lung cancer (PEARLS/KEYNOTE-091): An interim analysis of a randomised, triple-blind, phase 3 trial. Lancet Oncol. 2022, 23, 1274–1286. [Google Scholar] [CrossRef] [PubMed]
- Cascone, T.; Awad, M.; Spicer, J.; He, J.; Lu, S.; Sepesi, B.; Tanaka, F.; Taube, J.; Cornelissen, R.; Havel, L.; et al. LBA1 CheckMate 77T: Phase III study comparing neoadjuvant nivolumab (NIVO) plus chemotherapy (chemo) vs. neoadjuvant placebo plus chemo followed by surgery and adjuvant NIVO or placebo for previously untreated, resectable stage II–IIIb NSCLC. Ann. Oncol. 2023, 34, S1295. [Google Scholar] [CrossRef]
- Heymach, J.V.; Harpole, D.; Mitsudomi, T.; Taube, J.M.; Galffy, G.; Hochmair, M.; Winder, T.; Zukov, R.; Garbaos, G.; Gao, S.; et al. Perioperative Durvalumab for Resectable Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2023, 389, 1672–1684. [Google Scholar] [CrossRef]
- Spicer, J.D.; Gao, S.; Liberman, M.; Kato, T.; Tsuboi, M.; Lee, S.-H.; Chen, K.-N.; Dooms, C.; Majem, M.; Eigendorff, E.; et al. LBA56 Overall survival in the KEYNOTE-671 study of perioperative pembrolizumab for early-stage non-small-cell lung cancer (NSCLC). Ann. Oncol. 2023, 34, S1297–S1298. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, W.; Wu, L.; Wang, W.; Zhang, P.; Neotorch Investigators; Fang, W.; Xing, W.; Chen, Q.; Yang, L.; et al. Perioperative toripalimab + platinum-doublet chemotherapy vs. chemotherapy in resectable stage II/III non-small cell lung cancer (NSCLC): Interim event-free survival (EFS) analysis of the phase III Neotorch study. J. Clin. Oncol. 2023, 41, 425126. [Google Scholar] [CrossRef]
- Brahmer, J.; Reckamp, K.L.; Baas, P.; Crinò, L.; Eberhardt, W.E.E.; Poddubskaya, E.; Antonia, S.; Pluzanski, A.; Vokes, E.E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 123–135. [Google Scholar] [CrossRef]
- Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 1627–1639. [Google Scholar] [CrossRef]
- Reck, M.; Remon, J.; Hellmann, M.D. First-Line Immunotherapy for Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2022, 40, 586–597. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Mamtani, R.; Marmarelis, M.E.; Hennessy, S. Chemoimmunotherapy vs. Immunotherapy for First Line Treatment of Advanced Non-small Cell Lung Cancer with a PD-L1 Expression ≥50% or ≥90. Clin. Lung Cancer 2023, 24, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Pathak, R.; Lopes, G.D.L.; Yu, H.; Aryal, M.R.; Ji, W.; Frumento, K.S.; Wallis, C.J.D.; Klaassen, Z.; Park, H.S.; Goldberg, S.B. Comparative efficacy of chemoimmunotherapy versus immunotherapy for advanced non-small cell lung cancer: A network meta-analysis of randomized trials. Cancer 2021, 127, 709–719. [Google Scholar] [CrossRef] [PubMed]
- Fabian, K.P.; Wolfson, B.; Hodge, J.W. From Immunogenic Cell Death to Immunogenic Modulation: Select Chemotherapy Regimens Induce a Spectrum of Immune-Enhancing Activities in the Tumor Microenvironment. Front. Oncol. 2021, 11, 728018. [Google Scholar] [CrossRef] [PubMed]
- ESMO. FDA Grants Regular Approval for Pembrolizumab in Combination with Chemotherapy for First-Line Treatment of Metastatic Nonsquamous NSCLC. 2018. Available online: https://www.esmo.org/oncology-news/archive/fda-grants-regular-approval-for-pembrolizumab-in-combination-with-chemotherapy-for-first-line-treatment-of-metastatic-non-squamous-nsclc (accessed on 1 May 2024).
- Velez, M.A.; Tsai, H.H.C.; Shackelford, D.B.; Garon, E.B.; Lisberg, A. What is the current role of immunotherapy in EGFR mutant advanced NSCLC? Lung Cancer 2022, 166, 253–254. [Google Scholar] [CrossRef]
- Abbosh, C.; Birkbak, N.J.; Wilson, G.A.; Jamal-Hanjani, M.; Constantin, T.; Salari, R.; Le Quesne, J.; Moore, D.A.; Veeriah, S.; Rosenthal, R.; et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 2017, 545, 446–451. [Google Scholar] [CrossRef] [PubMed]
- Giroux Leprieur, E.; Herbretau, G.; Dumenil, C.; Julie, C.; Giraud, V.; Labrune, S.; Dumoulin, J.; Tisserand, J.; Emile, J.-F.; Blons, H.; et al. Circulating tumor DNA evaluated by Next-Generation Sequencing is predictive of tumor response and prolonged clinical benefit with nivolumab in advanced non-small cell lung cancer. Oncoimmunology 2018, 7, e1424675. [Google Scholar] [CrossRef] [PubMed]
- Bratman, S.V.; Yang, S.Y.C.; Iafolla, M.A.J.; Liu, Z.; Hansen, A.R.; Bedard, P.L.; Lheureux, S.; Spreafico, A.; Razak, A.A.; Shchegrova, S.; et al. Personalized circulating tumor DNA analysis as a predictive biomarker in solid tumor patients treated with pembrolizumab. Nat. Cancer 2020, 1, 873–881. [Google Scholar] [CrossRef]
- Provencio, M.; Nadal, E.; Insa, A.; Campelo, M.G.; Pereiro, D.; Domine, M.; Majem, M.; Abreu, D.R.; Martinez-Marti, A.; De Castro, J.; et al. OA20.01 Long Term Survival in Operable Stage Iiia Nsclc Patients Treated with Neoadjuvant Nivolumab Plus Chemotherapy—Nadim Study. J. Thorac. Oncol. 2021, 16, S883. [Google Scholar] [CrossRef]
- Cascone, T.; William, W.N., Jr.; Weissferdt, A.; Leung, C.H.; Lin, H.Y.; Pataer, A.; Godoy, M.C.B.; Carter, B.W.; Federico, L.; Reuben, A.; et al. Neoadjuvant nivolumab or nivolumab plus ipilimumab in operable non-small cell lung cancer: The phase 2 randomized NEOSTAR trial. Nat. Med. 2021, 27, 504–514. [Google Scholar] [CrossRef]
- Lee, J.; Chaft, J.; Nicholas, A.; Patterson, A.; Waqar, S.; Toloza, E.; Haura, E.; Raz, D.; Reckamp, K.; Merritt, R.; et al. PS01.05 Surgical and Clinical Outcomes with Neoadjuvant Atezolizumab in Resectable Stage IB–IIIB NSCLC: LCMC3 Trial Primary Analysis. J. Thorac. Oncol. 2021, 16, S59–S61. [Google Scholar] [CrossRef]
- FDA U.S. Food & Drug Administration. FDA Approves Neoadjuvant Nivolumab and Platinum-Doublet Chemotherapy for Early-Stage Non-Small Cell Lung Cancer. 2022. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-neoadjuvant-nivolumab-and-platinum-doublet-chemotherapy-early-stage-non-small-cell-lung (accessed on 1 May 2024).
- Wakelee, H.; Liberman, M.; Kato, T.; Tsuboi, M.; Lee, S.-H.; Gao, S.; Chen, K.-N.; Dooms, C.; Majem, M.; Eigendorff, E.; et al. Perioperative Pembrolizumab for Early-Stage Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2023, 389, 491–503. [Google Scholar] [CrossRef] [PubMed]
- Felip, E.; Altorki, N.; Zhou, C.; Csőszi, T.; Vynnychenko, I.; Goloborodko, O.; Luft, A.; Akopov, A.; Martinez-Marti, A.; Kenmotsu, H.; et al. Adjuvant atezolizumab after adjuvant chemotherapy in resected stage IB-IIIA non-small-cell lung cancer (IMpower010): A randomised, multicentre, open-label, phase 3 trial. Lancet 2021, 398, 1344–1357. [Google Scholar] [CrossRef] [PubMed]
- Theelen, W.; Peulen, H.M.U.; Lalezari, F.; van der Noort, V.; de Vries, J.F.; Aerts, J.G.J.V.; Dumoulin, D.W.; Bahce, I.; Niemeijer, A.N.; de Langen, A.J.; et al. Effect of Pembrolizumab after Stereotactic Body Radiotherapy vs. Pembrolizumab Alone on Tumor Response in Patients with Advanced Non-Small Cell Lung Cancer: Results of the PEMBRO-RT Phase 2 Randomized Clinical Trial. JAMA Oncol. 2019, 5, 1276–1282. [Google Scholar] [CrossRef] [PubMed]
- Mole, R.H. Whole body irradiation; radiobiology or medicine? Br. J. Radiol. 1953, 26, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Demaria, S.; Formenti, S.C. The abscopal effect 67 years later: From a side story to center stage. Br. J. Radiol. 2020, 93, 20200042. [Google Scholar] [CrossRef]
- Formenti, S.C.; Demaria, S. Systemic effects of local radiotherapy. Lancet Oncol. 2009, 10, 718–726. [Google Scholar] [CrossRef]
- Ng, J.; Dai, T. Radiation therapy and the abscopal effect: A concept comes of age. Ann. Transl. Med. 2016, 4, 118. [Google Scholar] [CrossRef]
- Trommer, M.; Yeo, S.Y.; Persigehl, T.; Bunck, A.; Grüll, H.; Schlaak, M.; Theurich, S.; von Bergwelt-Baildon, M.; Morgenthaler, J.; Herter, J.M.; et al. Abscopal Effects in Radio-Immunotherapy-Response Analysis of Metastatic Cancer Patients with Progressive Disease under Anti-PD-1 Immune Checkpoint Inhibition. Front. Pharmacol. 2019, 10, 511. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, Q.; Huang, Z.; Li, J. Combining immunotherapy and radiotherapy in lung cancer: A promising future? J. Thorac. Dis. 2020, 12, 4498–4503. [Google Scholar] [CrossRef]
- Goronzy, J.J.; Weyand, C.M. Understanding immunosenescence to improve responses to vaccines. Nat. Immunol. 2013, 14, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Marur, S.; Singh, H.; Mishra-Kalyani, P.; Larkins, E.; Keegan, P.; Sridhara, R.; Blumenthal, G.M.; Pazdur, R. FDA analyses of survival in older adults with metastatic non-small cell lung cancer in controlled trials of PD-1/PD-L1 blocking antibodies. Semin. Oncol. 2018, 45, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Presley, C.J.; Gomes, F.; Burd, C.E.; Kanesvaran, R.; Wong, M.L. Immunotherapy in Older Adults with Cancer. J. Clin. Oncol. 2021, 39, 2115–2127. [Google Scholar] [CrossRef] [PubMed]
- Gomes, F.; Lorigan, P.; Woolley, S.; Foden, P.; Burns, K.; Yorke, J.; Blackhall, F. A prospective cohort study on the safety of checkpoint inhibitors in older cancer patients—The ELDERS study. ESMO Open 2021, 6, 100042. [Google Scholar] [CrossRef] [PubMed]
- Ernani, V.; Stinchcombe, T.E. Management of Brain Metastases in Non-Small-Cell Lung Cancer. J. Oncol. Pract. 2019, 15, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, L.E.L.; Henon, C.; Auclin, E.; Mezquita, L.; Ferrara, R.; Audigier-Valette, C.; Mazieres, J.; Lefebvre, C.; Rabeau, A.; Le Moulec, S.; et al. Outcome of Patients with Non-Small Cell Lung Cancer and Brain Metastases Treated with Checkpoint Inhibitors. J. Thorac. Oncol. 2019, 14, 1244–1254. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, S.B.; Gettinger, S.N.; Mahajan, A.; Chiang, A.C.; Herbst, R.S.; Sznol, M.; Tsiouris, A.J.; Cohen, J.; Vortmeyer, A.; Jilaveanu, L.; et al. Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: Early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol. 2016, 17, 976–983. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, S.B.; Schalper, K.A.; Gettinger, S.N.; Mahajan, A.; Herbst, R.S.; Chiang, A.C.; Lilenbaum, R.; Wilson, F.H.; Omay, S.B.; Yu, J.B.; et al. Pembrolizumab for management of patients with NSCLC and brain metastases: Long-term results and biomarker analysis from a non-randomised, open-label, phase 2 trial. Lancet Oncol. 2020, 21, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Crino, L.; Bronte, G.; Bidoli, P.; Cravero, P.; Minenza, E.; Cortesi, E.; Garassino, M.C.; Proto, C.; Cappuzzo, F.; Grossi, F.; et al. Nivolumab and brain metastases in patients with advanced non-squamous non-small cell lung cancer. Lung Cancer 2019, 129, 35–40. [Google Scholar] [CrossRef]
- Gadgeel, S.M.; Lukas, R.V.; Goldschmidt, J.; Conkling, P.; Park, K.; Cortinovis, D.; de Marinis, F.; Rittmeyer, A.; Patel, J.D.; von Pawel, J.; et al. Atezolizumab in patients with advanced non-small cell lung cancer and history of asymptomatic, treated brain metastases: Exploratory analyses of the phase III OAK study. Lung Cancer 2019, 128, 105–112. [Google Scholar] [CrossRef]
- Seymour, L.; Bogaerts, J.; Perrone, A.; Ford, R.; Schwartz, L.H.; Mandrekar, S.; Lin, N.U.; Litière, S.; Dancey, J.; Chen, A.; et al. iRECIST: Guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017, 18, e143–e152. [Google Scholar] [CrossRef] [PubMed]
- Abbar, B.; De Castelbajac, V.; Gougis, P.; Assoun, S.; Pluvy, J.; Tesmoingt, C.; Théou-Anton, N.; Cazes, A.; Namour, C.; Khalil, A.; et al. Definitions, outcomes, and management of hyperprogression in patients with non-small-cell lung cancer treated with immune checkpoint inhibitors. Lung Cancer 2021, 152, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Kazandjian, D.; Keegan, P.; Suzman, D.L.; Pazdur, R.; Blumenthal, G.M. Characterization of outcomes in patients with metastatic non-small cell lung cancer treated with programmed cell death protein 1 inhibitors past RECIST version 1.1-defined disease progression in clinical trials. Semin. Oncol. 2017, 44, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Billan, S.; Kaidar-Person, O.; Gil, Z. Treatment after progression in the era of immunotherapy. Lancet Oncol. 2020, 21, e463–e476. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Gao, Q.; Han, A.; Zhu, H.; Yu, J. The potential mechanism, recognition and clinical significance of tumor pseudoprogression after immunotherapy. Cancer Biol. Med. 2019, 16, 655–670. [Google Scholar] [CrossRef]
- Fujimoto, D.; Yoshioka, H.; Kataoka, Y.; Morimoto, T.; Hata, T.; Kim, Y.H.; Tomii, K.; Ishida, T.; Hirabayashi, M.; Hara, S.; et al. Pseudoprogression in Previously Treated Patients with Non-Small Cell Lung Cancer Who Received Nivolumab Monotherapy. J. Thorac. Oncol. 2019, 14, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Tazdait, M.; Mezquita, L.; Lahmar, J.; Ferrara, R.; Bidault, F.; Ammari, S.; Balleyguier, C.; Planchard, D.; Gazzah, A.; Soria, J.; et al. Patterns of responses in metastatic NSCLC during PD-1 or PDL-1 inhibitor therapy: Comparison of RECIST 1.1, irRECIST and iRECIST criteria. Eur. J. Cancer 2018, 88, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Adashek, J.J.; Subbiah, I.M.; Matos, I.; Garralda, E.; Menta, A.K.; Ganeshan, D.M.; Subbiah, V. Hyperprogression and Immunotherapy: Fact, Fiction, or Alternative Fact? Trends Cancer 2020, 6, 181–191. [Google Scholar] [CrossRef]
- Champiat, S.; Dercle, L.; Ammari, S.; Massard, C.; Hollebecque, A.; Postel-Vinay, S.; Chaput, N.; Eggermont, A.; Marabelle, A.; Soria, J.C.; et al. Hyperprogressive Disease Is a New Pattern of Progression in Cancer Patients Treated by Anti-PD-1/PD-L1. Clin. Cancer Res. 2017, 23, 1920–1928. [Google Scholar] [CrossRef]
- Kato, S.; Goodman, A.; Walavalkar, V.; Barkauskas, D.A.; Sharabi, A.; Kurzrock, R. Hyperprogressors after Immunotherapy: Analysis of Genomic Alterations Associated with Accelerated Growth Rate. Clin. Cancer Res. 2017, 23, 4242–4250. [Google Scholar] [CrossRef]
- Ferrara, R.; Mezquita, L.; Texier, M.; Lahmar, J.; Audigier-Valette, C.; Tessonnier, L.; Mazieres, J.; Zalcman, G.; Brosseau, S.; Le Moulec, S.; et al. Hyperprogressive Disease in Patients with Advanced Non-Small Cell Lung Cancer Treated with PD-1/PD-L1 Inhibitors or with Single-Agent Chemotherapy. JAMA Oncol. 2018, 4, 1543–1552. [Google Scholar] [CrossRef] [PubMed]
- Saada-Bouzid, E.; Defaucheux, C.; Karabajakian, A.; Coloma, V.P.; Servois, V.; Paoletti, X.; Even, C.; Fayette, J.; Guigay, J.; Loirat, D.; et al. Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Ann. Oncol. 2017, 28, 1605–1611. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, C.H.; Lee, H.Y.; Lee, S.-H.; Kim, H.S.; Lee, S.; Cha, H.; Hong, S.; Kim, K.; Seo, S.W.; et al. Comprehensive Clinical and Genetic Characterization of Hyperprogression Based on Volumetry in Advanced Non-Small Cell Lung Cancer Treated with Immune Checkpoint Inhibitor. J. Thorac. Oncol. 2019, 14, 1608–1618. [Google Scholar] [CrossRef]
- Suresh, K.; Voong, K.R.; Shankar, B.; Forde, P.M.; Ettinger, D.S.; Marrone, K.A.; Kelly, R.J.; Hann, C.L.; Levy, B.; Feliciano, J.L.; et al. Pneumonitis in Non-Small Cell Lung Cancer Patients Receiving Immune Checkpoint Immunotherapy: Incidence and Risk Factors. J. Thorac. Oncol. 2018, 13, 1930–1939. [Google Scholar] [CrossRef]
- Hwang, W.L.; Niemierko, A.; Hwang, K.L.; Hubbeling, H.; Schapira, E.; Gainor, J.F.; Keane, F.K. Clinical Outcomes in Patients with Metastatic Lung Cancer Treated with PD-1/PD-L1 Inhibitors and Thoracic Radiotherapy. JAMA Oncol. 2018, 4, 253–255. [Google Scholar] [CrossRef]
- Schneider, B.J.; Naidoo, J.; Santomasso, B.D.; Lacchetti, C.; Adkins, S.; Anadkat, M.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; et al. Management of Immune-Related Adverse Events in Patients Treated with Immune Checkpoint Inhibitor Therapy: ASCO Guideline Update. J. Clin. Oncol. 2021, 39, 4073–4126. [Google Scholar] [CrossRef]
- O’Kane, G.M.; Labbé, C.; Doherty, M.K.; Young, K.; Albaba, H.; Leighl, N.B. Monitoring and Management of Immune-Related Adverse Events Associated with Programmed Cell Death Protein-1 Axis Inhibitors in Lung Cancer. Oncologist 2017, 22, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, J.; Wang, X.; Woo, K.M.; Iyriboz, T.; Halpenny, D.; Cunningham, J.; Chaft, J.E.; Segal, N.H.; Callahan, M.K.; Lesokhin, A.M.; et al. Pneumonitis in Patients Treated with Anti-Programmed Death-1/Programmed Death Ligand 1 Therapy. J. Clin. Oncol. 2017, 35, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, J.; Cottrell, T.R.; Lipson, E.J.; Forde, P.M.; Illei, P.B.; Yarmus, L.B.; Voong, K.R.; Feller-Kopman, D.; Lee, H.; Riemer, J.; et al. Chronic immune checkpoint inhibitor pneumonitis. J. Immunother. Cancer 2020, 8, e000840. [Google Scholar] [CrossRef]
- Hsiehchen, D.; Naqash, A.R.; Espinoza, M.; Von Itzstein, M.S.; Cortellini, A.; Ricciuti, B.; Owen, D.H.; Laharwal, M.; Toi, Y.; Burke, M.; et al. Association between immune-related adverse event timing and treatment outcomes. Oncoimmunology 2022, 11, 2017162. [Google Scholar] [CrossRef]
- Chen, X.; Nie, J.; Dai, L.; Hu, W.; Zhang, J.; Han, J.; Ma, X.; Tian, G.; Han, S.; Wu, D.; et al. Immune-Related Adverse Events and Their Association with the Effectiveness of PD-1/PD-L1 Inhibitors in Non-Small Cell Lung Cancer: A Real-World Study from China. Front. Oncol. 2021, 11, 607531. [Google Scholar] [CrossRef]
- Suresh, K.; Psoter, K.J.; Voong, K.R.; Shankar, B.; Forde, P.M.; Ettinger, D.S.; Marrone, K.A.; Kelly, R.J.; Hann, C.L.; Levy, B.; et al. Impact of Checkpoint Inhibitor Pneumonitis on Survival in NSCLC Patients Receiving Immune Checkpoint Immunotherapy. J. Thorac. Oncol. 2019, 14, 494–502. [Google Scholar] [CrossRef]
- Fukihara, J.; Sakamoto, K.; Koyama, J.; Ito, T.; Iwano, S.; Morise, M.; Ogawa, M.; Kondoh, Y.; Kimura, T.; Hashimoto, N.; et al. Prognostic Impact and Risk Factors of Immune-Related Pneumonitis in Patients with Non-Small-Cell Lung Cancer Who Received Programmed Death 1 Inhibitors. Clin. Lung Cancer 2019, 20, 442–450.e444. [Google Scholar] [CrossRef]
- Daniello, L.; Elshiaty, M.; Bozorgmehr, F.; Kuon, J.; Kazdal, D.; Schindler, H.; Shah, R.; Volckmar, A.-L.; Lusky, F.; Diekmann, L.; et al. Therapeutic and Prognostic Implications of Immune-Related Adverse Events in Advanced Non-Small-Cell Lung Cancer. Front. Oncol. 2021, 11, 703893. [Google Scholar] [CrossRef] [PubMed]
- Koyauchi, T.; Inui, N.; Karayama, M.; Kitahara, Y.; Takuma, S.; Amano, Y.; Yasui, H.; Hozumi, H.; Suzuki, Y.; Furuhashi, K.; et al. Clinical Outcomes of Anti-programmed Death-1 Antibody–Related Pneumonitis in Patients with Non-Small Cell Lung Cancer. SN Compr. Clin. Med. 2020, 2, 570–578. [Google Scholar] [CrossRef]
- Liu, W.; Ma, F.; Sun, B.; Liu, Y.; Tang, H.; Luo, J.; Chen, H.; Luo, Z. Intestinal Microbiome Associated with Immune-Related Adverse Events for Patients Treated with Anti-PD-1 Inhibitors, a Real-World Study. Front. Immunol. 2021, 12, 756872. [Google Scholar] [CrossRef]
- Tonneau, M.; Richard, C.; Nolin-Lapalme, A.; Auclin, E.; Benlaifaoui, M.; Ponce, M.; Al-Saleh, A.; Blais, N.; Florescu, M.; Tehfe, M.; et al. Association between immune-related adverse events and microbiome composition in patients with advanced non–small cell lung cancer treated with immunotherapy. J. Clin. Oncol. 2022, 40, 9036. [Google Scholar] [CrossRef]
- Enfield, K.S.S.; Colliver, E.; Lee, C.S.Y.; Magness, A.; Moore, D.A.; Sivakumar, M.; Grigoriadis, K.; Pich, O.; Karasaki, T.; Hobson, P.S.; et al. Spatial Architecture of Myeloid and T Cells Orchestrates Immune Evasion and Clinical Outcome in Lung Cancer. Cancer Discov. 2024, 14, 1018–1047. [Google Scholar] [CrossRef]
- Ravi, A.; Hellmann, M.D.; Arniella, M.B.; Holton, M.; Freeman, S.S.; Naranbhai, V.; Stewart, C.; Leshchiner, I.; Kim, J.; Akiyama, Y.; et al. Genomic and transcriptomic analysis of checkpoint blockade response in advanced non-small cell lung cancer. Nat. Genet. 2023, 55, 807–819. [Google Scholar]
Study | Treatment (Treatment vs. Control Group) | Indication | Key Findings | Primary Endpoint |
---|---|---|---|---|
CheckMate 017 (NCT01642004) [4] | Nivo vs. Docetaxel. | Advanced SCC NSCLC that had PD during or after first-line chemo. | OS, RR, and PFS were significantly better with nivo than with docetaxel, regardless of PD-L1 expression level. | OS 9.2 vs. 6.0 months with doce. At 1 year, OS rate was 42% with nivo vs. 24% with doce. The RR was 20% with nivo vs. 9% with doce (p = 0.008). The expression of the PD-1 ligand (PD-L1) was neither prognostic nor predictive of benefit. |
CheckMate 057 (NCT01673867) [4] | Nivo vs. Docetaxel. | Advanced Non-SCC NSCLC that had progressed during or after platinum-based doublet chemo. | OS was longer with nivo than with docetaxel. | OS 12.2 months in the nivo group and 9.4 months in the doce group (HR, 0.73; 96% CI, 0.59 to 0.89; p = 0.002). At 1 year, the OS rate was 51% with nivo vs. 39% with doce. With additional follow-up, the OS rate at 18 months was 39% with nivo vs. 23% with doce. The RR was 19% with nivo vs. 12% with doce (p = 0.02). |
Keynote-010 (NCT01905657) [5] | Pembro vs. Docetaxel. | Previously treated, PD-L1-positive, advanced NSCLC. | Pembro prolongs OS and has a favorable benefit-to-risk profile in patients with previously treated, PD-L1-positive, advanced NSCLC. | OS significantly longer for pembro 2 mg/kg vs. doce (p = 0.0008) and for pembro 10 mg/kg vs. doce (p < 0.0001). Median PFS was 3.9 months with pembro 2 mg/kg, 4.0 months with pembro 10 mg/kg, and 4.0 months with doce, with no significant difference for pembro 2 mg/kg vs. doce (p = 0.07) or for pembro 10 mg/kg vs. doce (p = 0.004). In patients with at least 50% expressing PD-L1, OS was significantly longer with pembro 2 mg/kg than with doce (median 14.9 months vs. 8.2 months) and with pembro 10 mg/kg than with doce (17.3 months vs. 8.2 months; p < 0.0001). |
OAK (NCT02008227) [6] | Atezo vs. Docetaxel. | Stage IIIB or IV SCC and non-SCC NSCLC that had received 1–2 previous treatment. | The first randomized phase 3 study that reported results of a PD-L1-targeted therapy, with atezo resulting in a clinically relevant improvement of OS vs. docetaxel in previously treated NSCLSC regardless of PD-L1 expression or histology. | OS significantly longer with atezo in the ITT and PD-L1-expression populations. In the ITT OS was improved with atezo compared with doce (median OS 13.8 months vs. 9.6 months; p = 0.0003). Patients in the PD-L1 low also had improved survival with atezo (median overall survival 12.6 months vs. 8.9 months. OS improvement was similar in patients with SCC in the atezo group or non-SCC. |
Keynote-024 (NCT02142738) [7] | Pembro vs. Chemo (investigator’s choice of platinum-based chemo). | Previously untreated advanced NSCLC with at least 50% of PD-L1 expression and no EGFR or ALK mutation. | Pembro showed superior PFS compared to chemo. | PFS was 10.3 months (6.7 to not reached) in the pembro group vs. 6.0 months in the chemo group. The estimated rate of OS at 6 months was 80.2% in the pembro group vs. 72.4% in the chemo group. |
Keynote-042 (NCT02220894) [7] | Pembro vs. Chemo (investigator’s choice of platinum-based chemo). | Previously untreated, PD-L1-expressing, locally advanced or metastatic NSCLC without EGFR or ALK mutation. | Pembro exhibited improved OS compared to chemo. | OS was significantly longer in the pembro group than in the chemo group. The median survival were 20 months for pembro vs. 12.2 months for chemo. |
IMpower110 (NCT02409342) [8] | Atezo vs. Chemo. | Metastatic non-SCC or SCC NSCLC that had not previously received chemo and that had PD-L1 expression on at least 1%. | Atezo resulted in longer OS than platinum-based chemo in patients with NSCLC with high PD-L1 expression, regardless of histologic type. | OS was longer by 7.1 months in the atezo group than in the chemo group (20.2 months vs. 13.1 months; HR, 0.59; p = 0.01). |
CheckMate 026 (NCT02041533) [9] | Nivo vs. Chemo. | Untreated stage IV or recurrent NSCLC and a PD-L1 expression of 1% or more. | Nivo was not associated with significantly longer PFS than chemo. | PD-L1 expression level of 5% or more, the median PFS was 4.2 months with nivo vs. 5.9 months with chemo (p = 0.25), and the median OS was 14.4 months vs. 13.2 months. |
MYSTIC (NCT02453282) [10] | Durva +/− Tremelimumab vs. Standard Chemo. | First-line treatment of Metastatic NSCLC. | The study did not meet primary end points of improved OS with durva vs. chemo or improved OS or PFS with durva plus tremelimumab vs. chemo in patients with ≥25% of tumor cells expressing PD-L1. | Exploratory analyses identified a bTMB threshold of ≥20 mutations per megabase for optimal OS benefit with durvalumab plus tremelimumab. |
JAVELIN Lung 200 (NCT02395172) [11] | Avelumab vs. docetaxel. | Patients with platinum-treated advanced NSCLC. | No significant difference observed. | In patients with PD-L1-positive tumors, median OS did not differ significantly between avelumab and docetaxel groups (11.4 months [95% CI 9.4–13.9] vs. 10.3 months [8.5–13.0]). |
CheckMate 227 (NCT02477826) [12] | Nivo + Ipi vs. Chemo. | Stage IV or recurrent NSCLC and a PD-L1 expression level of 1%. | First-line treatment with nivo plus ipi resulted in a longer duration of OS than did chemo in patients with NSCLC, independent of the PD-L1 expression level. | Patients PD-L1 expression of 1% or more, the median duration of OS was 17.1 months with nivo plus ipi and 14.9 months with chemo (p = 0.007), with 2-year OS rates of 40.0% and 32.8%, respectively. |
NEPTUNE (NCT02542293) [13] | Durva plus Tremelimumab. | First-line metastatic NSCLC with TMB ≥ 20 mutations/Mb. | The study did not meet the primary endpoint for OS. | OS with durva plus tremelimumab vs. chemo did not reach statistical significance, median OS (11.7 vs. 9.1 months); the HR for PFS was 0.77 (95% confidence interval, 0.51–1.15; median PFS, 4.2 vs. 5.1 months). |
Keynote189 (NCT02578680) [14] | Pembro + Chemo. | Metastatic non-SCC NSCLC, without EFGR or ALK mutations. | The addition of pembro to chemo of pemetrexed and a platinum-based drug resulted in significantly longer OS and PFS than chemo alone. | OS was 69.2% in the pembro-combination group vs. 49.4% in the placebo-combination group (HR, 0.49; 95% CI, 0.38 to 0.64; p < 0.001). Improvement in OS was seen across all PD-L1 categories. Median PFS was 8.8 months in the pembro combination group and 4.9 months in the placebo-combination group. |
IMpower130 (NCT02367781) [15] | Atezo in combination with carboplatin plus nab-paclitaxel chemo compared with chemo alone. | First-line treatment for metastatic non-SCC NSCLC. | Improvement in OS and a significant improvement in PFS with atezo plus chemo vs. chemo as first-line in patients with stage IV and no ALK or EGFR mutations. | Significant improvements in OS (18.6 months [95% CI 16.0–21.2] in the atezo plus chemo group and 13.9 months [12.0–18.7] in the chemo group; [HR] 0.79 [95% CI 0.64–0.98]; p = 0.033) and median PFS (7.0 months [95% CI 6.2–7.3] in the atezo plus chemo group and 5.5 months in the chemo group). |
IMpower131 (NCT02367794) [16] | Atezo in combination with Carboplatin and Nab-Paclitaxel. | Advanced SCC NSCLC. | Adding atezo to platinum-based chemo significantly improved PFS in patients with first-line SCC NSCLC; OS was similar between the arms. | PFS improvement with A + CnP versus CnP was seen in the ITT population (median, 6.3 versus 5.6 mo; hazard ratio [HR] = 0.71, 95% confidence interval [CI]: 0.60–0.85; p = 0.0001). |
IMpower132 (NCT02657434) [17] | Atezo + Chemo carboplatin or cisplatin plus pemetrexed (PP) or APP. | Chemo-naive patients with stage IV non-SCC NSCLC without EGFR or ALK mutations. | The study met co-primary PFM end point but not OS end point. | Significant PFS improvement vs. PP (p < 0.0001). OS for the APP group was numerically better but not statistically significant at the interim (22 May 2018; median = 18.1 versus 13.6 mo.) and final analyses (18 July 2019; median = 17.5 vs. 13.6 mo.) |
IMpower150 (NCT02366143) [18] | Atezo plus carboplatin plus paclitaxel (ACP), beva plus carbo plus paclitaxel (BCP), or atezo plus BCP (ABCP). | Metastatic non-SCC NSCLC with EGFR/ALK mutations. | The addition of atezo to beva plus chemo significantly improved PFS and OS regardless of PD-L1 expression and EGFR or ALK status. | PFS was longer in the ABCP group than in the BCP group (8.3 months vs. 6.8 months); PFS was also longer in the ABCP group than in the BCP group in the entire intention-to-treat population. |
ATTLAS (NCT03991403) [19] | Atezo plus Beva and Chemo (pemetrexed plus carboplatin or cisplatin). | EGFR or ALK-mutated NSCLC after TKI therapy. Metastatic (second line). | Atezo in combination with beva and chemo demonstrated improved RR and PFS, but similar OS. | PFS benefit, ORR were higher for patients treated with ABCP compared with chemo (69.5% versus 41.9%, respectively; p < 0.001). |
Keynote 407 (NCT02775435) [20] | Pembro + platinum-based chemo. | Standard first-line therapy for metastatic, SCC NSCLC. | The addition of pembro to chemo resulted in significantly longer OS and PFS than chemotherapy alone. | Median OS was 15.9 months (95% confidence interval [CI], 13.2 to not reached) in the pembro-combination group and 11.3 months in the placebo-combination group (hazard ratio for death, 0.64; 95% CI, 0.49 to 0.85; p < 0.001). |
CheckMate 9LA (NCT03215706) [21] | Nivo plus ipi combined with two cycles of chemo. | First-line metastatic NSCLC. | Significant improvement in OS vs. chemo alone and had a favorable risk–benefit profile. | OS was significantly longer in the experimental group than in the control group (median 14.1 months [95% CI 13.2–16.2] vs. 10.7 months [9.5–12.4]; hazard ratio [HR] 0.69 [96.71% CI 0.55–0.87]; p = 0.00065). |
POSEIDON (NCT03164616) [22] | Durva +/− Tremelimumab in combination with chemo. | First-line metastatic NSCLC. | D + CT significantly improved PFS versus CT. A limited course of tremelimumab added to durva and chemo significantly improved OS and PFS vs. CT. | PFS improved with D + CT vs. CT (hazard ratio [HR], 0.74; 95% CI, 0.62 to 0.89; p = 0.0009; median, 5.5 vs. 4.8 months); a trend for improved OS did not reach statistical significance PFS, 6.2 vs. 4.8 months and OS 14.0 vs. 11.7 months. |
CheckMate 153 (NCT02066636) [23] | Continuous vs. 1 y fixed-duration Nivolumab. | Previously treated advanced NSCLC. | Continuous treatment with nivo beyond 1 year conferred a significant survival advantage. | Follow-up of 13.5 months, median PFS was longer with continuous vs. 1-year fixed-duration treatment (PFS population: 24.7 months vs. 9.4 months; [HR], 0.56 [95% CI, 0.37 to 0.84]). |
Keynote001 (NCT01295827) [24] | Pembro. | Advanced NSCLC. | Pembro had an acceptable side-effect profile and showed antitumor activity. PD-L1 expression in at least 50% correlated with improved efficacy of pembro. | ORR was 19.4%, and the median duration of response was 12.5 months. The median duration of PFS was 3.7 months, and the median duration of OS was 12.0 months. |
CheckMate 816 (NCT02998528) [25] | Stage IB to IIIA resectable NSCLC to receive nivo plus platinum-based chemo or platinum-based chemo alone, followed by resection. | Neoadjuvant. | Neoadjuvant nivo plus chemo resulted in significantly longer EFS and a higher % of patients with a pCR than chemo alone. The addition of nivo to neoadjuvant chemo did not increase the incidence of AEs or impede the feasibility of surgery. | The median EFS was 31.6 months (95% confidence interval [CI], 30.2 to not reached) with nivo plus chemo and 20.8 months (95% CI, 14.0 to 26.7) with chemo alone (HR for disease progression, disease recurrence, or death, 0.63; 97.38% CI, 0.43 to 0.91; p = 0.005). The % of patients with a pCR was 24.0% (95% CI, 18.0 to 31.0) and 2.2%. (95% CI, 0.6 to 5.6), respectively (odds ratio, 13.94; 99% CI, 3.49 to 55.75; p < 0.001). |
Keynote091/PEARLS (NCT02504372) [26] | Pembro vs. placebo as adjuvant therapy for completely resected stage IB–IIIA NSCLC. | Adjuvant therapy. | Pembro significantly improved DFS compared with placebo and was not associated with new safety signals in completely resected, PD-L1-unselected, stage IB–IIIA NSCLC. | Median DFS was 53.6 months (95% CI 39.2 to not reached) in the pembro group vs. 42.0 months (31.3 to not reached) in the placebo group (HR 0.76 [95% CI 0.63–0.91], p = 0.0014). In the PD-L1 TPS of 50% or greater population, median DFS was not reached in either the pembro group (95% CI 44.3 to not reached) or the placebo group (95% CI 35.8 to not reached; HR 0.82 [95% CI.0·57–1.18]; p = 0.14). |
CheckMate 77T (NCT04025879) [27] | Neoadjuvant nivo plus chemo followed by adjuvant nivo in untreated resectable stage IIA–IIIB. | Perioperative regimen followed by surgery and adjuvant nivo. | Statistically significant and clinically meaningful improvement in EFS compared with neoadjuvant chemo plus placebo followed by surgery and adjuvant placebo in patients with resectable stage IIA to IIIB NSCLC. | Significantly improved median EFS compared with chemo plus adjuvant placebo (not reached vs. 18.4 months; HR 0.58; 97.36% confidence interval [CI] 0.42–0.81; p = 0.00025). |
AEGEAN (NCT03800134) [28] | Neoadjuvant platinum-based chemo plus durva vs. placebo, followed by adjuvant durva or placebo. | Resectable stage II to IIIB NSCLC. | Statistically significant improvement in EFS with addition of durva to neoadjuvant chemo, followed by adjuvant durva. | Significantly improved median EFS compared with chemo plus adjuvant placebo (NR vs. 25.9 months; HR 0.68; 95% confidence interval [CI] 0.53–0.88; p = 0.004). |
KEYNOTE-671 (NCT03425643) [29] | Neoadjuvant platinum-based chemo plus pembro or placebo, followed by adjuvant pembro or placebo. | Resectable stage II to IIIB NSCLC. | Statistically significant improvements in EFS and OS with neoadjuvant chemo plus pembro then adjuvant pembro | Significant improvements in median EFS (NR vs. 17 months; HR 0.58; 95% CI, 0.46–0.72) and median OS (NR vs. 52.4 months; HR 0.72; 95% CI, 0.56–0.93, p = 0.00517). |
Neotorch (NCT04158440) [30] | Neoadjuvant platinum-based chemo plus toripalimab or placebo, followed by adjuvant toripalimab or placebo. | Resectable stage II or III NSCLC without EGFR or ALK alterations. | Statistically significant improvement in EFS with neoadjuvant chemo plus toripalimab then adjuvant toripalamab. | Significant improvements in median EFS (NR vs. 15.1 months; HR 0.4, 95% CI, 10.6–21.9; p < 0.001). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capella, M.P.; Pang, S.A.; Magalhaes, M.A.; Esfahani, K. A Review of Immunotherapy in Non-Small-Cell Lung Cancer. Curr. Oncol. 2024, 31, 3495-3512. https://doi.org/10.3390/curroncol31060258
Capella MP, Pang SA, Magalhaes MA, Esfahani K. A Review of Immunotherapy in Non-Small-Cell Lung Cancer. Current Oncology. 2024; 31(6):3495-3512. https://doi.org/10.3390/curroncol31060258
Chicago/Turabian StyleCapella, Mariana Pilon, Steph A. Pang, Marcos A. Magalhaes, and Khashayar Esfahani. 2024. "A Review of Immunotherapy in Non-Small-Cell Lung Cancer" Current Oncology 31, no. 6: 3495-3512. https://doi.org/10.3390/curroncol31060258
APA StyleCapella, M. P., Pang, S. A., Magalhaes, M. A., & Esfahani, K. (2024). A Review of Immunotherapy in Non-Small-Cell Lung Cancer. Current Oncology, 31(6), 3495-3512. https://doi.org/10.3390/curroncol31060258