Recent Advances in the Extraction of Pittosporum angustifolium Lodd. Used in Traditional Aboriginal Medicine: A Mini Review
Abstract
:1. Introduction
2. Extraction of Bioactive Compounds from the Plant Matrices of P. angustifolium
2.1. Soxhlet Extractive Method
2.2. Hydrodistillation
2.3. Solvent Extraction (Methanol, Water, Ethyl Acetate, Chloroform, Hexane, Dichloromethane)
2.4. Extractive Fermentation
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Andrew, R.; Izzo, A.A. Principles of pharmacological research of nutraceuticals. Br. J. Pharmacol. 2017, 174, 1177–1194. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ozdal, T.; Tomas, M.; Toydemir, G.; Kamiloglu, S.; Capanoglu, E. Chapter 1-Introduction to nutraceuticals, medicinal foods, and herbs. In Aromatic Herbs in Food; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 1–34. [Google Scholar]
- Santini, A.; Tenore, G.C.; Novellino, E. Nutraceuticals: A paradigm of proactive medicine. Eur. J. Pharm. Sci. 2017, 96, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Espín, J.C.; García-Conesa, M.T.; Tomás-Barberán, F.A. Nutraceuticals: Facts and fiction. Phytochemistry 2007, 68, 2986–3008. [Google Scholar] [CrossRef]
- Cayzer, L.W.; Crisp, M.D.; Telford, I.R.H. Revision of Pittosporum (Pittosporaceae) in Australia. Aust. Syst. Bot. 2000, 13, 845–902. [Google Scholar] [CrossRef]
- Sadgrove, N.; Jones, G.L. Phytochemical variability of Pittosporum angustifolium Lodd.(Pittosporaceae): A traditional and contemporary Aboriginal Australian medicine. In XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014): V World 1125; International Society for Horticultural Science (ISHS): Leuven, Belgium, 2014; pp. 303–308. [Google Scholar]
- Phan, A.D.T.; Chaliha, M.; Hong, H.T.; Tinggi, U.; Netzel, M.E.; Sultanbawa, Y. Nutritional Value and Antimicrobial Activity of Pittosporum angustifolium (Gumby Gumby), an Australian Indigenous Plant. Foods 2020, 9, 887. [Google Scholar] [CrossRef]
- Mani, J.S.; Johnson, J.B.; Hosking, H.; Ashwath, N.; Walsh, K.B.; Neilsen, P.M.; Broszczak, D.A.; Naiker, M. Antioxidative and therapeutic potential of selected Australian plants: A review. J. Ethnopharmacol. 2021, 268, 113580. [Google Scholar] [CrossRef]
- Bäcker, C.; Drwal, M.N.; Preissner, R.; Lindequist, U. Inhibition of DNA–Topoisomerase I by Acylated Triterpene Saponins from Pittosporum angustifolium Lodd. Nat. Prod. Bioprospecting 2016, 6, 141–147. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Vesoul, J.; Cock, I.E. An Examination of the Medicinal Potential of Pittosporum phylliraeoides: Toxicity, Antibacterial and Antifungal Activities. Pharmacogn. Commun. 2011, 1, 8–17. [Google Scholar] [CrossRef][Green Version]
- Bäcker, C.; Jenett-Siems, K.; Bodtke, A.; Lindequist, U. Polyphenolic compounds from the leaves of Pittosporum angustifolium. Biochem. Syst. Ecol. 2014, 55, 101–103. [Google Scholar] [CrossRef]
- Agatonovic-Kustrin, S.; Gegechkori, V.; Morton, D.W. The effect of extractive lacto-fermentation on the bioactivity and natural products content of Pittosporum angustifolium (gumbi gumbi) extracts. J. Chromatography. A 2021, 1647, 462153. [Google Scholar] [CrossRef]
- Errington, S.G.; Jefferies, P.R. Triterpenoid sapogenins of Pittosporum phillyraeoides. Phytochemistry 1988, 27, 543–545. [Google Scholar] [CrossRef]
- Bäcker, C.; Jenett-Siems, K.; Siems, K.; Wurster, M.; Bodtke, A.; Niedermeyer, T.H.; Lindequist, U. New Mono-and Bisdesmosidic Triterpene Glycosides from Pittosporum angustifolium Lodd. Z. Für Nat. B 2014, 69, 1026–1044. [Google Scholar] [CrossRef]
- Sadgrove, N.J.; Jones, G.L. Chemical and biological characterisation of solvent extracts and essential oils from leaves and fruit of two Australian species of Pittosporum (Pittosporaceae) used in aboriginal medicinal practice. J. Ethnopharmacol. 2013, 145, 813–821. [Google Scholar] [CrossRef]
- Seo, Y.; Berger, J.M.; Hoch, J.; Neddermann, K.M.; Bursuker, I.; Mamber, S.W.; Kingston, D.G. A new triterpene saponin from Pittosporum viridiflorum from the Madagascar rainforest. J. Nat. Prod. 2002, 65, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Koduru, S.; Grierson, D.S.; Afolayan, A.J. Ethnobotanical information of medicinal plants used for treatment of cancer in the Eastern Cape Province, South Africa. Curr. Sci. 2007, 92, 906–908. [Google Scholar]
- Eparvier, V.; Thoison, O.; Bousserouel, H.; Guéritte, F.; Sévenet, T.; Litaudon, M. Cytotoxic farnesyl glycosides from Pittosporum pancheri. Phytochemistry 2007, 68, 604–608. [Google Scholar] [CrossRef] [PubMed]
- D’Acquarica, I.; Di Giovanni, M.C.; Gasparrini, F.; Misiti, D.; D’Arrigo, C.; Fagnano, N.; Guarnieri, D.; Iacono, G.; Bifulco, G.; Riccio, R. Isolation and structure elucidation of four new triterpenoid estersaponins from fruits of Pittosporum tobira ait. Tetrahedron 2002, 58, 10127–10136. [Google Scholar] [CrossRef]
- Taniguchi, S.; Imayoshi, Y.; Kobayashi, E.; Takamatsu, Y.; Ito, H.; Hatano, T.; Sakagami, H.; Tokuda, H.; Nishino, H.; Sugita, D. Production of bioactive triterpenes by Eriobotrya japonica calli. Phytochemistry 2002, 59, 315–323. [Google Scholar] [CrossRef]
- Lindquist, U. Biological and chemical analysis of Pittosporum phillyraeoides. Ph.D Thesis, University of Greifswald, Greifswald, Germany, 2007. [Google Scholar]
- Lassak, E.V. Australian Medicinal Plants; Lassak, E.V., McCarthy, T., Eds.; Methuen Australia: Sydney, Australia, 1983. [Google Scholar]
- Bäcker, C.; Jenett-Siems, K.; Siems, K.; Wurster, M.; Bodtke, A.; Chamseddin, C.; Crüsemann, M.; Lindequist, U. Triterpene Glycosides from the Leaves of Pittosporum angustifolium. Planta Med. 2013, 79, 1461–1469. [Google Scholar] [CrossRef][Green Version]
- Bäcker, C.; Jenett-Siems, K.; Siems, K.; Wurster, M.; Bodtke, A.; Lindequist, U. Cytotoxic saponins from the seeds of Pittosporum angustifolium. Z. Für Nat. C 2014, 69, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Blonk, B.; Cock, I.E. Interactive antimicrobial and toxicity profiles of Pittosporum angustifolium Lodd. extracts with conventional antimicrobials. J. Integr. Med. 2019, 17, 261–272. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, S.; Ownby, S.; Wang, P.; Yuan, W.; Zhang, W.; Scott Beasley, R. Phenolic compounds and rare polyhydroxylated triterpenoid saponins from Eryngium yuccifolium. Phytochemistry 2008, 69, 2070–2080. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Ownby, S.; Zhang, Z.; Yuan, W.; Li, S. Cytotoxicity and inhibition of DNA topoisomerase I of polyhydroxylated triterpenoids and triterpenoid glycosides. Bioorganic Med. Chem. Lett. 2010, 20, 2790–2796. [Google Scholar] [CrossRef]
- Ghasemi, E.; Raofie, F.; Najafi, N.M. Application of response surface methodology and central composite design for the optimisation of supercritical fluid extraction of essential oils from Myrtus communis L. leaves. Food Chem. 2011, 126, 1449–1453. [Google Scholar] [CrossRef]
- Conde-Hernández, L.A.; Espinosa-Victoria, J.R.; Trejo, A.; Guerrero-Beltrán, J.Á. CO2-supercritical extraction, hydrodistillation and steam distillation of essential oil of rosemary (Rosmarinus officinalis). J. Food Eng. 2017, 200, 81–86. [Google Scholar] [CrossRef]
- Hussain, A.; Bose, S.; Wang, J.H.; Yadav, M.K.; Mahajan, G.B.; Kim, H. Fermentation, a feasible strategy for enhancing bioactivity of herbal medicines. Food Res. Int. 2016, 81, 1–16. [Google Scholar] [CrossRef]
Bioactive Compounds | Part of Plant | Reference |
---|---|---|
Phenolic acids | Leaves | [11] |
Alkaloids | Leaves | [10] |
Phytosterols | Leaves | [12] |
Triterpenoid saponins | Leaves and seeds | [13,14,15,16] |
Tannins | Leaves and fruits | [15] |
Flavonoids | Leaves and fruits | [15] |
Essential oils | Leaves and fruits | [7,15] |
Extraction Type | Plant Part | Solvent Used | Duration | Temperature | Extracts | Ref |
---|---|---|---|---|---|---|
Soxhlet | Leaves | Ethanol (80% v/v) (dichloromethane was used to defat plant material) | 10 h | Room temperature | 8 pittangretosides-barrigenol glycosides; 5 polyphenolic compounds (quercetin glycosides rutin, isoquercitrin, 600-(3-hydroxy-3-methylglutaroyl)-isoquercitrin (as well as 3,4-), and 4,5-dicaffeoylquinic acid) | [11,23] |
Soxhlet | Leaves | Ethanol (80% v/v) (dichloromethane was used to defat plant material) | 24 h | Room temperature | 10 triterpene saponins (9 novel compounds named pittangretosides A-I and a known glycoside (22α-angeloyloxy-3β-[β-d-glucopyranosyl-(1→2)]-[α-l-arabinopyranosyl-(1→3)]-β-d-glucoronopyranosyloxyolean-12-ene-15α,16α,28-triol)) | [14] |
Soxhlet | Seeds | Ethanol (80% v/v) | Not reported | Room temperature | 7 acrylated triterpene glycosides: 3 novel compounds (1–3): pittangretosides N-P, i.e., 21β-acetoxy-22α-angeloyloxy-(1), 21β-acetoxy-22α-(2-acetoxy-2-methylbutyroyloxy)-(2), and 21β-(2-methylbutyroyloxy)-22α-acetoxy-3β-[β-d-glucopyranosyl-(1→2)]-[α-l-arabinopyranosyl-(1→3)]-[α-l-arabinofuranosyl-(1→4)]-β-d-glucuronopyranosyloxyolean-12-ene-15α,16α,28-triol) (3)); 4 known compounds (4–7): 21β- angeloyloxy-22α-acetoxy-3β-[β-d-glucopyranosyl-(1→2)]-[α-l-arabinopyranosyl-(1→3)]-[α-l-arabinofuranosyl-(1→4)]-β-d-glucuronopyranosyloxyolean-12-ene-15α,16α,28-triol (4), 22α-(2-methylbutyroyloxy)-3β-[β-d-glucopyranosyl-(1→2)]-[α-l-arabinopyranosyl-(1→3)]-[α-l-arabinofuranosyl-(1→4)]-β-d-glucuronopyranosyloxyolean-12-ene-15α,16α,28-triol (5), 22α -angeloyloxy-3β-[β-d-glucopyranosyl-(1→2)]-[α-l-arabinopyranosyl-(1→3)]-[α-l-arabinofuranosyl-(1→4)]-β-d-glucuronopyranosyloxyolean-12-ene-15α,16α,28-triol (6), and 21β-angeloyloxy-22α-angeloyloxy-3β-[β-d-glucopyranosyl-(1→2)]-[α-l-arabinopyranosyl-(1→3)]-[α-l-arabinofuranosyl-(1→4)]-β-d-glucuronopyranosyloxyolean-12-ene-15α,16α,28-triol (7) | [24] |
Hydrodistillation | Leaves, Fruits | Water | 3–4 h | 100 °C | Essential oil: α-Pinene, β-Pinene, p-Cymene, Limonene, Undecane, Dodecane, Fenchyl acetate, Cycloundecane, 5-Tetradecene,(trans)-, Bornyl acetate, Tridecane, α-Terpinyl acetate, β-Cubebene, Bourbenone, Cyclotridecane, Dodecanal, Acetic acid-decylester, α-Gurjenene, Caryophyllene, α-Guaiene, α-Humulene, Alloaromadendrene, (trans)-b-Farnesene, Alloaromadendrene, α-Muurolene, 1-Dodecanol, Cyclopentadecane, β-Ionone, α-Selinene, Eremophilene, Bicyclogermacrene, α-Bulnesene, α-Cadinene, γ-Cadinene, δ-Cadinene, α-Calacorene, trans-Nerolidol, Spathulenol, Globulol, Ledol, Cyclotetradecane, Tetradecanal, cis-2-Tridecenol, α-Cadinol, Cadalene, cis-9-Hexadecenal, cis-11-Hexadecenal, Hexadecanal, 1,15-Hexadecadiene, 1-Hexadecanol, and Octacosane | [15] |
Solvent | Leaves, Fruits | Dichloromethane, methanol, hexane, water | 30 h | Room temperature | Essential oil: α-Pinene, β-Pinene, p-Cymene, Limonene, Undecane, Dodecane, Fenchyl acetate, Cycloundecane, 5-Tetradecene,(trans)-, Bornyl acetate, Tridecane, α-Terpinyl acetate, β-Cubebene, Bourbenone, Cyclotridecane, Dodecanal, Acetic acid-decylester, α-Gurjenene, Caryophyllene, α-Guaiene, α-Humulene, Alloaromadendrene, (trans)-b-Farnesene, Alloaromadendrene, α-Muurolene, 1-Dodecanol, Cyclopentadecane, β-Ionone, α-Selinene, Eremophilene, Bicyclogermacrene, α-Bulnesene, α-Cadinene, γ-Cadinene, δ-Cadinene, α-Calacorene, trans-Nerolidol, Spathulenol, Globulol, Ledol, Cyclotetradecane, Tetradecanal, cis-2-Tridecenol, α-Cadinol, Cadalene, cis-9-Hexadecenal, cis-11-Hexadecenal, Hexadecanal, 1,15-Hexadecadiene, 1-Hexadecanol, and Octacosane | [15] |
Solvent | Leaves | Methanol, water ethyl acetate, chloroform, hexane | 24 h | 4 °C | Total phenolics, phenols (water-soluble and insoluble), cardiac glycosides, saponins, triterpenes, phytosteroids, alkaloids, flavonoids, tannins, anthraquinones | [10] |
Solvent | Leaves | Water, methanol, chloroform, hexane, ethyl acetate | 24 h | 4 °C | Alkaloids, cardiac glycosides, flavonoids, phenolic compounds, phytosterols, saponins, tannins, triterpenoids | [25] |
Solvent | Leaves | Methanol, ethyl acetate, hexane | 15 min | Room temperature | Phytosterols, triterpene, lignans/diterpenes, steroids and terpene esters, allylic alcohols and sugars, polyphenolics, saturated fatty acid esters | [12] |
Extractive fermentation | Leaves | Sodium chloride (fermentation) Ethyl acetate (extraction) | 1–4 weeks (fermentation) Not stated (extraction) | Room temperature | Lignin oligomers, phytosterols, triterpene, lignans/diterpenes, steroids and terpene esters, allylic alcohols and sugars, polyphenolics, unsaturated fatty acid esters | [12] |
Phytochemicals | Solvent Extraction | |||||
---|---|---|---|---|---|---|
Hexane | Methanol | Water | Ethyl Acetate | Chloroform | Dichloromethane | |
Total Phenolics | - | ✓ | ✓ | - | - | ✓ |
Water-soluble phenols | - | ✓ | ✓ | - | - | - |
Water-insoluble phenols | - | ✓ | ✓ | - | - | ✓ |
Cardiac glycosides | - | - | - | - | - | - |
Saponins | - | ✓ | ✓ | ✓ | - | - |
Triterpenes | - | ✓ | ✓ | - | - | ✓ |
Phytosteroids | - | - | - | - | - | - |
Alkaloids | - | - | - | - | - | - |
Flavonoids | - | ✓ | ✓ | ✓ | ✓ | ✓ |
Tannins | - | - | ✓ | - | - | - |
Anthraquinones | - | - | - | - | - | - |
Inhibition of Bacteria | Solvent Extraction | |||||
---|---|---|---|---|---|---|
Hexane | Methanol | Water | Ethyl Acetate | Chloroform | Dichloromethane | |
Alcaligenes faecalis | - | - | - | - | - | NT |
Aeromonas hydrophila | - | - | - | ✓ | - | NT |
Citrobacter freundii | - | - | - | - | - | NT |
Escherichia coli | - | ✓ | - | - | ✓ | NT |
Klebsiella pneumoniae | ✓ | ✓ | ✓ | ✓ | ✓ | NT |
Proteus mirabilis | ✓ | ✓ | ✓ | ✓ | ✓ | NT |
Proteus vulgaris | - | ✓ | ✓ | ✓ | ✓ | NT |
Pseudomonas fluorescens | - | - | - | - | - | NT |
Salmonella newport | - | - | - | - | - | NT |
Serratia marcescens | ✓ | ✓ | ✓ | ✓ | ✓ | NT |
Shigella sonnei | - | - | - | - | ✓ | NT |
Bacillus cereus | - | - | - | - | - | NT |
Staphylococcus aureus | ✓ | - | - | - | - | ✓ |
Staphylococcus epidermidis | - | - | - | - | - | ✓ |
Streptococcus pyogenes | - | ✓ | ✓ | - | ✓ | NT |
Aspergillus niger | - | ✓ | - | - | - | NT |
Candida albicans | - | - | - | - | - | ✓ |
Bacillus subtilis | NT | NT | NT | NT | NT | ✓ |
Salmonella typhimurium | NT | NT | NT | NT | NT | ✓ |
Acinetobacter baylyi | ✓ | ✓ | ✓ | ✓ | ✓ | NT |
Pseudomonas aeruginosa | ✓ | ✓ | ✓ | ✓ | ✓ | NT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beh, C.C.; Teoh, W.H. Recent Advances in the Extraction of Pittosporum angustifolium Lodd. Used in Traditional Aboriginal Medicine: A Mini Review. Nutraceuticals 2022, 2, 49-59. https://doi.org/10.3390/nutraceuticals2020004
Beh CC, Teoh WH. Recent Advances in the Extraction of Pittosporum angustifolium Lodd. Used in Traditional Aboriginal Medicine: A Mini Review. Nutraceuticals. 2022; 2(2):49-59. https://doi.org/10.3390/nutraceuticals2020004
Chicago/Turabian StyleBeh, Chau Chun, and Wen Hui Teoh. 2022. "Recent Advances in the Extraction of Pittosporum angustifolium Lodd. Used in Traditional Aboriginal Medicine: A Mini Review" Nutraceuticals 2, no. 2: 49-59. https://doi.org/10.3390/nutraceuticals2020004