Ambient and Bedroom Heat in Relation to Sleep Health in a Marginalized Community That Is One of the Hottest in Los Angeles
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Participant Recruitment and Study Design
2.3. Sleep Outcome Measures
2.4. Environmental Measurements
2.5. Exposure Definition
2.6. Statistical Analysis
3. Results
3.1. Participant Characteristics and Sleep Metrics
3.2. Temperature
3.3. Regression Models
3.4. Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Colten, H.R.; Altevogt, B.M.; Institute of Medicine (U.S.) (Eds.) Sleep Disorders and Sleep Deprivation: An Unmet Public Health Problem; Institute of Medicine: Washington, DC, USA; National Academies Press: Washington, DC, USA, 2006; 404p. [Google Scholar]
- He, C.; Kim, H.; Hashizume, M.; Lee, W.; Honda, Y.; Kim, S.E.; Kinney, P.L.; Schneider, A.; Zhang, Y.; Zhu, Y.; et al. The effects of night-time warming on mortality burden under future climate change scenarios: A modelling study. Lancet Planet. Health 2022, 6, e648–e657. [Google Scholar] [CrossRef]
- Chen, X.; Wang, R.; Zee, P.; Lutsey, P.L.; Javaheri, S.; Alcántara, C.; Jackson, C.L.; Williams, M.A.; Redline, S. Racial/Ethnic Differences in Sleep Disturbances: The Multi-Ethnic Study of Atherosclerosis (MESA). Sleep 2015, 38, 877–888. [Google Scholar] [CrossRef]
- Caraballo, C.; Mahajan, S.; Valero-Elizondo, J.; Massey, D.; Lu, Y.; Roy, B.; Riley, C.; Annapureddy, A.R.; Murugiah, K.; Elumn, J.; et al. Evaluation of Temporal Trends in Racial and Ethnic Disparities in Sleep Duration Among US Adults, 2004–2018. JAMA Netw. Open 2022, 5, e226385. [Google Scholar] [CrossRef]
- Jackson, C.L.; Walker, J.R.; Brown, M.K.; Das, R.; Jones, N.L. A workshop report on the causes and consequences of sleep health disparities. Sleep 2020, 43, zsaa037. [Google Scholar] [CrossRef]
- Curtis, D.S.; Fuller-Rowell, T.E.; El-Sheikh, M.; Carnethon, M.R.; Ryff, C.D. Habitual sleep as a contributor to racial differences in cardiometabolic risk. Proc. Natl. Acad. Sci. USA 2017, 114, 8889–8894. [Google Scholar] [CrossRef] [PubMed]
- Bragazzi, N.L.; Garbarino, S.; Puce, L.; Trompetto, C.; Marinelli, L.; Currà, A.; Jahrami, H.; Trabelsi, K.; Mellado, B.; Asgary, A.; et al. Planetary sleep medicine: Studying sleep at the individual, population, and planetary level. Front. Public Health 2022, 10, 1005100. [Google Scholar] [CrossRef]
- Chevance, G.; Minor, K.; Vielma, C.; Campi, E.; O’Callaghan-Gordo, C.; Basagaña, X.; Ballester, J.; Bernard, P. A systematic review of ambient heat and sleep in a warming climate. Sleep Med. Rev. 2024, 75, 101915. [Google Scholar] [CrossRef] [PubMed]
- Obradovich, N.; Migliorini, R.; Mednick, S.C.; Fowler, J.H. Nighttime temperature and human sleep loss in a changing climate. Sci. Adv. 2017, 3, e1601555. [Google Scholar] [CrossRef]
- U.S. Federal Government. U.S. Climate Resilience Toolkit Climate Explorer. 2023. Available online: https://crt-climate-explorer.nemac.org/ (accessed on 11 October 2024).
- Roncoroni, J.; Okun, M.; Hudson, A. Systematic review: Sleep health in the US Latinx population. Sleep 2022, 45, zsac092. [Google Scholar] [CrossRef] [PubMed]
- Dialesandro, J.; Brazil, N.; Wheeler, S.; Abunnasr, Y. Dimensions of Thermal Inequity: Neighborhood Social Demographics and Urban Heat in the Southwestern U.S. Int. J. Environ. Res. Public. Health 2021, 18, 941. [Google Scholar] [CrossRef]
- Nelson, R.K.; LaDale, W.; Madron, J.; Champine, R.; Ayers, N.; Evans, A.; Tobais, R.; Cogan, C.; Kimball, J. Mapping Inequality: Redlining in New Deal America. American Panorama: An Atlas of the United States History. 2023. Available online: https://dsl.richmond.edu/panorama/redlining (accessed on 6 February 2025).
- Swope, C.B.; Hernández, D.; Cushing, L.J. The Relationship of Historical Redlining with Present-Day Neighborhood Environmental and Health Outcomes: A Scoping Review and Conceptual Model. J. Urban Health 2022, 99, 959–983. [Google Scholar] [CrossRef]
- Yin, Y.; He, L.; Wennberg, P.O.; Frankenberg, C. Unequal exposure to heatwaves in Los Angeles: Impact of uneven green spaces. Sci. Adv. 2023, 9, eade8501. [Google Scholar] [CrossRef] [PubMed]
- Turner, K.V.; Middel, A.; Rogers, M.; Engel, R.; Schneider, F.A.; Van Tol, Z. Site Design and Human Heat Burden in Pacoima, California. UCLA Luskin Center for Innovation. April 2023. Available online: https://innovation.luskin.ucla.edu/wp-content/uploads/2023/05/luskin-pacoima-extreme-heat-report.pdf (accessed on 2 July 2024).
- Office of Environmental Health Hazard Assessment (OEHHA). CalEnviroScreen. 2022. Available online: https://oehha.ca.gov/calenviroscreen/report/calenviroscreen-40 (accessed on 3 July 2024).
- Lecca, R.; Puligheddu, M.; Acar, G.M.; Figorilli, M.; Congiu, P.; Gioi, G.; Loscerbo, R.; Meloni, F.; De Matteis, S.; Cocco, P. Shift rotation scheme, sleepiness and sleep quality in night-shift workers. Occup. Med. 2021, 71, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Sadeh, A. The role and validity of actigraphy in sleep medicine: An update. Sleep Med. Rev. 2011, 15, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Kalkstein, L.S.; Valimont, K.M. An Evaluation of Summer Discomfort in the United State Using a Relative Climatological Index. Bull. Am. Meteorol. Soc. 1986, 67, 842–848. [Google Scholar] [CrossRef]
- National Centers for Environmental Information (NCEI). Local Climatological Data Station. 2024. Available online: https://www.ncei.noaa.gov/cdo-web/datasets/LCD/stations/WBAN:23130/detail (accessed on 20 February 2024).
- Ilango, S.D.; Weaver, M.; Sheridan, P.; Schwarz, L.; Clemesha, R.E.S.; Bruckner, T.; Basu, R.; Gershunov, A.; Benmarhnia, T. Extreme heat episodes and risk of preterm birth in California, 2005–2013. Environ. Int. 2020, 137, 105541. [Google Scholar] [CrossRef]
- Hlynsson, J.I.; Carlbring, P. Diagnostic accuracy and clinical utility of the PHQ-2 and GAD-2: A comparison with long-format measures for depression and anxiety. Front. Psychol. 2024, 15, 1259997. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inf. 2009, 42, 377–381. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Minor, B.L.; Elliott, V.; Fernandez, M.; O’Neal, L.; McLeod, L.; Delacqua, G.; Delacqua, F.; Kirby, J.; et al. The REDCap consortium: Building an international community of software partners. J Biomed. Inf. 2019, 95, 103208. [Google Scholar] [CrossRef]
- Baniassadi, A.; Manor, B.; Yu, W.; Travison, T.; Lipsitz, L. Nighttime ambient temperature and sleep in community-dwelling older adults. Sci. Total Environ. 2023, 899, 165623. [Google Scholar] [CrossRef]
- The California Department of Housing and Community Development. Policy Recommendations: Recommended Maximum Safe Indoor Air Temperature. 2025. Available online: https://www.hcd.ca.gov/plans-and-reports/ab-209-2022 (accessed on 6 February 2025).
- Jackson, C.L.; Gaston, S.A. The impact of environmental exposures on sleep. In Sleep and Health; Elsevier: London, UK, 2019; pp. 85–103. Available online: https://linkinghub.elsevier.com/retrieve/pii/B9780128153734000083 (accessed on 3 July 2024).
- Williams, A.A.; Spengler, J.D.; Catalano, P.; Allen, J.G.; Cedeno-Laurent, J.G. Building Vulnerability in a Changing Climate: Indoor Temperature Exposures and Health Outcomes in Older Adults Living in Public Housing during an Extreme Heat Event in Cambridge, MA. Int. J. Env. Res. Public Health 2019, 16, 2373. [Google Scholar] [CrossRef]
- Stein, P.K.; Pu, Y. Heart rate variability, sleep and sleep disorders. Sleep Med. Rev. 2012, 16, 47–66. [Google Scholar] [CrossRef]
- Tamrazian, A.; LaDochy, S.; Willis, J.; Patzert, W.C. Heat Waves in Southern California: Are They Becoming More Frequent and Longer Lasting? Yearb. Assoc. Pac. Coast Geogr. 2008, 70, 59–69. [Google Scholar] [CrossRef]
- Yan, B.; Zhao, B.; Jin, X.; Xi, W.; Yang, J.; Yang, L.; Ma, X. Sleep Efficiency May Predict Depression in a Large Population-Based Study. Front. Psychiatry 2022, 13, 838907. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Zhao, B.; Fan, Y.; Yang, J.; Zhu, F.; Chen, Y.; Ma, X. The association between sleep efficiency and diabetes mellitus in community-dwelling individuals with or without sleep-disordered breathing. J. Diabetes 2020, 12, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.Y.; Ai, S.; Xue, H.; Chen, Y.; Zhou, J.; Shu, X.; Weng, F.; Zhou, M.; Ma, H.; Zhang, J.; et al. Joint Associations of Device-Measured Sleep Duration and Efficiency With All-Cause and Cause-Specific Mortality: A Prospective Cohort Study of 90 398 UK Biobank Participants. J. Gerontol. Ser. A 2023, 78, 1717–1724. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, G.; Hou, N.; Chen, M.; Yang, K.; Wen, K.; Lan, Y.; Li, W. Effects and differences of sleep duration on the risk of new-onset chronic disease conditions in middle-aged and elderly populations. Eur. J. Intern. Med. 2023, 107, 73–80. [Google Scholar] [CrossRef]
- Fujimura, Y.; Sekine, M.; Yamada, M. Short-term and long-term associations with sleep onset latency in school children in Japan. Pediatr. Int. 2022, 64, e15161. [Google Scholar] [CrossRef]
- Velasco-Mondragon, E.; Jimenez, A.; Palladino-Davis, A.G.; Davis, D.; Escamilla-Cejudo, J.A. Hispanic health in the USA: A scoping review of the literature. Public Health Rev. 2016, 37, 31. [Google Scholar] [CrossRef]
- Cespedes, E.M.; Dudley, K.A.; Sotres-Alvarez, D.; Zee, P.C.; Daviglus, M.L.; Shah, N.A.; Talavera, G.A.; Gallo, L.C.; Mattei, J.; Qi, Q.; et al. Joint associations of insomnia and sleep duration with prevalent diabetes: The Hispanic Community Health Study/Study of Latinos (HCHS/SOL). J. Diabetes 2016, 8, 387–397. [Google Scholar] [CrossRef]
Study Population Characteristics | N (%) |
---|---|
Age in Years N(%) | |
18–24 | 2 (11%) |
25–34 | 6 (32%) |
35–44 | 3 (16%) |
45–55 | 6 (32%) |
55+ | 2 (11%) |
Sex, N(%) | |
Female | 17 (89%) |
Male | 2 (11%) |
Educational Attainment, N(%) | |
Less than high school | 4 (21%) |
High school or some college | 7 (37%) |
College degree | 6 (32%) |
Graduate degree | 2 (11%) |
Annual Household Income, N(%) | |
Less than USD 10,000 | 5 (26%) |
USD 10,000–USD 50,000 | 8 (42%) |
More than USD 50,000 | 5 (26%) |
Missing | 1 (5%) |
Ethnicity, N(%) | |
Mexican | 14 (74%) |
Central or South American | 4 (21%) |
Filipino/a | 1 (5%) |
Mental Health Challenges, N(%) | |
Yes | 6 (32%) |
No | 13 (68%) |
Chronic Illness, N(%) | |
Yes | 6 (32%) |
No | 13 (68%) |
Housing Type, N(%) | |
Single-family | 8 (42%) |
Multi-family | 4 (21%) |
Accessory dwelling unit | 6 (32%) |
Mobile home | 1 (5%) |
Bedroom Floor, N(%) | |
First | 15 (79%) |
Second | 4 (21%) |
Bedroom Air Conditioning, N(%) | |
Yes | 13 (68%) |
No | 6 (32%) |
Sleep efficiency (%), mean ± SD (range) | 83 ± 9 (39–100) |
Total sleep time (hours), mean ± SD (range) | 6.7 ± 1.5 (3.4–13.6) |
WASO (minutes), mean ± SD (range) | 42 ± 25 (0–188) |
Onset latency (minutes), mean ± SD (range) | 19 ± 24 (0–160) |
Self-Reported Sleep Quality, N(%) nights | |
Very good | 51 (13%) |
Good | 139 (34%) |
Fair | 148 (36%) |
Poor | 41 (10%) |
Very poor | 0 |
Missing | 30 (7%) |
Mean Nighttime Apparent Temperature (°C) | Mean (Range) | |
Indoor | 26 (20–35) | |
Outdoor | 22 (14–27) | |
Indoor–outdoor difference | 5 (−5–12) | |
Mean Nighttime Dry Bulb Temperature (°C) | Mean (Range) | |
Indoor | 27 (22–35) | |
Outdoor | 21 (15–28) | |
Indoor–outdoor difference | 5 (−5–13) | |
Mean Daytime Apparent Bulb Temperature (°C) | Mean (Range) | |
Indoor | 27 (20–35) | |
Outdoor | 28 (20–35) | |
Indoor–outdoor difference | −1 (−12–7) | |
Mean Daytime Dry Bulb Temperature (°C) | Mean (Range) | |
Indoor | 26 (21–33) | |
Outdoor | 28 (20–36) | |
Indoor–outdoor difference | −1 (−11–5) | |
Maximum Apparent Temperatures > 90th percentile (37.1 °C) | N (Observation Days) | |
Hot days | 9 (47) | |
Daytime heat events | 3 (40) | |
Minimum Apparent Temperatures > 90th percentile (22.8 °C) | N (Observation Days) | |
Hot nights | 11 (58) | |
Nighttime heat events | 3 (32) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caballero-Gomez, H.; Johnston, J.; Jackson, C.L.; Romano, L.; Cushing, L.J. Ambient and Bedroom Heat in Relation to Sleep Health in a Marginalized Community That Is One of the Hottest in Los Angeles. Int. J. Environ. Res. Public Health 2025, 22, 1391. https://doi.org/10.3390/ijerph22091391
Caballero-Gomez H, Johnston J, Jackson CL, Romano L, Cushing LJ. Ambient and Bedroom Heat in Relation to Sleep Health in a Marginalized Community That Is One of the Hottest in Los Angeles. International Journal of Environmental Research and Public Health. 2025; 22(9):1391. https://doi.org/10.3390/ijerph22091391
Chicago/Turabian StyleCaballero-Gomez, Hasibe, Jill Johnston, Chandra L. Jackson, Lizette Romano, and Lara J. Cushing. 2025. "Ambient and Bedroom Heat in Relation to Sleep Health in a Marginalized Community That Is One of the Hottest in Los Angeles" International Journal of Environmental Research and Public Health 22, no. 9: 1391. https://doi.org/10.3390/ijerph22091391
APA StyleCaballero-Gomez, H., Johnston, J., Jackson, C. L., Romano, L., & Cushing, L. J. (2025). Ambient and Bedroom Heat in Relation to Sleep Health in a Marginalized Community That Is One of the Hottest in Los Angeles. International Journal of Environmental Research and Public Health, 22(9), 1391. https://doi.org/10.3390/ijerph22091391