Groundwater Contamination: Study on the Distribution and Mobility of Metals and Metalloids in Soil and Rocks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Sampling and Analytical Method
2.2.1. Soil and Rock Samples
2.2.2. Water Samples
2.3. Statistical Analysis
3. Results and Discussion
3.1. Metals and Metalloids in Soil and Rock Samples, Leaching Test, and Solid–Liquid Partition Coefficient (Kd)
3.2. Metals and Metalloids in Water Samples and Risk of Water Contamination
3.3. Microbiological Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Angon, P.B.; Islam, M.d.S.; Kc, S.; Das, A.; Anjum, N.; Poudel, A.; Suchi, S.A. Sources, Effects and Present Perspectives of Heavy Metals Contamination: Soil, Plants and Human Food Chain. Heliyon 2024, 10, e28357. [Google Scholar] [CrossRef] [PubMed]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy Metal Pollution in the Environment and Their Toxicological Effects on Humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Swain, C.K. Environmental Pollution Indices: A Review on Concentration of Heavy Metals in Air, Water, and Soil near Industrialization and Urbanisation. Discov. Environ. 2024, 2, 5. [Google Scholar] [CrossRef]
- Khan, A.; Khan, A.A.; Irfan, M. Effects of Different Concentrations of Nickel (Ni) on the Vegetative and Reproductive Growth Parameters of Nigella sativa L. Gesunde Pflanz. 2023, 75, 677–686. [Google Scholar] [CrossRef]
- Liu, P.; Hu, W.; Tian, K.; Huang, B.; Zhao, Y.; Wang, X.; Zhou, Y.; Shi, B.; Kwon, B.-O.; Choi, K.; et al. Accumulation and Ecological Risk of Heavy Metals in Soils along the Coastal Areas of the Bohai Sea and the Yellow Sea: A Comparative Study of China and South Korea. Environ. Int. 2020, 137, 105519. [Google Scholar] [CrossRef] [PubMed]
- Rastegari Mehr, M.; Shakeri, A.; Amjadian, K.; Khalilzadeh Poshtegal, M.; Sharifi, R. Bioavailability, Distribution and Health Risk Assessment of Arsenic and Heavy Metals (HMs) in Agricultural Soils of Kermanshah Province, West of Iran. J. Environ. Health Sci. Eng. 2021, 19, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Muradoglu, F.; Gundogdu, M.; Ercisli, S.; Encu, T.; Balta, F.; Jaafar, H.Z.; Zia-Ul-Haq, M. Cadmium Toxicity Affects Chlorophyll a and b Content, Antioxidant Enzyme Activities and Mineral Nutrient Accumulation in Strawberry. Biol. Res. 2015, 48, 11. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Liu, J.; Wang, Y.; Sun, L.; Yu, H. Multivariate and Geostatistical Analyses of the Spatial Distribution and Sources of Heavy Metals in Agricultural Soil in Dehui, Northeast China. Chemosphere 2013, 92, 517–523. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, J.; Ren, L.; Zhou, Y.; Gao, J.; Luo, L.; Yang, Y.; Peng, Q.; Huang, H.; Chen, A. Diagnosis of Soil Contamination Using Microbiological Indices: A Review on Heavy Metal Pollution. J. Environ. Manag. 2019, 242, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Varrica, D.; Lo Medico, F.; Alaimo, M.G. Air Quality Assessment by the Determination of Trace Elements in Lichens (Xanthoria calcicola) in an Industrial Area (Sicily, Italy). Int. J. Environ. Res. Public Health 2022, 19, 9746. [Google Scholar] [CrossRef]
- Cannon, H.L.; Connally, G.G.; Epstein, J.B.; Parker, J.G.; Thornton, I.; Wixson, G. Rocks: Geological Sources of Most Trace Elements. In: Report to the Workshop at South Seas Plantation Captiva Island, FL, US. Geochem. Environ. 1978, 3, 17–31. [Google Scholar]
- Dixit, R.; Wasiullah; Malaviya, D.; Pandiyan, K.; Singh, U.; Sahu, A.; Shukla, R.; Singh, B.; Rai, J.; Sharma, P.; et al. Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes. Sustainability 2015, 7, 2189–2212. [Google Scholar] [CrossRef]
- Pavan Kumar Gautam, D. Heavy Metals; Materials Science and Technologies; Nova Science Publishers, Incorporated: Hauppauge, NY, USA, 2016; ISBN 978-1-63484-740-7. [Google Scholar]
- Qu, S.; Wu, W.; Nel, W.; Ji, J. The Behavior of Metals/Metalloids during Natural Weathering: A Systematic Study of the Mono-Lithological Watersheds in the Upper Pearl River Basin, China. Sci. Total Environ. 2020, 708, 134572. [Google Scholar] [CrossRef] [PubMed]
- Polizzotto, M.L.; Kocar, B.D.; Benner, S.G.; Sampson, M.; Fendorf, S. Near-Surface Wetland Sediments as a Source of Arsenic Release to Ground Water in Asia. Nature 2008, 454, 505–508. [Google Scholar] [CrossRef]
- Tang, J.; Xiao, T.; Wang, S.; Lei, J.; Zhang, M.; Gong, Y.; Li, H.; Ning, Z.; He, L. High Cadmium Concentrations in Areas with Endemic Fluorosis: A Serious Hidden Toxin? Chemosphere 2009, 76, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Kicinska, A.; Pomykala, R. Incongruent dissolution of silicates and its impact on the environment: An example of a talc mine. Sci. Rep. 2023, 13, 22519. [Google Scholar] [CrossRef] [PubMed]
- Cabral Pinto, M.M.S.; Silva, M.M.V.G.; Ferreira Da Silva, E.A.; Dinis, P.A.; Rocha, F. Transfer Processes of Potentially Toxic Elements (PTE) from Rocks to Soils and the Origin of PTE in Soils: A Case Study on the Island of Santiago (Cape Verde). J. Geochem. Explor. 2017, 183, 140–151. [Google Scholar] [CrossRef]
- Bini, C.; Sartori, G.; Wahsha, M.; Fontana, S. Background Levels of Trace Elements and Soil Geochemistry at Regional Level in NE Italy. J. Geochem. Explor. 2011, 109, 125–133. [Google Scholar] [CrossRef]
- Mikkonen, H.G.; Clarke, B.O.; Dasika, R.; Wallis, C.J.; Reichman, S.M. Assessment of Ambient Background Concentrations of Elements in Soil Using Combined Survey and Open-Source Data. Sci. Total Environ. 2017, 580, 1410–1420. [Google Scholar] [CrossRef] [PubMed]
- Varrica, D.; Lo Medico, F.; Zuccolini, M.V.; Miola, M.; Alaimo, M.G. Geochemical Baseline Values Determination and Spatial Distribution of Trace Elements in Topsoils: An Application in Sicily Region (Italy). Sci. Total Environ. 2024, 955, 176951. [Google Scholar] [CrossRef] [PubMed]
- Violante, A.; Cozzolino, V.; Perelomov, L.; Caporale, A.G.; Pigna, M. Mobility and Bioavailability of Heavy Metals and Metalloids in Soil Environments. J. Soil. Sci. Plant Nutr. 2010, 10, 268–292. [Google Scholar] [CrossRef]
- He, Z.L.; Yang, X.E.; Stoffella, P.J. Trace Elements in Agroecosystems and Impacts on the Environment. J. Trace Elem. Med. Biol. 2005, 19, 125–140. [Google Scholar] [CrossRef] [PubMed]
- Hejna, M.; Gottardo, D.; Baldi, A.; Dell’Orto, V.; Cheli, F.; Zaninelli, M.; Rossi, L. Review: Nutritional Ecology of Heavy Metals. Animal 2018, 12, 2156–2170. [Google Scholar] [CrossRef]
- Zoroddu, M.A.; Aaseth, J.; Crisponi, J.A.; Medici, S.; Peana, M.; Nurchi, V.M. The essential metals for humans: A brief overview. J. Inorg. 2019, 195, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Govind, P.; Madhuri, S. Heavy Metals Causing Toxicity in Animals and Fishes. Res. J. Anim. Vet. Fish. Sci. 2014, 2, 17–22. [Google Scholar]
- Theron, A.J.; Tintinger, G.R.; Anderson, R. Harmful Interactions of Non-Essential Heavy Metals with Cells of the Innate Immune System. J. Clin. Toxicol. 2011, s3, 1–10. [Google Scholar] [CrossRef]
- Ahmed, A.S.S.; Sultana, S.; Habib, A.; Ullah, H.; Musa, N.; Hossain, M.B.; Rahman, M.M.; Sarker, M.S.I. Bioaccumulation of Heavy Metals in Some Commercially Important Fishes from a Tropical River Estuary Suggests Higher Potential Health Risk in Children than Adults. PLoS ONE 2019, 14, e0219336. [Google Scholar] [CrossRef] [PubMed]
- Kumar, H.; Ishtiyaq, S.; Varun, M.; Favas, P.; Ogunkunle, C.; Manoj, S.P. Bioremediation: Plants and Microbes for Restoration of Heavy Metal Contaminated Soils. In Bioenergy Crops; CRC Press: Boca Raton, FL, USA, 2022; p. 34. ISBN 978-1-00-304352-2. [Google Scholar]
- Niede, R.; Benbi, D.K. Integrated Review of the Nexus between Toxic Elements in the Environment and Human Health. AIMS Public Health 2022, 9, 758–789. [Google Scholar] [CrossRef] [PubMed]
- Järup, L. Hazards of Heavy Metal Contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Jaishankar, M.; Mathew, B.B.; Shah, M.S.; Krishna, M.T.P.; Sangeetha, G.K.R. Biosorption of Few Heavy Metal Ions Using Agricultural Wastes. J. Environ. Pollut. Hum. Health 2014, 2, 1–6. [Google Scholar] [CrossRef]
- Taiwo, A.M.; Somade, O.C.; Ojekunle, O.Z.; Atayese, A.O.; Obuotor, T.M. Human Health Risk Assessment of Metals and Metalloids in Groundwater Resources around the Sanitation Facilities in Major Markets from Abeokuta Metropolis, Southwestern Nigeria. J. Trace Elem. Miner. 2023, 6, 100105. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Metz 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- SIAS—Servizio Informativo Agrometeorologico Siciliano Climatologia Della Sicilia. Available online: http://www.sias.regione.sicilia.it/pdf/Climatologia_sicilia.pdf (accessed on 20 January 2025).
- Feo, A.; Lo Medico, F.; Rizzo, P.; Morticelli, M.G.; Pinardi, R.; Rotigliano, E.; Celico, F. How to Predict the Efficacy of Free-Product DNAPL Pool Extraction Using 3D High-Precision Numerical Simulations: An Interdisciplinary Test Study in South-Western Sicily (Italy). Hydrology 2023, 10, 143. [Google Scholar] [CrossRef]
- De Waele, J.; Piccini, L.; Columbu, A.; Madonia, G.; Vattano, M.; Calligaris, C.; D’Angeli, I.; Parise, M.; Chiesi, M.; Sivelli, M.; et al. Evaporite Karst in Italy: A Review. IJS 2017, 46, 137–168. [Google Scholar] [CrossRef]
- Decima, A.; Wezel, F.C. Late Miocene Evaporites of the Central Sicilian Basin, Italy. Initial. Rep. Deep. Sea Drill. Proj. 1973, 13, 1234–1241. [Google Scholar]
- UNI EN 12457-2:2004—Caratterizzazione dei Rifiuti—Lisciviazione—Prova di Conformità per la Lisciviazione di Rifiuti Granulari e di Fanghi—Parte 2: Prova a Singolo Stadio, con un Rapporto Liquido/Solido di 10 l/kg, per Materiali con Particelle di Dimensioni Minori di 4 mm (con o Senza Riduzione Delle Dimensioni). 2024. Available online: https://www.intertekinform.com/en-gb/standards/uni-en-12457-2-2004-1099577_saig_uni_uni_2557608/?srsltid=AfmBOooxCBj9vxT5hidBgN0ZWVa06ldNbSkzSs-z3thW2ojTChaUr5um (accessed on 20 January 2025).
- Rizzo, P.; Cappadonia, C.; Rotigliano, E.; Iacumin, P.; Sanangelantoni, A.M.; Zerbini, G.; Celico, F. Hydrogeological Behaviour and Geochemical Features of Waters in Evaporite-Bearing Low-Permeability Successions: A Case Study in Southern Sicily, Italy. Appl. Sci. 2020, 10, 8177. [Google Scholar] [CrossRef]
- Lumivero. XLSTAT Statistical and Data Analysis Solution; Lumivero: Denver, CO, USA, 2024. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. 2023. Available online: https://www.scirp.org/reference/referencespapers?referenceid=3582659 (accessed on 20 January 2025).
- Helsel, D.R.; Gilliom, R.J. Estimation of Distributional Parameters for Censored Trace Level Water Quality Data: 2. Verification and Applications. Water Resour. Res. 1986, 22, 147–155. [Google Scholar] [CrossRef]
- Boschi, V.; Willenbring, J.K. Chemical and Physical Drivers of Beryllium Retention in Two Soil Endmembers. Sci. Total Environ. 2021, 754, 141591. [Google Scholar] [CrossRef]
- Vieira Coelho, A. Nickel, Iron-Containing Clay Minerals from Niquelândia Deposit, Brazil 1. Characterization. Appl. Clay Sci. 2000, 17, 163–181. [Google Scholar] [CrossRef]
- Dähn, R.; Baeyens, B.; Fernandes, M.M. Zn Uptake by Illite and Argillaceous Rocks. Geochim. Cosmochim. Acta 2021, 312, 180–193. [Google Scholar] [CrossRef]
- Dill, H.G. A Geological and Mineralogical Review of Clay Mineral Deposits and Phyllosilicate Ore Guides in Central Europe—A Function of Geodynamics and Climate Change. Ore Geol. Rev. 2020, 119, 103304. [Google Scholar] [CrossRef]
- Jewuła, K.; Środoń, J.; Kuligiewicz, A.; Mikołajczak, M.; Liivamägi, S. Critical Evaluation of Geochemical Indices of Palaeosalinity Involving Boron. Geochim. Cosmochim. Acta 2022, 322, 1–23. [Google Scholar] [CrossRef]
- Tenginkai, S.G.; Ugarkar, A.G.; Koti, M.V.; Mookherjee, A. Copper-Bearing Clay Minerals of the Oxidized Zone of the Rakha-Chapri Block, Singhbhum Copper Belt, India. Proc. Indian Acad. Sci. (Earth Planet Sci.) 1991, 100, 13–29. [Google Scholar] [CrossRef]
- Zinkutė, R.; Taraškevičius, R.; Želvys, T. Major Elements as Possible Factors of Trace Element Urban Pedochemical Anomalies. Open Chem. 2011, 9, 337–347. [Google Scholar] [CrossRef]
- Millas, I.G. Boron Industry, Sources, and Evaporitic Andean Deposits: Geochemical Characteristics and Evolution Paths of the Superficial Brines. In Recent Advances in Boron-Containing Materials; Aydin, M., Ed.; IntechOpen: London, UK, 2020; ISBN 978-1-83880-213-4. [Google Scholar]
- Smedley, P.L.; Kinniburgh, D.G. A Review of the Source, Behaviour and Distribution of Arsenic in Natural Waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef]
- Song, Y.; Paerhati, P.; Xu, S.; Gao, B.; Jiang, S.; Li, S.; Wang, Y.; Lv, H. Boron Enrichment in Salinized Lacustrine Organic-Rich Shale of the Paleogene Biyang Depression, East China: Occurrence and Geological Controlling Factors. Minerals 2024, 14, 904. [Google Scholar] [CrossRef]
- Wang, J.; Dong, C.; Sun, S.; Mu, L.; Zhang, N.; Bao, L. Characteristics and Correlation Analysis of the Spatial Distribution of Heavy Metals in Arable Soils with Different Soil-Forming Matrices. Sustainability 2024, 16, 10338. [Google Scholar] [CrossRef]
- Li, X.; Yang, J.; Chen, C.; Vähätalo, A.V.; Riise, G.; Liu, C.; Xiao, Y. Effects of Mineral Adsorption on the Molecular Composition of Soil Dissolved Organic Matter: Evidence from Spectral Analyses. Chem. Geol. 2024, 669, 122352. [Google Scholar] [CrossRef]
- Yin, Y.; Impellitteri, C.A.; You, S.-J.; Allen, H.E. The Importance of Organic Matter Distribution and Extract Soil:Solution Ratio on the Desorption of Heavy Metals from Soils. Sci. Total Environ. 2002, 287, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Farrah, H.; Hatton, D.; Pickering, W.F. The Affinity of Metal Ions for Clay Surfaces. Chem. Geol. 1980, 28, 55–68. [Google Scholar] [CrossRef]
- Kraepiel, A.M.L.; Keller, K.; Morel, F.M.M. A Model for Metal Adsorption on Montmorillonite. J. Colloid Interface Sci. 1999, 210, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Tournassat, C.; Grangeon, S.; Kalinichev, A.G.; Takahashi, Y.; Marques Fernandes, M. Molecular-Level Understanding of Metal Ion Retention in Clay-Rich Materials. Nat. Rev. Earth Environ. 2022, 3, 461–476. [Google Scholar] [CrossRef]
- Srivastava, P.; Singh, B.; Angove, M. Competitive Adsorption Behavior of Heavy Metals on Kaolinite. J. Colloid Interface Sci. 2005, 290, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Wahba, M.M.; Zaghloul, A.M. Adsorption Characteristics of Some Heavy Metals by Some Soil Minerals. J. Appl. Sci. Res. 2007, 3, 421–426. [Google Scholar]
- Zhu, J.; Cozzolino, V.; Pigna, M.; Huang, Q.; Caporale, A.G.; Violante, A. Sorption of Cu, Pb and Cr on Na-Montmorillonite: Competition and Effect of Major Elements. Chemosphere 2011, 84, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.; Mazumder, M.A.J.; Al-Attas, O.; Husain, T. Heavy Metals in Drinking Water: Occurrences, Implications, and Future Needs in Developing Countries. Sci. Total Environ. 2016, 569–570, 476–488. [Google Scholar] [CrossRef]
- D.Lgs 152/06. Legislative Decree 152/2006. Norme in Materia Ambientale. Allegato 5, Parte IV, Tabella 1. Gazzetta Ufficiale n. 88 del 14 Aprile 2006, Supplemento Ordinario n. 96. Available online: https://www.gazzettaufficiale.it/dettaglio/codici/materiaAmbientale (accessed on 20 January 2025).
- World Health Organization. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating First Addendum; 4th ed. + 1st add.; World Health Organization: Geneva, Switzerland, 2017; ISBN 978-92-4-154995-0. [Google Scholar]
- USEPA. Technical Factsheet on: NICKEL; USEPA: Washington, DC, USA, 1995. [Google Scholar]
- USEPA. National Primary Drinking Water Regulations; USEPA: Washington, DC, USA, 2024. [Google Scholar]
- Ahmed, S.F.; Kumar, P.S.; Rozbu, M.R.; Chowdhury, A.T.; Nuzhat, S.; Rafa, N.; Mahlia, T.M.I.; Ong, H.C.; Mofijur, M. Heavy Metal Toxicity, Sources, and Remediation Techniques for Contaminated Water and Soil. Environ. Technol. Innov. 2022, 25, 102114. [Google Scholar] [CrossRef]
- Chen, X.; Gao, F.; Cao, Y.; Fu, Y.; Li, H.; Wang, M.; Pan, Q. In Situ Formation of Copper Nanoclusters for Efficient Analysis of β-Glucosidase Activity. Microchem. J. 2024, 196, 109546. [Google Scholar] [CrossRef]
- Fatoki, J.O.; Badmus, J.A. Arsenic as an Environmental and Human Health Antagonist: A Review of Its Toxicity and Disease Initiation. J. Hazard. Mater. Adv. 2022, 5, 100052. [Google Scholar] [CrossRef]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The Effects of Cadmium Toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef] [PubMed]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metal Toxicity and the Environment. Exp. Suppl. 2012, 101, 133–164. [Google Scholar] [CrossRef] [PubMed]
- Buschmann, J.; Berg, M.; Stengel, C.; Winkel, L.; Sampson, M.L.; Trang, P.T.K.; Viet, P.H. Contamination of Drinking Water Resources in the Mekong Delta Floodplains: Arsenic and Other Trace Metals Pose Serious Health Risks to Population. Environ. Int. 2008, 34, 756–764. [Google Scholar] [CrossRef] [PubMed]
- Bolan, S.; Wijesekara, H.; Amarasiri, D.; Zhang, T.; Ragályi, P.; Brdar-Jokanović, M.; Rékási, M.; Lin, J.-Y.; Padhye, L.P.; Zhao, H.; et al. Boron Contamination and Its Risk Management in Terrestrial and Aquatic Environmental Settings. Sci. Total Environ. 2023, 894, 164744. [Google Scholar] [CrossRef]
- Goldbach, H.E.; Wimmer, M.A. Boron in Plants and Animals: Is There a Role beyond Cell-wall Structure? Z. Pflanzenernähr. Bodenk. 2007, 170, 39–48. [Google Scholar] [CrossRef]
- Nielsen, F.H. Boron in Human and Animal Nutrition. In Boron in Soils and Plants: Reviews; Dell, B., Brown, P.H., Bell, R.W., Eds.; Springer: Dordrecht, The Netherlands, 1997; pp. 199–208. ISBN 978-94-010-6352-4. [Google Scholar]
- Nielsen, F.H. Update on Human Health Effects of Boron. J. Trace Elem. Med. Biol. 2014, 28, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Bolan, S.; Wijesekara, H.; Tanveer, M.; Boschi, V.; Padhye, L.P.; Wijesooriya, M.; Wang, L.; Jasemizad, T.; Wang, C.; Zhang, T.; et al. Beryllium Contamination and Its Risk Management in Terrestrial and Aquatic Environmental Settings. Environ. Pollut. 2023, 320, 121077. [Google Scholar] [CrossRef]
- Heath, R.C.; Miller, L.M.; Perry, C.M.; Norton, S.A. Be in Surface Water: Sources, Sinks, Mobilization, and Potential Toxicity. In Proceedings of the Trace Metals in Lakes SETAC International Symposium, Arlington, VA, USA, 13–17 November 1988. [Google Scholar]
- Jagoe, C.H.; Matey, V.E.; Haines, T.A.; Komov, V.T. Effect of Beryllium on Fish in Acid Water Is Analogous to Aluminum Toxicity. Aquat. Toxicol. 1993, 24, 241–256. [Google Scholar] [CrossRef]
- Acosta, J.A.; Faz, A.; Martínez-Martínez, S.; Arocena, J.M. Enrichment of Metals in Soils Subjected to Different Land Uses in a Typical Mediterranean Environment (Murcia City, Southeast Spain). Appl. Geochem. 2011, 26, 405–414. [Google Scholar] [CrossRef]
- Ni, S.; Ju, Y.; Hou, Q.; Wang, S.; Liu, Q.; Wu, Y.; Xiao, L. Enrichment of Heavy Metal Elements and Their Adsorption on Iron Oxides during Carbonate Rock Weathering Process. Prog. Nat. Sci. 2009, 19, 1133–1139. [Google Scholar] [CrossRef]
- Ehrlich, H.L. Geomicrobiology, 4th ed.; CRC Press: Boca Raton, FL, USA, 2002; ISBN 978-0-429-16487-3. [Google Scholar]
- Gadd, G.M. Transformation and Mobilization of Metals, Metalloids, and Radionuclides by Microorganisms. In Biophysico-Chemical Processes of Heavy Metals and Metalloids in Soil Environments; Violante, A., Huang, P.M., Gadd, G.M., Eds.; Wiley: Hoboken, NJ, USA, 2007; pp. 53–96. ISBN 978-0-471-73778-0. [Google Scholar]
- Gu, J.; Cai, H.; Yu, S.-L.; Qu, R.; Yin, B.; Guo, Y.-F.; Zhao, J.-Y.; Wu, X.-L. Marinobacter Gudaonensis Sp. Nov., Isolated from an Oil-Polluted Saline Soil in a Chinese Oilfield. Int. J. Syst. Evol. Microbiol. 2007, 57, 250–254. [Google Scholar] [CrossRef]
- Zhang, L.; Pan, Y.; Wang, K.; Zhang, X.; Zhang, S.; Fu, X.; Zhang, C.; Jiang, J. Pseudomonas Songnenensis Sp. Nov., Isolated from Saline and Alkaline Soils in Songnen Plain, China. Antonie Leeuwenhoek 2015, 107, 711–721. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-X.; Wang, Z.-G.; Liu, J.-H.; Chen, Y.-G.; Zhang, X.-X.; Wen, M.-L.; Xu, L.-H.; Peng, Q.; Cui, X.-L. Sediminimonas Qiaohouensis Gen. Nov., Sp. Nov., a Member of the Roseobacter Clade in the Order Rhodobacterales. Int. J. Syst. Evol. Microbiol. 2009, 59, 1561–1567. [Google Scholar] [CrossRef] [PubMed]
- Cummings, D.E.; Caccavo, F., Jr.; Spring, S.; Rosenzweig, R.F. Ferribacterium Limneticum, Gen. Nov., Sp. Nov., an Fe(III)-Reducing Microorganism Isolated from Mining-Impacted Freshwater Lake Sediments. Arch. Microbiol. 1999, 171, 183–188. [Google Scholar] [CrossRef]
- Zhao, M.; Cui, Z.; Fu, L.; Ndayisenga, F.; Zhou, D. Shewanella Drive Fe(III) Reduction to Promote Electro-Fenton Reactions and Enhance Fe Inner-Cycle. ACS EST Water 2021, 1, 613–620. [Google Scholar] [CrossRef]
- Chen, J.; Hanke, A.; Tegetmeyer, H.E.; Kattelmann, I.; Sharma, R.; Hamann, E.; Hargesheimer, T.; Kraft, B.; Lenk, S.; Geelhoed, J.S.; et al. Impacts of Chemical Gradients on Microbial Community Structure. ISME J. 2017, 11, 920–931. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, K.; Kim, K.; Lee, S.S.S.; Fortner, J.D.; An, H.; Son, Y.; Hwang, H.; Han, Y.; Myung, Y.; et al. Reductive Dissolution of NCM Cathode through Anaerobic Respiration by Shewanella putrefaciens. Environ. Sci. Technol. 2024, 58, 18345–18355. [Google Scholar] [CrossRef]
- Upadhyay, S.; Sinha, A. Modeling Cometabolism of Hexavalent Chromium by Iron Reducing Bacteria in Tertiary Substrate System. Sci. Rep. 2021, 11, 10864. [Google Scholar] [CrossRef]
- Bijmans, M.F.M.; Van Helvoort, P.-J.; Dar, S.A.; Dopson, M.; Lens, P.N.L.; Buisman, C.J.N. Selective Recovery of Nickel over Iron from a Nickel–Iron Solution Using Microbial Sulfate Reduction in a Gas-Lift Bioreactor. Water Res. 2009, 43, 853–861. [Google Scholar] [CrossRef]
Median | Range | δ | 10P | 90P | IQ | IIIQ | ||
---|---|---|---|---|---|---|---|---|
Soil samples | As | 5.00 | 1.50–12.0 | 3.22 | 1.80 | 9.84 | 3.50 | 7.75 |
Be | 0.77 | 0.10–1.90 | 0.60 | 0.10 | 1.60 | 0.42 | 1.35 | |
B | 2.50 | 2.50 | 0.00 | 2.50 | 2.50 | 2.50 | 2.50 | |
Co | 5.60 | 1.40–14.0 | 4.32 | 1.54 | 12.0 | 3.65 | 10.5 | |
Cr | 31.0 | 4.40–76.0 | 23.5 | 6.68 | 65.2 | 16.5 | 54.5 | |
Ni | 14.0 | 3.50–35.0 | 11.1 | 4.32 | 32.2 | 11.0 | 28.5 | |
Pb | 5.40 | 1.40–17.0 | 4.93 | 1.58 | 13.0 | 4.45 | 11.5 | |
Cu | 7.70 | 2.50–19.0 | 6.32 | 2.50 | 18.2 | 3.90 | 16.0 | |
Zn | 40.0 | 11.0–100 | 31.2 | 11.00 | 91.6 | 23.5 | 72.5 | |
Rock samples | As | 4.60 | 1.50–17.0 | 3.98 | 2.74 | 9.40 | 3.35 | 4.90 |
Be | 1.70 | 0.10–2.60 | 0.99 | 0.1 | 2.16 | 0.10 | 2.00 | |
B | 25.0 | 25.0–120 | 28.9 | 25 | 76.6 | 25.0 | 25.0 | |
Co | 11.0 | 0.50–22.0 | 6.76 | 0.5 | 13.6 | 1.00 | 12.0 | |
Cr | 71.0 | 1.60–90.0 | 39.0 | 3.9 | 87.2 | 6.40 | 85.0 | |
Ni | 31.0 | 1.10–56.0 | 17.3 | 2.66 | 37 | 4.60 | 33.5 | |
Pb | 12.0 | 0.50–17.0 | 6.62 | 0.5 | 15 | 1.15 | 14.0 | |
Cu | 13.0 | 2.50–27.0 | 7.70 | 2.5 | 17.6 | 2.50 | 15.0 | |
Zn | 84.0 | 2.50–140 | 47.3 | 4.7 | 102.2 | 14.5 | 100 |
Soil Samples | Rock Samples | ||
---|---|---|---|
F1 | F1 | F2 | |
As | −0.655 | 0.170 | 0.865 |
Be | −0.978 | 0.955 | 0.251 |
B | n.d. | 0.245 | 0.804 |
Co | −0.990 | 0.935 | 0.308 |
Cr | −0.967 | 0.933 | 0.235 |
Ni | −0.993 | 0.940 | 0.302 |
Pb | −0.962 | 0.936 | 0.308 |
Cu | −0.930 | 0.918 | 0.050 |
Zn | −0.983 | 0.940 | 0.315 |
Expl.Var | 7.044 | 6.233 | 1.896 |
% Var | 88.05 | 69.26 | 21.07 |
Range of Water Samples | D.Lgs 152/06 | WHO | USEPA | |
---|---|---|---|---|
As | 0.25–5.20 | 5 | 10 | 10 |
B | 2.50–16,000 | 1000 | 2400 | n.d. |
Be | 0.25–4.50 | 4 | n.d. | 4 |
Co | 0.25–50.0 | 50 | n.d. | n.d. |
Cr | 0.25–0.73 | 50 | 50 | 100 |
Cu | 2.50–200 | 1000 | 2000 | 1300 * |
Ni | 0.50–100 | 20 | 70 | 100 |
Pb | 0.25–0.25 | 10 | 10 | 10 * |
Zn | 0.20–120 | 3000 | n.d. | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lo Medico, F.; Rizzo, P.; Rotigliano, E.; Celico, F. Groundwater Contamination: Study on the Distribution and Mobility of Metals and Metalloids in Soil and Rocks. Int. J. Environ. Res. Public Health 2025, 22, 182. https://doi.org/10.3390/ijerph22020182
Lo Medico F, Rizzo P, Rotigliano E, Celico F. Groundwater Contamination: Study on the Distribution and Mobility of Metals and Metalloids in Soil and Rocks. International Journal of Environmental Research and Public Health. 2025; 22(2):182. https://doi.org/10.3390/ijerph22020182
Chicago/Turabian StyleLo Medico, Federica, Pietro Rizzo, Edoardo Rotigliano, and Fulvio Celico. 2025. "Groundwater Contamination: Study on the Distribution and Mobility of Metals and Metalloids in Soil and Rocks" International Journal of Environmental Research and Public Health 22, no. 2: 182. https://doi.org/10.3390/ijerph22020182
APA StyleLo Medico, F., Rizzo, P., Rotigliano, E., & Celico, F. (2025). Groundwater Contamination: Study on the Distribution and Mobility of Metals and Metalloids in Soil and Rocks. International Journal of Environmental Research and Public Health, 22(2), 182. https://doi.org/10.3390/ijerph22020182