Distributed Acoustic Sensing Based on Microtremor Survey Method for Near-Surface Active Faults Exploration: A Case Study in Datong Basin, China
Abstract
:1. Introduction
2. Geological Setting
3. Field Observations across the Fault
4. Data Analysis and Processing
5. Discussion
5.1. Analysis of CC Characteristics
5.2. Variation of Ground Temperature and Strain near Near-Surface Active Faults
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boncio, P.; Liberi, F.; Caldarella, M.; Nurminen, F.C. Width of surface rupture zone for thrust earthquakes: Implications for earthquake fault zoning. Nat. Hazards Earth Syst. Sci. 2018, 18, 241–256. [Google Scholar] [CrossRef]
- Karakostas, V.; Papadimitriou, E.; Jin, X.; Liu, Z.; Paradisopoulou, P.; He, Z. Potential of future seismogenesis in Hebei Province (NE China) due to stress interactions between strong earthquakes. J. Asian Earth Sci. 2013, 75, 1–12. [Google Scholar] [CrossRef]
- Sugimura, Y.; Karkee, M.B. Preliminary Report on the Damage of Buildings and Houses due to the Great Hanshin (Kobe) Earthquake of 17 January 1995; University of Missouri: Rolla, MO, USA, 1995; p. 1451. [Google Scholar]
- Calais, E.; Freed, A.; Mattioli, G.; Amelung, F.; Jónsson, S.; Jansma, P.; Hong, S.H.; Dixon, T.; Prépetit, C.; Momplaisir, R. Transpressional rupture of an unmapped fault during the 2010 Haiti earthquake. Nat. Geosci. 2010, 3, 794–799. [Google Scholar] [CrossRef]
- Bathrellos, G.D.; Skilodimou, H.D.; Chousianitis, K.; Youssef, A.M.; Pradhan, B. Suitability estimation for urban development using multi-hazard assessment map. Sci. Total Environ. 2017, 575, 119–134. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Ben-Zion, Y. Detection of small earthquakes with dense array data: Example from the San Jacinto fault zone, southern California. Geophys. J. Int. 2018, 212, 442–457. [Google Scholar] [CrossRef]
- Punzo, M.; Cianflone, G.; Cavuoto, G.; De Rosa, R.; Dominici, R.; Gallo, P.; Lirer, F.; Pelosi, N.; Di Fiore, V. Active and passive seismic methods to explore areas of active faulting. The case of Lamezia Terme (Calabria, southern Italy). J. Appl. Geophys. 2021, 188, 104316. [Google Scholar] [CrossRef]
- Nayak, A.; Eberhart-Phillips, D.; Ruppert, N.A.; Fang, H.; Moore, M.M.; Tape, C.; Christensen, D.H.; Abers, G.A.; Thurber, C.H. 3D seismic velocity models for Alaska from joint tomographic inversion of body-wave and surface-wave data. Seismol. Res. Lett. 2020, 91, 3106–3119. [Google Scholar] [CrossRef]
- Mordret, A.; Roux, P.; Boué, P.; Ben-Zion, Y. Shallow three-dimensional structure of the San Jacinto fault zone revealed from ambient noise imaging with a dense seismic array. Geophys. J. Int. 2019, 216, 896–905. [Google Scholar] [CrossRef]
- Taylor, G.; Rost, S.; Houseman, G.A.; Hillers, G. Near-surface structure of the North Anatolian Fault zone from Rayleigh and Love wave tomography using ambient seismic noise. Solid Earth 2019, 10, 363–378. [Google Scholar] [CrossRef]
- Qian, R.; Liu, L. Imaging the active faults with ambient noise passive seismics and its application to characterize the Huangzhuang- Gaoliying fault in Beijing Area, northern China. Eng. Geol. 2020, 268, 105520. [Google Scholar] [CrossRef]
- Williams, E.F.; Fernández-Ruiz, M.R.; Magalhaes, R.; Vanthillo, R.; Zhan, Z.; González-Herráez, M.; Martins, H.F. Distributed sensing of microseisms and teleseisms with submarine dark fbers. Nat. Commun. 2019, 10, 5778. [Google Scholar] [CrossRef]
- Zhan, Z. Distributed acoustic sensing turns fber-optic cables into sensitive seismic antennas. Seismol. Res. Lett. 2020, 91, 1–15. [Google Scholar] [CrossRef]
- Sladen, A.; Rivet, D.; Ampuero, J.P.; De Barros, L.; Hello, Y.; Calbris, G.; Lamare, P. Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables. Nat. Commun. 2019, 10, 5777. [Google Scholar] [CrossRef]
- Lellouch, A.; Lindsey, N.J.; Ellsworth, W.L.; Biondi, B.L. Comparison between distributed acoustic sensing and geophones: Downhole microseismic monitoring of the FORGE geothermal experiment. Seismol. Soc. Am. 2020, 91, 3256–3268. [Google Scholar] [CrossRef]
- Song, Z.; Zeng, X.; Thurber, C.H. Surface-wave dispersion spectrum inversion method applied to Love and Rayleigh waves recorded by distributed acoustic sensingDAS surface-wave inversion. Geophysics 2021, 86, EN1–EN12. [Google Scholar] [CrossRef]
- Parker, T.; Shatalin, S.; Farhadiroushan, M. Distributed Acoustic Sensing—A new tool for seismic applications. First Break 2014, 32, 61–69. [Google Scholar] [CrossRef]
- Lindsey, N.J.; Martin, E.R.; Dreger, D.S.; Freifeld, B.; Cole, S.; James, S.R.; Biondi, B.L.; Ajo-Franklin, J.B. Fiber-optic network observations of earthquake wavefelds. Geophys. Res. Lett. 2017, 44, 11792–11799. [Google Scholar] [CrossRef]
- Yu, C.; Zhan, Z.; Lindsey, N.J.; Ajo-Franklin, J.B.; Robertson, M. The potential of DAS in teleseismic studies: Insights from the Goldstone experiment. Geophys. Res. Lett. 2019, 46, 1320–1328. [Google Scholar] [CrossRef]
- Karrenbach, M.; Ridge, A.; Cole, S.; Boone, K.; Kahn, D.; Rich, J.; Silver, K.; Langton, D. DAS microseismic monitoring and integration with strain measurements in hydraulic fracture profling. In Proceedings of the Unconventional Resources Technology Conference, Austin, TX, USA, 24–26 July 2017; Society of Exploration Geophysicists: Houston, TX, USA; American Association of Petroleum: Tulsa, OK, USA, 2017; pp. 1316–1330. [Google Scholar]
- Ellmauthaler, A.; Leblanc, M.; Bush, J.; Willis, M.E.; Wilson, G.A. Real-Time DAS VSP Acquisition and Processing on Single-and Multi-Mode Fibers. IEEE Sens. J. 2020, 21, 14847–14852. [Google Scholar] [CrossRef]
- Henninges, J.; Martuganova, E.; Stiller, M.; Norden, B.; Krawczyk, C.M. Wireline distributed acoustic sensing allows 4.2 km deep vertical seismic profling of the Rotliegend 150 C geothermal reservoir in the North German Basin. Solid Earth 2021, 12, 521–537. [Google Scholar] [CrossRef]
- Matsumoto, S.; Iio, Y.; Sakai, S.; Kato, A. Inelastic strain in the hypocentral region of the 2000 Western Tottori earthquake (M 7.3) inferred from aftershock seismic moment tensors. Earth Planets Space 2020, 72, 1–11. [Google Scholar] [CrossRef]
- Martin, E.R.; Huot, F.; Ma, Y.; Cieplicki, R.; Cole, S.; Karrenbach, M.; Biondi, B.L. A seismic shift in scalable acquisition demands new processing: Fiber-optic seismic signal retrieval in urban areas with unsupervised learning for coherent noise removal. IEEE Signal Process. Mag. 2018, 35, 31–40. [Google Scholar] [CrossRef]
- Lellouch, A.; Yuan, S.; Spica, Z.; Biondi, B.; Ellsworth, W. Seismic velocity estimation using passive downhole distributed acoustic sensing records: Examples from the San Andreas fault observatory at depth. J. Geophys. Res. Solid Earth 2019, 124, 6931–6948. [Google Scholar] [CrossRef]
- Luo, B.; Trainor-Guitton, W.; Bozdağ, E.; LaFlame, L.; Cole, S.; Karrenbach, M. Horizontally orthogonal distributed acoustic sensing array for earthquake-and ambient-noise-based multichannel analysis of surface waves. Geophys. J. Int. 2020, 222, 2147–2161. [Google Scholar] [CrossRef]
- Dou, S.; Lindsey, N.; Wagner, A.M.; Daley, T.M.; Freifeld, B.; Robertson, M.; Peterson, J.; Ulrich, C.; Martin, E.R.; Ajo-Franklin, J.B. Distributed acoustic sensing for seismic monitoring of the near surface: A traffc-noise interferometry case study. Sci. Rep. 2017, 7, 11620. [Google Scholar] [CrossRef]
- Lindsey, N.J.; Rademacher, H.; Ajo-Franklin, J.B. On the broadband instrument response of fber-optic DAS arrays. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018145. [Google Scholar] [CrossRef]
- Nayak, A.; Ajo-Franklin, J. Distributed acoustic sensing using dark fber for array detection of regional earthquakes. Seismol. Res. Lett. 2021, 92, 2441–2452. [Google Scholar] [CrossRef]
- Ajo-Franklin, J.B.; Dou, S.; Lindsey, N.J.; Monga, I.; Tracy, C.; Robertson, M.; Rodriguez Tribaldos, V.; Ulrich, C.; Freifeld, B.; Daley, T.; et al. Distributed acoustic sensing using dark fber for near-surface characterization and broadband seismic event detection. Sci. Rep. 2019, 9, 1328. [Google Scholar] [CrossRef]
- Taweesintananon, K.; Landrø, M.; Brenne, J.K.; Haukanes, A. Distributed acoustic sensing for near-surface imaging using submarine telecommunication cable: A case study in the Trondheimsfjord, Norway. Geophysics 2021, 86, B303–B320. [Google Scholar] [CrossRef]
- Abukrat, Y.; Reshef, M. Distributed acoustic sensing for shallow seismic investigations and void detection. Geophysics 2021, 86, WA89–WA97. [Google Scholar] [CrossRef]
- Cheng, Q.; Tang, C.S.; Zhu, C.; Li, K.; Shi, B. Drying-induced soil shrinkage and desiccation cracking monitoring with distributed optical fber sensing technique. Bull. Eng. Geol. Environ. 2020, 79, 3959–3970. [Google Scholar] [CrossRef]
- Lior, I.; Sladen, A.; Rivet, D.; Ampuero, J.P.; Hello, Y.M.; Lamare, P.; Jestin, C.; Tsagkli, S.; Markou, C. On the detection capabilities of underwater DAS. J. Geophys. Res. Solid Earth 2021, 126, e2020JB020925. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, Y.; Liang, X.; Xue, Q.; Liang, E.; Wu, S.; An, S.; Yao, Y.; Liu, C.; Mei, J. A deep learning approach for signal identifcation in the fluid injection process during hydraulic fracturing using distributed acoustic sensing data. Front. Earth Sci. 2022, 60, 1820. [Google Scholar] [CrossRef]
- Shao, J.; Wang, Y.; Chen, L. Near-surface characterization using high-speed train seismic data recorded by a distributed acoustic sensing array. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5912911. [Google Scholar] [CrossRef]
- Shao, J.; Wang, Y.; Zheng, Y.; Yao, Y.; Wu, S.; Yang, Z.; Xue, Q. Near-surface characterization using urban traffc noise recorded by fber-optic distributed acoustic sensing. Front. Earth Sci. 2022, 10, 943424. [Google Scholar] [CrossRef]
- Fernández-Ruiz, M.R.; Soto, M.A.; Williams, E.F.; Martin-Lopez, S.; Zhan, Z.; Gonzalez-Herraez, M.; Martins, H.F. Distributed acoustic sensing for seismic activity monitoring. APL Photonics 2020, 5, 30901. [Google Scholar] [CrossRef]
- Zhu, T.; Shen, J.; Martin, E.R. Sensing Earth and environment dynamics by telecommunication fber-optic sensors: An urban experiment in Pennsylvania, USA. Solid Earth 2021, 12, 219–235. [Google Scholar] [CrossRef]
- Cheng, F.; Xia, J.; Luo, Y.; Xu, Z.; Wang, L.; Shen, C.; Liu, R.; Pan, Y.; Mi, B.; Hu, Y. Multichannel analysis of passive surface waves based on crosscorrelations. Geophysics 2016, 81, EN57–EN66. [Google Scholar] [CrossRef]
- Xu, X.; Ma, X.; Deng, Q. Neotectonic activity along the Shanxi rift system, China. Tectonophysics 1993, 219, 305–325. [Google Scholar] [CrossRef]
- Wei, X.; Xudong, L.; Shimin, Z. Research of the Late Quaternary Recent Activity of the Middle Segment of Kouquan Fault. Earthq. Res. China 2012, 4, 479–490. [Google Scholar]
- Yang, Y.; Atterholt, J.W.; Shen, Z.; Muir, J.B.; Williams, E.F.; Zhan, Z. Sub-Kilometer Correlation Between Near-Surface Structure and Ground Motion Measured With Distributed Acoustic Sensing. Geophys. Res. Lett. 2022, 49, e2021GL096503. [Google Scholar] [CrossRef]
- Jiang, X.; Hu, S.; Yang, H. Depth extent and Vp/Vs ratio of the Chenghai fault zone, Yunnan, China constrained from dense- array-based teleseismic receiver functions. J. Geophys. Res. Solid Earth 2021, 126, e2021JB022190. [Google Scholar] [CrossRef]
- Haghshenas, E.; Bard, P.Y.; Theodulidis, N. Empirical evaluation of microtremor H/V spectral ratio. Bull. Earthq. Eng. 2008, 6, 75–108. [Google Scholar] [CrossRef]
- Parolai, S.; Bormann, P.; Milkereit, C. New relationships between Vs, thickness of sediments, and resonance frequency calculated by the H/V ratio of seismic noise for the Cologne area (Germany). Bull. Seismol. Soc. Am. 2002, 92, 2521–2527. [Google Scholar] [CrossRef]
- Xia, J.; Miller, R.D.; Park, C.B. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves. Geophysics 1999, 64, 691–700. [Google Scholar] [CrossRef]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Wu, W.; Zou, L.; Shen, X.; Lu, S.; Su, N.; Kong, F.; Dong, Y. Thermal infrared remote-sensing detection of thermal information associated with faults: A case study in Western Sichuan Basin, China. J. Asian Earth Sci. 2012, 43, 110–117. [Google Scholar] [CrossRef]
- Jaworowski, C.; Lynne, B.Y.; Heasler, H.; Foley, D.; Smith, I.J.; Smith, G.J. Detecting natural fractures with ground penetrating radar and airborne night-thermal infrared imagery around Old Faithful Geyser, Yellowstone National Park, USA. Geothermics 2020, 85, 101775. [Google Scholar] [CrossRef]
Instrument | Station Number | Interval (m) | Total Channel | Sampling (ms) | Record Time (h) |
---|---|---|---|---|---|
Three-Component Seismometers | 1–20 | 10 | 128 | 2.5 | 6 |
21–90 | 5 | ||||
DAS/BOTDR/DTS | 90–128 | 10 | 250 | 0.125/5000/5000 | 5.1/2/6 |
1–250 | 4 |
Layer | V (m·s−1) | Rou (kg·m−3) | Q |
---|---|---|---|
1 | 700 | 1.5 | 40 |
2 | 832 | 1.7 | 50 |
3 | 1000 | 1.82 | 55 |
fault | 340 | 1.2 | 35 |
Number of Sources | Dominant Frequency of Source (Hz) | Sampling (ms) | Record Time (min) |
---|---|---|---|
1200 | Min: 1 Max:40 | 2 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, A.; Ren, J.; Liu, A.; Zhang, G.; Lei, X.; Zhang, H. Distributed Acoustic Sensing Based on Microtremor Survey Method for Near-Surface Active Faults Exploration: A Case Study in Datong Basin, China. Int. J. Environ. Res. Public Health 2023, 20, 2915. https://doi.org/10.3390/ijerph20042915
Song A, Ren J, Liu A, Zhang G, Lei X, Zhang H. Distributed Acoustic Sensing Based on Microtremor Survey Method for Near-Surface Active Faults Exploration: A Case Study in Datong Basin, China. International Journal of Environmental Research and Public Health. 2023; 20(4):2915. https://doi.org/10.3390/ijerph20042915
Chicago/Turabian StyleSong, Ao, Junjie Ren, Aichun Liu, Guangwei Zhang, Xiaoqiong Lei, and Hao Zhang. 2023. "Distributed Acoustic Sensing Based on Microtremor Survey Method for Near-Surface Active Faults Exploration: A Case Study in Datong Basin, China" International Journal of Environmental Research and Public Health 20, no. 4: 2915. https://doi.org/10.3390/ijerph20042915
APA StyleSong, A., Ren, J., Liu, A., Zhang, G., Lei, X., & Zhang, H. (2023). Distributed Acoustic Sensing Based on Microtremor Survey Method for Near-Surface Active Faults Exploration: A Case Study in Datong Basin, China. International Journal of Environmental Research and Public Health, 20(4), 2915. https://doi.org/10.3390/ijerph20042915