Aerobic and Anaerobic Fitness according to High-Intensity Interval Training Frequency in Youth Soccer Players in the Last Stage of Rehabilitation
Abstract
1. Introduction
2. Methods
2.1. Experimental Design
2.2. Participants
2.3. Graded Exercise Test
2.4. Wingate Test
2.5. Isokinetic Strength Test
2.6. Body Composition
2.7. High-Intensity Interval Training Program
2.8. Statistical Analysis
3. Result
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, I.; Jeong, H.S.; Lee, S.Y. Injury profiles in Korean youth soccer. Int. J. Environ. Res. Public Health 2020, 17, 5125. [Google Scholar] [CrossRef] [PubMed]
- Eastwood, A.; Bourdon, P.; Snowden, K.; Gore, C. Detraining decreases Hbmass of triathletes. Int. J. Sports Med. 2012, 33, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Ormsbee, M.J.; Arciero, P.J. Detraining increases body fat and weight and decreases VO2peak and metabolic rate. J. Strength Cond. Res. 2012, 26, 2087–2095. [Google Scholar] [CrossRef] [PubMed]
- Di Salvo, V.; Baron, R.; Tschan, H.; Montero, F.C.; Bachl, N.; Pigozzi, F. Performance characteristics according to playing position in elite soccer. Int. J. Sports Med. 2007, 28, 222–227. [Google Scholar] [CrossRef]
- Stølen, T.; Chamari, K.; Castagna, C.; Wisløff, U. Physiology of soccer. Sports Med. 2005, 35, 501–536. [Google Scholar] [CrossRef]
- Jemni, M.; Prince, M.S.; Baker, J.S. Retracted Article: Assessing Cardiorespiratory Fitness of Soccer Players: Is Test Specificity the Issue?—A Review. Sports Med. 2018, 4, 1–18. [Google Scholar] [CrossRef]
- Jones, A.M.; Carter, H. The effect of endurance training on parameters of aerobic fitness. Sports Med. 2000, 29, 373–386. [Google Scholar] [CrossRef]
- Franchini, E. High-intensity interval training prescription for combat-sport athletes. Int. J. Sports Physiol. Perform. 2020, 15, 767–776. [Google Scholar] [CrossRef]
- Engel, F.A.; Ackermann, A.; Chtourou, H.; Sperlich, B. High-intensity interval training performed by young athletes: A systematic review and meta-analysis. Front. Physiol. 2018, 9, 1012–1029. [Google Scholar] [CrossRef]
- García-Pinillos, F.; Cámara-Pérez, J.C.; Soto-Hermoso, V.M.; Latorre-Román, P.Á. A high intensity interval training (HIIT)-based running plan improves athletic performance by improving muscle power. J. Strength Cond. Res. 2017, 31, 146–153. [Google Scholar] [CrossRef]
- Dolci, F.; Kilding, A.E.; Chivers, P.; Piggott, B.; Hart, N.H. High-intensity interval training shock microcycle for enhancing sport performance: A brief review. J. Strength Cond. Res. 2020, 34, 1188–1196. [Google Scholar] [CrossRef] [PubMed]
- Weston, M.; Taylor, K.L.; Batterham, A.M.; Hopkins, W.G. Effects of low-volume high-intensity interval training (HIT) on fitness in adults: A meta-analysis of controlled and non-controlled trials. Sports Med. 2014, 44, 1005–1017. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Laursen, P.B. High-intensity interval training, solutions to the programming puzzle. Sports Med. 2013, 43, 313–338. [Google Scholar] [CrossRef] [PubMed]
- Manuel Clemente, F.; Ramirez-Campillo, R.; Nakamura, F.Y.; Sarmento, H. Effects of high-intensity interval training in men soccer player’s physical fitness: A systematic review with meta-analysis of randomized-controlled and non-controlled trials. J. Sports Sci. 2021, 39, 1202–1222. [Google Scholar] [CrossRef]
- Kunz, P.; Engel, F.A.; Holmberg, H.-C.; Sperlich, B. A meta-comparison of the effects of high-intensity interval training to those of small-sided games and other training protocols on parameters related to the physiology and performance of youth soccer players. Sports Med. 2019, 5, 1–13. [Google Scholar] [CrossRef]
- Rabbani, A.; Clemente, F.M.; Kargarfard, M.; Jahangiri, S. Combined small-sided game and high-intensity interval training in soccer players: The effect of exercise order. J. Hum. Kinet. 2019, 69, 249–257. [Google Scholar] [CrossRef]
- Wong, P.-L.; Chaouachi, A.; Chamari, K.; Dellal, A.; Wisloff, U. Effect of preseason concurrent muscular strength and high-intensity interval training in professional soccer players. J. Strength Cond. Res. 2010, 24, 653–660. [Google Scholar] [CrossRef]
- Dupont, G.; Akakpo, K.; Berthoin, S. The effect of in-season, high-intensity interval training in soccer players. J. Strength Cond. Res. 2004, 18, 584–589. [Google Scholar]
- Menz, V.; Marterer, N.; Amin, S.B.; Faulhaber, M.; Hansen, A.B.; Lawley, J.S. Functional vs. Running low-volume high-intensity interval training: Effects on vo2max and muscular endurance. J. Sports Sci. Med. 2019, 18, 497–504. [Google Scholar]
- Kellmann, M.; Bertollo, M.; Bosquet, L.; Brink, M.; Coutts, A.J.; Duffield, R.; Erlacher, D.; Halson, S.L.; Hecksteden, A.; Heidari, J. Recovery and performance in sport: Consensus statement. Int. J. Sports Physiol. Perform. 2018, 13, 240–245. [Google Scholar] [CrossRef]
- Girard, J.; Feng, B.; Chapman, C. The effects of high-intensity interval training on athletic performance measures: A systematic review. Phys. Ther. Rev. 2018, 23, 151–160. [Google Scholar] [CrossRef]
- Franchini, E.; Cormack, S.; Takito, M.Y. Effects of high-intensity interval training on olympic combat sports athletes’ performance and physiological adaptation: A systematic review. J. Strength Cond. Res. 2019, 33, 242–252. [Google Scholar] [CrossRef]
- Menz, V.; Strobl, J.; Faulhaber, M.; Gatterer, H.; Burtscher, M. Effect of 3-week high-intensity interval training on VO2max, total haemoglobin mass, plasma and blood volume in well-trained athletes. Eur. J. Appl. Physiol. 2015, 115, 2349–2356. [Google Scholar] [CrossRef] [PubMed]
- Wen, D.; Utesch, T.; Wu, J.; Robertson, S.; Liu, J.; Hu, G.; Chen, H. Effects of different protocols of high intensity interval training for VO2max improvements in adults: A meta-analysis of randomised controlled trials. J. Sci. Med. Sport 2019, 22, 941–947. [Google Scholar] [CrossRef]
- Lee, K.H.; Lee, K.; Choi, Y.C. Very short-term high-intensity interval training in highschool soccer players. J. Men’s Health 2020, 16, 1–8. [Google Scholar]
- Stallman, H.M.; Hurst, C.P. The university stress scale: Measuring domains and extent of stress in university students. Aust. Psychol. 2016, 51, 128–134. [Google Scholar] [CrossRef]
- Hamlin, M.J.; Wilkes, D.; Elliot, C.A.; Lizamore, C.A.; Kathiravel, Y. Monitoring training loads and perceived stress in young elite university athletes. Front. Physiol. 2019, 10, 1–12. [Google Scholar] [CrossRef]
- Liguori, G. American College of Sports Medicine. In ACSM’s Guidelines for Exercise Testing and Prescription; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2020. [Google Scholar]
- Christie, C. The Wingate Anaerobic Test: A Comprehensive Literature Review and Update on Reference Values in Athletes; Utah State University: Logan, UT, USA, 2021. [Google Scholar]
- Janicijevic, D.; Knezevic, O.M.; Garcia-Ramos, A.; Cvetic, D.; Mirkov, D.M. Isokinetic testing: Sensitivity of the force-velocity relationship assessed through the two-point method to discriminate between muscle groups and participants’ physical activity levels. Int. J. Environ. Res. Public Health 2020, 17, 8570. [Google Scholar] [CrossRef] [PubMed]
- Laursen, P.B.; Jenkins, D.G. The scientific basis for high-intensity interval training. Sports Med. 2002, 32, 53–73. [Google Scholar] [CrossRef]
- MacInnis, M.J.; Zacharewicz, E.; Martin, B.J.; Haikalis, M.E.; Skelly, L.E.; Tarnopolsky, M.A.; Murphy, R.M.; Gibala, M.J. Superior mitochondrial adaptations in human skeletal muscle after interval compared to continuous single-leg cycling matched for total work. J. Physiol. 2017, 595, 2955–2968. [Google Scholar] [CrossRef]
- Sarkar, S.; Chatterjee, S.; Dey, S.K. Effect of 8 weeks high intensity interval training on maximum oxygen uptake capacity and related cardio-respiratory parameters at anaerobic threshold level of indian male field hockey players. Eur. J. Phys. Educ. Sport Sci. 2019, 5, 106–116. [Google Scholar]
- Smith-Ryan, A.E.; Melvin, M.N.; Wingfield, H.L. High-intensity interval training: Modulating interval duration in overweight/obese men. Physician Sports Med. 2015, 43, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Cometti, G.; Maffiuletti, N.; Pousson, M.; Chatard, J.-C.; Maffulli, N. Isokinetic strength and anaerobic power of elite, subelite and amateur French soccer players. Int. J. Sports Med. 2001, 22, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Franchini, E.; Julio, U.F.; Panissa, V.L.; Lira, F.S.; Gerosa-Neto, J.; Branco, B.H. High-intensity intermittent training positively affects aerobic and anaerobic performance in judo athletes independently of exercise mode. Front. Physiol. 2016, 7, 268–279. [Google Scholar] [CrossRef] [PubMed]
- Ko, D.-H.; Choi, Y.-C.; Lee, D.-S. The effect of short-term wingate-based high intensity interval training on anaerobic power and isokinetic muscle function in adolescent badminton players. Children 2021, 8, 458. [Google Scholar] [CrossRef]
- Diker, G.; Struzik, A.; Ön, S.; Zileli, R. The Relationship between the Hamstring-to-Quadriceps Ratio and Jumping and Sprinting Abilities of Young Male Soccer Players. Int. J. Environ. Res. Public Health 2022, 19, 7471. [Google Scholar] [CrossRef] [PubMed]
- Rosa, F.; Sarmento, H.; Duarte, J.P.; Barrera, J.; Loureiro, F.; Vaz, V.; Saavedra, N.; Figueiredo, A.J. Knee and hip agonist-antagonist relationship in male under-19 soccer players. PLoS ONE 2022, 17, e0266881–e0266891. [Google Scholar] [CrossRef] [PubMed]
- Carroll, T.; Selvanayagam, V.; Riek, S.; Semmler, J. Neural adaptations to strength training: Moving beyond transcranial magnetic stimulation and reflex studies. J. Acta Physiol. 2011, 202, 119–140. [Google Scholar] [CrossRef]
- MacInnis, M.J.; Gibala, M.J. Physiological adaptations to interval training and the role of exercise intensity. J. Physiol. 2017, 595, 2915–2930. [Google Scholar] [CrossRef] [PubMed]
- Nybo, L.; Sundstrup, E.; Jakobsen, M.D.; Mohr, M.; Hornstrup, T.; Simonsen, L.; Bülow, J.; Randers, M.B.; Nielsen, J.J.; Aagaard, P. High-intensity training versus traditional exercise interventions for promoting health. Med. Sci. Sports Exerc. 2010, 42, 1951–1958. [Google Scholar] [CrossRef]
- Botta, R.M.; Palermi, S.; Tarantino, D. High-intensity interval training for chronic pain conditions: A narrative review. J. Exerc. Rehabil. 2022, 18, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Torma, F.; Gombos, Z.; Jokai, M.; Takeda, M.; Mimura, T.; Radak, Z. High intensity interval training and molecular adaptive response of skeletal muscle. Sports Med. Health Sci. 2019, 1, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Choi, Y.C. The effect of short-term off-season cross-country ski training on body composition, physical fitness, and isokinetic muscle functions of cross-country skiers. J. Men’s Health 2020, 16, 63–74. [Google Scholar]
- Kim, T.H.; Han, J.K.; Lee, J.Y.; Choi, Y.C. The effect of polarized training on the athletic performance of male and female cross-country skiers during the general preparation period. Healthcare 2021, 9, 851. [Google Scholar] [CrossRef]
- Bompa, T.O.; Buzzichelli, C. Periodization—Theory and Methodology of Training; Human Kinetics: Champaign, IL, USA, 2018. [Google Scholar]
Training Type | Bout | Intensity | Acceleration | Target Intensity Maintain | Interval Recovery | Set |
---|---|---|---|---|---|---|
Cycle ergometer | First bout | HRmax 85% | 10 s | 20 s | 120 s | 3 |
Bout recovery 3 min | ||||||
Second bout | HRmax 90% | 10 s | 15 s | 120 s | 3 | |
Bout recovery 3 min | ||||||
Third bout | HRmax 100% | 10 s | 10 s | 120 s | 3 | |
End of cycle ergometer training and recovery 10 min | ||||||
Treadmill | First bout | HRmax 85% | 10 s | 20 s | 120 s | 3 |
Bout recovery 3 min | ||||||
Second bout | HRmax 90% | 10 s | 15 s | 120 s | 3 | |
Bout recovery 3 min | ||||||
Third bout | HRmax 100% | 10 s | 10 s | 120 s | 3 | |
End of training |
Variables | LFG (n = 27) | HFG (n = 27) | t-Value | p-Value |
---|---|---|---|---|
Age, years | 15.7 ± 0.8 | 15.8 ± 0.9 | −0.242 | 0.710 |
Height, cm | 176.4 ± 4.7 | 177.1 ± 4.3 | −0.884 | 0.383 |
Weight, kg | 63.8 ± 6.8 | 64.6 ± 7.1 | −0.615 | 0.754 |
BMI, kg/m2 | 20.5 ± 1.8 | 20.6 ± 1.9 | 0.239 | 0.813 |
Injury duration, week | 6.8 ± 1.2 | 7.0 ± 1.1 | 0.247 | 0.510 |
Injury site, n | ||||
Ankle | 5 | 8 | 0.450 | 0.258 |
Knee | 17 | 17 | ||
Hip | 3 | 1 | ||
Low back | 2 | 1 |
Variables | Group | Pre | Post | p-Value |
---|---|---|---|---|
VO2peak, mL/kg/min | LFG | 48.7 ± 6.9 | 56.4 ± 8.9 | 0.003 |
HFG | 50.1 ± 7.3 | 57.1 ± 9.0 | 0.009 | |
p-value | 0.241 | 0.035 | ||
Anaerobic Threshold, % | LFG | 63.1 ± 6.0 | 69.3 ± 6.8 | 0.028 |
HFG | 62.9 ± 6.8 | 71.7 ± 6.7 | 0.017 | |
p-value | 0.419 | 0.159 | ||
ATHR, bpm | LFG | 149.1 ± 12.3 | 158.0 ± 11.9 | 0.014 |
HFG | 148.9 ± 11.8 | 160.9 ± 12.1 | 0.002 | |
p-value | 0.543 | 0.215 | ||
Exercise duration, s | LFG | 907.1 ± 32.1 | 972.3 ± 29.6 | 0.036 |
HFG | 918.7 ± 28.9 | 990.4 ± 30.1 | 0.025 | |
p-value | 0.144 | 0.041 | ||
Recovery 1 m HR, % | LFG | 58.6 ± 8.8 | 62.3 ± 10.7 | 0.014 |
HFG | 57.7 ± 8.1 | 60.1 ± 12.1 | 0.011 | |
p-value | 0.296 | 0.028 |
Set | Variables | Group | Pre | Post | p-Value |
---|---|---|---|---|---|
1 set | Peak power, watt | LFG | 667.1 ± 110.7 | 766.6 ± 137.8 | 0.005 |
HFG | 680.9 ± 105.4 | 776.6 ± 127.0 | 0.014 | ||
p-value | 0.210 | 0.585 | |||
Peak power/kg | LFG | 10.5 ± 2.1 | 11.9 ± 1.2 | 0.003 | |
HFG | 11.0 ± 1.3 | 12.1 ± 1.3 | 0.015 | ||
p-value | 0.300 | 0.419 | |||
Fatigue Index | LFG | 43.2 ± 14.8 | 35.8 ± 10.5 | 0.037 | |
HFG | 45.4 ± 18.9 | 36.5 ± 10.9 | 0.008 | ||
p-value | 0.415 | 0.410 | |||
3 set | Peak power, watt | LFG | 636.4 ± 98.8 | 674.1 ± 76.7 | 0.019 |
HFG | 627.0 ± 88.9 | 685.2 ± 78.5 | 0.002 | ||
p-value | 0.516 | 0.021 | |||
Peak power/kg | LFG | 10.0 ± 1.4 | 10.1 ± 1.2 | 0.039 | |
HFG | 9.8 ± 1.5 | 10.9 ± 1.7 | 0.041 | ||
p-value | 0.410 | 0.025 | |||
Fatigue Index | LFG | 51.6 ± 12.3 | 44.4 ± 13.1 | 0.017 | |
HFG | 54.7 ± 10.5 | 39.5 ± 15.0 | 0.030 | ||
p-value | 0.315 | 0.017 | |||
5 set | Peak power, watt | LFG | 594.6 ± 81.4 | 606.3 ± 85.8 | 0.160 |
HFG | 603.1 ± 78.7 | 629.3 ± 81.6 | 0.019 | ||
p-value | 0.194 | 0.039 | |||
Peak power/kg | LFG | 9.5 ± 1.6 | 9.6 ± 1.5 | 0.289 | |
HFG | 9.3 ± 1.7 | 10.0 ± 1.4 | 0.024 | ||
p-value | 0.416 | 0.044 | |||
Fatigue Index | LFG | 57.1 ± 10.6 | 56.1 ± 12.4 | 0.177 | |
HFG | 59.1 ± 11.4 | 51.6 ± 12.6 | 0.013 | ||
p-value | 0.284 | 0.033 |
Variables | Group | Pre | Post | p-Value | |
---|---|---|---|---|---|
Isokinetic knee strength | 60°/s, peak Nm/kg, % | LFG | 466.2 ± 58.9 | 482.7 ± 36.4 | 0.017 |
HFG | 464.9 ± 77.6 | 498.3 ± 64.5 | 0.002 | ||
p-value | 0.251 | 0.515 | |||
180°/s, average Watt/kg, % | LFG | 613.4 ± 95.5 | 632.9 ± 53.3 | 0.017 | |
HFG | 629.8 ± 98.8 | 647.8 ± 90.3 | 0.020 | ||
p-value | 0.274 | 0.610 | |||
240°/s, total Joule/kg, % | LFG | 65.6 ± 9.8 | 68.5 ± 8.5 | 0.360 | |
HFG | 64.4 ± 9.9 | 70.2 ± 10.5 | 0.006 | ||
p-value | 0.380 | 0.010 | |||
Body composition | Fat mass, kg | LFG | 7.4 ± 1.7 | 7.2 ± 1.7 | 0.805 |
HFG | 7.3 ± 1.5 | 7.1 ± 1.8 | 0.789 | ||
p-value | 0.332 | 0.250 | |||
Fat ratio, % | LFG | 11.6 ± 2.1 | 11.1 ± 2.9 | 0.746 | |
HFG | 11.4 ± 1.9 | 11.0 ± 2.5 | 0.527 | ||
p-value | 0.284 | 0.528 | |||
Muscle mass, kg | LFG | 31.7 ± 4.7 | 32.3 ± 4.4 | 0.613 | |
HFG | 31.7 ± 4.6 | 32.0 ± 4.2 | 0.245 | ||
p-value | 0.468 | 0.601 | |||
Muscle ratio, % | LFG | 49.7 ± 2.1 | 50.1 ± 2.4 | 0.585 | |
HFG | 50.1 ± 2.2 | 50.3 ± 2.4 | 0.628 | ||
p-value | 0.601 | 0.784 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, S.; Kim, Y.; Choi, Y. Aerobic and Anaerobic Fitness according to High-Intensity Interval Training Frequency in Youth Soccer Players in the Last Stage of Rehabilitation. Int. J. Environ. Res. Public Health 2022, 19, 15573. https://doi.org/10.3390/ijerph192315573
Yan S, Kim Y, Choi Y. Aerobic and Anaerobic Fitness according to High-Intensity Interval Training Frequency in Youth Soccer Players in the Last Stage of Rehabilitation. International Journal of Environmental Research and Public Health. 2022; 19(23):15573. https://doi.org/10.3390/ijerph192315573
Chicago/Turabian StyleYan, Shuren, Yonghwan Kim, and Yongchul Choi. 2022. "Aerobic and Anaerobic Fitness according to High-Intensity Interval Training Frequency in Youth Soccer Players in the Last Stage of Rehabilitation" International Journal of Environmental Research and Public Health 19, no. 23: 15573. https://doi.org/10.3390/ijerph192315573
APA StyleYan, S., Kim, Y., & Choi, Y. (2022). Aerobic and Anaerobic Fitness according to High-Intensity Interval Training Frequency in Youth Soccer Players in the Last Stage of Rehabilitation. International Journal of Environmental Research and Public Health, 19(23), 15573. https://doi.org/10.3390/ijerph192315573