Next Article in Journal
COVID-19 Response in Thailand and Its Implications on Future Preparedness
Previous Article in Journal
Psychometric Properties of the Healthy Lifestyle Questionnaire for Ecuadorian University Students (EVS-EUE)
Previous Article in Special Issue
Economic Value Estimation of the Natural Heritage of the Tatra National Park
Article

Phenological Response in the Trophic Levels to Climate Change in Korea

Department of Environmental Science and Engineering, College of Engineering, Ewha Womans University, Seoul 120-750, Korea
*
Author to whom correspondence should be addressed.
Int. J. Environ. Res. Public Health 2021, 18(3), 1086; https://doi.org/10.3390/ijerph18031086
Received: 22 November 2020 / Revised: 12 January 2021 / Accepted: 20 January 2021 / Published: 26 January 2021
The response of the phenological events of individual species to climate change is not isolated, but is connected through interaction with other species at the same or adjacent trophic level. Using long-term phenological data observed since 1976 in Korea, whose temperature has risen more steeply than the average global temperature, this study conducted phenological analysis (differ-ences in the phenology of groups, differences in phenological shifts due to climate change, differ-ences in phenological sensitivity to climate by groups, and the change of phenological day differ-ences among interacting groups). The phenological shift of the producer group (plants) was found to be negative in all researched species, which means that it blooms quickly over the years. The regression slope of consumers (primary consumers and secondary consumers) was generally posi-tive which means that the phenological events of these species tended to be later during the study period. The inter-regional deviation of phenological events was not large for any plant except for plum tree and Black locust. In addition, regional variations in high trophic levels of secondary consumers tended to be greater than that of producers and primary consumers. Among the studied species, plum was the most sensitive to temperature, and when the temperature rose by 1 °C, the flowering time of plum decreased by 7.20 days. As a result of checking the day differences in the phenological events of the interacting species, the phenological events of species were reversed, and butterflies have appeared earlier than plum, Korean forsythia, and Korean rosebay since 1990. Using long-term data from Korea, this study investigated differences in phenological reactions among trophic groups. There is a possibility of a phenological mismatch between trophic groups in the future if global warming continues due to differences in sensitivity to climate and phenological shifts between trophic levels. View Full-Text
Keywords: synchrony; global warming; species interaction; community; phenology synchrony; global warming; species interaction; community; phenology
Show Figures

Figure 1

MDPI and ACS Style

Kim, M.; Lee, S.; Lee, H.; Lee, S. Phenological Response in the Trophic Levels to Climate Change in Korea. Int. J. Environ. Res. Public Health 2021, 18, 1086. https://doi.org/10.3390/ijerph18031086

AMA Style

Kim M, Lee S, Lee H, Lee S. Phenological Response in the Trophic Levels to Climate Change in Korea. International Journal of Environmental Research and Public Health. 2021; 18(3):1086. https://doi.org/10.3390/ijerph18031086

Chicago/Turabian Style

Kim, Minkyung, Sojeong Lee, Hakyung Lee, and Sangdon Lee. 2021. "Phenological Response in the Trophic Levels to Climate Change in Korea" International Journal of Environmental Research and Public Health 18, no. 3: 1086. https://doi.org/10.3390/ijerph18031086

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop