Extended-Spectrum Beta-Lactamase-Producing and Carbapenem-Resistant Enterobacterales in Companion and Animal-Assisted Interventions Dogs
Abstract
:1. Introduction
2. Extended-Spectrum Beta-Lactamase-Producing and Carbapenem-Resistant Enterobacterales in Human Infections
3. ESBL-Producing and Carbapenem-Resistant Enterobacterales in Companion Animals
4. ESBL-Producing and Carbapenem-Resistant Enterobacterales in Animal-Assisted Interventions Dogs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Takashima, G.K.; Day, M.J. Setting the One Health agenda and the human-companion animal bond. Int. J. Environ. Res. Public Health 2014, 11, 11110–11120. [Google Scholar] [CrossRef] [Green Version]
- Bassetti, M.; Vena, A.; Sepulcri, C.; Giacobbe, D.R.; Peghin, M. Treatment of Bloodstream Infections Due to Gram-Negative Bacteria with Difficult-to-Treat Resistance. Antibiotics 2020, 9, 632. [Google Scholar] [CrossRef]
- McEwen, S.A.; Collignon, P.J. Antimicrobial Resistance: A One Health Perspective. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- WHO. New Report Calls for Urgent Action to Avert Antimicrobial Resistance Crisis. Available online: https://www.who.int/news/item/29-04-2019-new-report-calls-for-urgent-action-to-avert-antimicrobial-resistance-crisis (accessed on 4 August 2021).
- World Health Organization. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics; World Health Organization: Geneva, Switzerland, 2017; Available online: https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf (accessed on 4 August 2021).
- Capita, R.; Alonso-Calleja, C. Antibiotic-resistant bacteria: A challenge for the food industry. Crit. Rev. Food Sci. Nutr. 2013, 53, 11–48. [Google Scholar] [CrossRef]
- Liu, X.; Geng, S.; Wai-Chi Chan, E.; Chen, S. Increased prevalence of Escherichia coli strains from food carrying blaNDM and mcr-1-bearing plasmids that structurally resemble those of clinical strains, China, 2015 to 2017. Eurosurveillance 2019, 24, 1800113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Veterinary Medical Association. Animal-Assisted Interventions: Definitions. Available online: https://www.avma.org/resources-tools/avma-policies/animal-assisted-interventions-definitions (accessed on 23 September 2021).
- International Association of Human-Animal Interaction Organizations. IAHAIO White Paper 2014, Updated for 2018. The IAHAIO Definitions for Animal Assisted Intervention and Guidelines for Wellness of Animals Involved in AAI. Available online: https://iahaio.org/wp/wp-content/uploads/2021/01/iahaio-white-paper-2018-english.pdf (accessed on 23 September 2021).
- Boldig, C.M.; Butala, N. Pet Therapy as a Nonpharmacological Treatment Option for Neurological Disorders: A Review of the Literature. Cureus 2021, 13, 13. [Google Scholar] [CrossRef]
- Santaniello, A.; Garzillo, S.; Amato, A.; Sansone, M.; Di Palma, A.; Di Maggio, A.; Fioretti, A.; Menna, L.F. Animal-assisted therapy as a non-pharmacological approach in alzheimer’s disease: A retrospective study. Animals 2020, 10, 1142. [Google Scholar] [CrossRef] [PubMed]
- Virués-Ortega, J.; Pastor-Barriuso, R.; Castellote, J.M.; Población, A.; De Pedro-Cuesta, J. Effect of animal-assisted therapy on the psychological and functional status of elderly populations and patients with psychiatric disorders: A meta-analysis. Health Psychol. 2012, 6, 197–221. [Google Scholar] [CrossRef]
- Peters, B.C.; Wood, W.; Hepburn, S.; Moody, E.J. Preliminary Efficacy of Occupational Therapy in an Equine Environment for Youth with Autism Spectrum Disorder. J. Autism. Dev. Disord. 2021, 1–15. [Google Scholar] [CrossRef]
- Rodrigo-Claverol, M.; Malla-Clua, B.; Marquilles-Bonet, C.; Sol, J.; Jové-Naval, J.; Sole-Pujol, M.; Ortega-Bravo, M. Animal-Assisted Therapy Improves Communication and Mobility among Institutionalized People with Cognitive Impairment. Int. J. Environ. Res. Public Health 2020, 17, 5899. [Google Scholar] [CrossRef]
- Sherrill, M.; Hengst, J.A. Exploring Animal-Assisted Therapy for Creating Rich Communicative Environments and Targeting Communication Goals in Subacute Rehabilitation. Am. J. Speech Lang. Pathol. 2021, 1–20. [Google Scholar] [CrossRef]
- Ngai, J.T.K.; Yu, R.W.M.; Chau, K.K.Y.; Wong, P.W.C. Effectiveness of a school-based programme of animal-assisted humane education in Hong Kong for the promotion of social and emotional learning: A quasi-experimental pilot study. PLoS ONE 2021, 16, e0249033. [Google Scholar] [CrossRef]
- Fung, S.C. Effect of a Canine-Assisted Read Aloud Intervention on Reading Ability and Physiological Response: A Pilot Study. Animals 2019, 9, 474. [Google Scholar] [CrossRef] [Green Version]
- Leonardi, R.J.; Buchanan-Smith, H.M.; McIvor, G.; Vick, S.J. “You Think You’re Helping Them, But They’re Helping You Too”: Experiences of Scottish Male Young Offenders Participating in a Dog Training Program. Int. J. Environ. Res. Public Health 2017, 14, 945. [Google Scholar] [CrossRef] [PubMed]
- Santaniello, A.; Dicé, F.; Carratú, R.C.; Amato, A.; Fioretti, A.; Menna, L.F. Methodological and Terminological Issues in Animal-Assisted Interventions: An Umbrella Review of Systematic Reviews. Animals 2020, 10, 759. [Google Scholar] [CrossRef]
- The University of Tennessee, Knoxville-Veterinary Social Work. Animal-Assisted Interventions. Available online: https://vetsocialwork.utk.edu/about-us/what-is-animal-assisted-interventions (accessed on 22 November 2021).
- Enoch, D.A.; Karas, J.A.; Slater, J.D.; Emery, M.M.; Kearns, A.M.; Farrington, M. MRSA carriage in a pet therapy dog. J. Hosp. Infect. 2005, 60, 186–188. [Google Scholar] [CrossRef]
- Lefebvre, S.L.; Weese, J.S. Contamination of pet therapy dogs with MRSA and Clostridium difficile. J. Hosp. Infect. 2009, 72, 268–269. [Google Scholar] [CrossRef] [PubMed]
- Boyle, S.F.; Corrigan, V.K.; Buechner-Maxwell, V.; Pierce, B.J. Evaluation of Risk of Zoonotic Pathogen Transmission in a University-Based Animal Assisted Intervention (AAI) Program. Front. Vet. Sci. 2019, 6, 167. [Google Scholar] [CrossRef]
- Santaniello, A.; Varriale, L.; Dipineto, L.; Borrelli, L.; Pace, A.; Fioretti, A.; Menna, L.F. Presence of Campylobacter jejuni and C. coli in Dogs under Training for Animal-Assisted Therapies. Int. J. Environ. Res. Public Health 2021, 18, 3717. [Google Scholar] [CrossRef] [PubMed]
- Coughlan, K.; Olsen, K.E.; Boxrud, D.; Bender, J.B. Methicillin-resistant Staphylococcus aureus in Resident Animals of a Long-term Care Facility. Zoonoses Public Health 2010, 57, 220–226. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Point Prevalence Survey of Health Care Associated Infections and Antimicrobial Use in European Acute Care Hospitals; ECDC: Stockholm, Sweden, 2019; Available online: https://www.ecdc.europa.eu/en/publications-data/point-prevalence-survey-healthcare-associated-infections-and-antimicrobial-use-4 (accessed on 20 September 2021).
- Woerther, P.L.; Burdet, C.; Chachaty, E.; Andremont, A. Trends in human fecal carriage of extended-spectrum beta-lactamases in the community: Toward the globalization of CTX-M. Clin. Microbiol. Rev. 2013, 26, 744–745. [Google Scholar] [CrossRef] [Green Version]
- Pitout, J.D.; Laupland, K.B. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: An emerging public-health concern. Lancet Infect. Dis. 2008, 8, 159–166. [Google Scholar] [CrossRef]
- Meyer, E.; Schwab, F.; Schroeren-Boersch, B.; Gastmeier, P. Dramatic increase of third-generation cephalosporin-resistant E. coli in German intensive care units: Secular trends in antibiotic drug use and bacterial resistance, 2001 to 2008. Crit. Care 2010, 14, R113. [Google Scholar] [CrossRef] [Green Version]
- Nordmann, P.; Dortet, L.; Poirel, L. Carbapenem resistance in Enterobacteriaceae: Here is the storm! Trends Mol. Med. 2012, 18, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Tzouvelekis, L.S.; Markogiannakis, A.; Psichogiou, M.; Tassios, P.T.; Daikos, G.L. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: An evolving crisis of global dimensions. Clin. Microbiol. Rev. 2012, 25, 682–707. [Google Scholar] [CrossRef] [Green Version]
- Vergara-Lopez, S.; Dominguez, M.C.; Conejo, M.C.; Pascual, A.; Rodriguez-Bano, J. Lessons from an outbreak of metallo-betalactamase-producing Klebsiella oxytoca in an intensive care unit: The importance of time at risk and combination therapy. J. Hosp. Infect. 2015, 89, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Voulgari, E.; Gartzonika, C.; Vrioni, G.; Politi, L.; Priavali, E.; Levidiotou-Stefanou, S.; Tsakris, A. The Balkan region: NDM-1-producing Klebsiella pneumoniae ST11 clonal strain causing outbreaks in Greece. J. Antimicrob. Chemother. 2014, 69, 2091–2097. [Google Scholar] [CrossRef] [PubMed]
- Hrabak, J.; Papagiannitsis, C.C.; Študentová, V.; Jakubu, V.; Fridrichová, M.; Zemlickova, H.; Czech Participants of European Antimicrobial Resistance Surveillance Collective. Carbapenemase-producing Klebsiella pneumoniae in the Czech Republic in 2011. Eurosurveillance 2013, 18, 20626. [Google Scholar] [CrossRef] [Green Version]
- Zweigner, J.; Gastmeier, P.; Kola, A.; Klefisch, F.R.; Schweizer, C.; Hummel, M. A carbapenem-resistant Klebsiella pneumoniae outbreak following bronchoscopy. Am. J. Infect. Control. 2014, 42, 936–937. [Google Scholar] [CrossRef]
- Gharbi, M.; Moore, L.; Gilchrist, M.; Thomas, C.; Bamford, K.; Brannigan, E.; Holmes, A. Forecasting carbapenem resistance from antimicrobial consumption surveillance: Lessons learnt from an OXA-48-producing Klebsiella pneumoniae outbreak in a West London renal unit. Int. J. Antimicrob. Agents 2015, 46, 150–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaibani, P.; Colombo, R.; Arghittu, M.; Cariani, L.; Ambretti, S.; Bua, G.; Lombardo, D.; Landini, M.P.; Torresani, E.; Sambri, V. Successful containment and infection control of a Carbapenem-resistant Klebsiella pneumoniae outbreak in an Italian hospital. New Microbiol. 2014, 37, 87–90. [Google Scholar]
- Dautzenberg, M.J.; Ossewaarde, J.M.; E De Kraker, M.; Van Der Zee, A.; Van Burgh, S.; De Greeff, S.C.; A Bijlmer, H.; Grundmann, H.; Stuart, J.W.C.; Fluit, A.C.; et al. Successful control of a hospital-wide outbreak of OXA-48 producing Enterobacteriaceae in the Netherlands, 2009 to 2011. Eurosurveillance 2014, 19, 20723. [Google Scholar] [CrossRef] [Green Version]
- European Centre for Disease Prevention and Control. Rapid Risk Assessment: Regional Outbreak of New Delhi Metallo-Betalactamase-Producing Carbapenem-Resistant Enterobacteriaceae, Italy, 2018–2019; ECDC: Stockholm, Sweden, 2019; Available online: https://ecdc.europa.eu/sites/portal/files/documents/04-Jun-2019-RRA-Carbapenems%2C%20Enterobacteriaceae-Italy.pdf (accessed on 20 September 2021).
- Brizendine, K.D.; Richter, S.S.; Cober, E.D.; van Duin, D. Carbapenem-resistant Klebsiella pneumoniae urinary tract infection following solid organ transplantation. Antimicrob. Agents Chemother. 2015, 59, 553–557. [Google Scholar] [CrossRef] [Green Version]
- Savard, P.; Perl, T.M. Combating the spread of carbapenemases in Enterobacteriaceae: A battle that infection prevention should not lose. Clin. Microbiol. Infect. 2014, 20, 854–861. [Google Scholar] [CrossRef] [Green Version]
- Tacconelli, E.; Cataldo, M.A.; Dancer, S.J.; De Angelis, G.; Falcone, M.; Frank, U.; Kahlmeter, G.; Pan, A.; Petrosillo, N.; Rodríguez-Baño, J.; et al. ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant Gram-negative bacteria in hospitalized patients. Clin. Microbiol. Infect. 2014, 20 (Suppl. 1), 1–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tischendorf, J.; de Avila, R.A.; Safdar, N. Risk of infection following colonization with carbapenem-resistant Enterobactericeae: A systematic review. Am. J. Infect. Control 2016, 44, 539–543. [Google Scholar] [CrossRef] [Green Version]
- Oren, I.; Sprecher, H.; Finkelstein, R.; Hadad, S.; Neuberger, A.; Hussein, K.; Raz-Pasteur, A.; Lavi, N.; Saad, E.; Henig, I.; et al. Eradication of carbapenem-resistant Enterobacteriaceae gastrointestinal colonization with nonabsorbable oral antibiotic treatment: A prospective controlled trial. Am. J. Infect. Control 2013, 41, 1167–1172. [Google Scholar] [CrossRef] [PubMed]
- Lübbert, C.; Lippmann, N.; Busch, T.; Kaisers, U.X.; Ducomble, T.; Eckmanns, T.; Rodloff, A.C. Long-term carriage of Klebsiella pneumoniae carbapenemase-2-producing K pneumoniae after a large single-center outbreak in Germany. Am. J. Infect. Control 2014, 42, 376–380. [Google Scholar] [CrossRef]
- Nordmann, P.; Naas, T.; Poirel, L. Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis. 2011, 17, 1791–1798. [Google Scholar] [CrossRef] [PubMed]
- Politi, L.; Gartzonika, K.; Spanakis, N.; Zarkotou, O.; Poulou, A.; Skoura, L.; Vrioni, G.; Tsakris, A. Emergence of NDM1-producing Klebsiella pneumoniae in Greece: Evidence of awidespread clonal outbreak. J. Antimicrob. Chemother. 2019, 74, 2197–2202. [Google Scholar] [CrossRef] [Green Version]
- Manges, A.R.; Johnson, J.R. Food-borne origins of Escherichia coli causing extraintestinal infections. Clin. Infect. Dis. 2012, 55, 712–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazarus, B.; Paterson, D.L.; Mollinger, J.L.; Rogers, B.A. Do human extraintestinal Escherichia coli infections resistant to expanded-spectrum cephalosporins originate from food-producing animals? A systematic review. Clin. Infect. Dis. 2015, 60, 439–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- So, J.H.; Kim, J.; Bae, I.K.; Jeong, S.H.; Kim, S.H.; Lim, S.K.; Park, Y.H.; Lee, K. Dissemination of multidrug-resistant Escherichia coli in Korean veterinary hospitals. Diagn. Microbiol. Infect. Dis. 2012, 73, 195–199. [Google Scholar] [CrossRef]
- Hong, J.S.; Song, W.; Park, H.M.; Oh, J.Y.; Chae, J.C.; Shin, S.; Jeong, S.H. Clonal spread of extended-spectrum cephalosporin-resistant Enterobacteriaceae Between companion animals and humans in South Korea. Front. Microbiol. 2019, 10, 1371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belas, A.; Menezes, J.; Gama, L.T.; Pomba, C. Sharing of Clinically Important Antimicrobial Resistance Genes by Companion Animals and Their Human Household Members. Microb. Drug Resist. 2020, 26, 1174–1185. [Google Scholar] [CrossRef] [PubMed]
- Jung, W.K.; Shin, S.; Park, Y.K.; Noh, S.M.; Shin, S.R.; Yoo, H.S.; Park, S.C.; Park, Y.H.; Park, K.T. Distribution and antimicrobial resistance profiles of bacterial species in stray dogs, hospital-admitted dogs, and veterinary staff in South Korea. Prev. Vet. Med. 2020, 184, 105151. [Google Scholar] [CrossRef]
- Baede, V.O.; Wagenaar, J.A.; Broens, E.M.; Duim, B.; Dohmen, W.; Nijsse, R.; Timmerman, A.J.; Hordijk, J. Longitudinal study of extended-spectrum-β-lactamase- and AmpC-producing Enterobacteriaceae in household dogs. Antimicrob. Agents Chemother. 2015, 59, 3117–3124. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.M.; Fernandes, M.R.; Sellera, F.P.; Cerdeira, L.; Medeiros, L.K.G.; Garino, F.; Azevedo, S.S.; Lincopan, N. Multidrug-resistant CTX-M-15-producing Klebsiella pneumoniae ST231 associated with infection and persistent colonization of dog. Diagn Microbiol. Infect Dis. 2018, 92, 259–261. [Google Scholar] [CrossRef] [PubMed]
- Salgado-Caxito, M.; Benavides, J.A.; Munita, J.M.; Rivas, L.; García, P.; Listoni, F.J.P.; Moreno-Switt, A.I.; Paes, A.C. Risk factors associated with faecal carriage of extended-spectrum cephalosporin-resistant Escherichia coli among dogs in Southeast Brazil. Prev. Vet. Med. 2021, 190, 105316. [Google Scholar] [CrossRef]
- Schmiedel, J.; Falgenhauer, L.; Domann, E.; Bauerfeind, R.; Prenger-Berninghoff, E.; Imirzalioglu, C.; Chakraborty, T. Multiresistant extended-spectrum beta-lactamase-producing Enterobacteriaceae from humans, companion animals and horses in central Hesse, Germany. BMC Microbiol. 2014, 14, 187. [Google Scholar] [CrossRef] [Green Version]
- Liakopoulos, A.; Betts, J.; La Ragione, R.; van Essen-Zandbergen, A.; Ceccarelli, D.; Petinaki, E.; Koutinas, C.K.; Mevius, D.J. Occurrence and characterization of extended-spectrum cephalosporin-resistant Enterobacteriaceae in healthy household dogs in Greece. J. Med. Microbiol. 2018, 67, 931–935. [Google Scholar] [CrossRef]
- Fernandes, M.R.; Sellera, F.P.; Moura, Q.; Carvalho, M.P.N.; Rosato, P.N.; Cerdeira, L.; Lincopan, N. Zooanthroponotic transmission of drug-resistant Pseudomonas aeruginosa. Brazil Emerg. Infect. Dis. 2018, 24, 1160–1162. [Google Scholar] [CrossRef] [Green Version]
- Ljungquist, O.; Ljungquist, D.; Myrenås, M.; Rydén, C.; Finn, M.; Bengtsson, B. Evidence of household transfer of ESBL-/pAmpC-producing Enterobacteriaceae between humans and dogs—a pilot study. Infect. Ecol. Epidemiol. 2016, 6, 31514. [Google Scholar] [CrossRef] [PubMed]
- Toombs-Ruane, L.J.; Benschop, J.; French, N.P.; Biggs, P.J.; Midwinter, A.C.; Marshall, J.C.; Chan, M.; Drinković, D.; Fayaz, A.; Baker, M.G.; et al. Carriage of Extended-Spectrum-Beta-Lactamase- and AmpC Beta-Lactamase-Producing Escherichia coli Strains from Humans and Pets in the Same Households. Appl. Environ. Microbiol. 2020, 86, e01613-20. [Google Scholar] [CrossRef] [PubMed]
- Dazio, V.; Nigg, A.; Schmidt, J.S.; Brilhante, M.; Campos-Madueno, E.I.; Mauri, N.; Kuster, S.P.; Brawand, S.G.; Willi, B.; Endimiani, A.; et al. Duration of carriage of multidrug-resistant bacteria in dogs and cats in veterinary care and co-carriage with their owners. One Health 2021, 13, 100322. [Google Scholar] [CrossRef]
- Formenti, N.; Grassi, A.; Parisio, G.; Romeo, C.; Guarneri, F.; Birbes, L.; Pitozzi, A.; Scali, F.; Maisano, A.M.; Boniotti, M.B.; et al. Extended-Spectrum-β-Lactamase- and AmpC-Producing Escherichia coli in Domestic Dogs: Spread, Characterisation and Associated Risk Factors. Antibiotics 2021, 10, 1251. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Banerjee, J.; Bhattacharyya, D.; Tudu, R.; Samanta, I.; Dandapat, P.; Nanda, P.K.; Das, A.K.; Mondal, B.; Batabyal, S.; et al. Companion Animals Emerged as an Important Reservoir of Carbapenem-Resistant Enterobacteriaceae: A Report from India. Curr. Microbiol. 2021, 78, 1006–1016. [Google Scholar] [CrossRef]
- Tyson, G.H.; Li, C.; Ceric, O.; Reimschuessel, R.; Cole, S.; Peak, L.; Rankin, S.C. Complete genome sequence of a carbapenem-resistant canine Escherichia coli isolate with blaNDM-5 from a dog in the United States. Microbiol. Resour. Announc. 2019, 8, e00872-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, S.D.; Peak, L.; Tyson, G.H.; Reimschuessel, R.; Ceric, O.; Rankin, S.C. New Delhi Metallo-β-Lactamase-5-Producing Escherichia coli in Companion Animals, United States. Emerg. Infect. Dis. 2020, 26, 381–383. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, M.E.; Phan, H.T.T.; George, S.; Hubbard, A.T.M.; Stoesser, N.; Maciuca, I.E.; Crook, D.W.; Timofte, D. Occurrence and characterization of Escherichia coli ST410 co-harbouring blaNDM-5, blaCMY-42 and blaTEM-190 in a dog from the UK. J. Antimicrob. Chemother. 2019, 74, 1207–1211. [Google Scholar] [CrossRef]
- Alba, P.; Taddei, R.; Cordaro, G.; Fontana, M.C.; Toschi, E.; Gaibani, P.; Marani, I.; Giacomi, A.; Diaconu, E.L.; Iurescia, M.; et al. Carbapenemase IncF-borne blaNDM-5 gene in the E. coli ST167 high-risk clone from canine clinical infection, Italy. Vet. Microbiol. 2021, 256, 109045. [Google Scholar] [CrossRef] [PubMed]
- Yousfi, M.; Mairi, A.; Bakour, S.; Touati, A.; Hassissen, L.; Hadjadj, L.; Rolain, J.-M. First report of NDM-5-producing Escherichia coli ST1284 isolated from dog in Bejaia, Algeria. New Microbes New Infect. 2015, 8, 17–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, J.S.; Song, W.; Jeong, S.H. Molecular Characteristics of NDM-5-Producing Escherichia coli from a Cat and a Dog in South Korea. Microb. Drug Resist. 2020, 26, 1005–1008. [Google Scholar] [CrossRef]
- Grönthal, T.; Österblad, M.; Eklund, M.; Jalava, J.; Nykäsenoja, S.; Pekkanen, K.; Rantala, M. Sharing more than friendship—Transmission of NDM-5 ST167 and CTX-M-9 ST69 Escherichia coli between dogs and humans in a family, Finland, 2015. Eurosurveillance 2018, 23, 23. [Google Scholar] [CrossRef]
- Cui, L.; Lei, L.; Lv, Y.; Zhang, R.; Liu, X.; Li, M.; Zhang, F.; Wang, Y. bla(NDM-1)-producing multidrug-resistant Escherichia coli isolated from a companion dog in China. J. Glob. Antimicrob. Resist. 2018, 13, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, B.W.; Nayak, R.; Boothe, D.M. Emergence of a New Delhi metallo-β-lactamase (NDM-1)-encoding gene in clinical Escherichia coli isolates recovered from companion animals in the United States. Antimicrob. Agents Chemother. 2013, 57, 2902–2903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yousfi, M.; Touati, A.; Mairi, A.; Brasme, L.; Gharout-Sait, A.; Guillard, T.; De Champs, C. Emergence of Carbapenemase-Producing Escherichia coli Isolated from Companion Animals in Algeria. Microb. Drug Resist. 2016, 22, 342–346. [Google Scholar] [CrossRef] [PubMed]
- Melo, L.C.; Boisson, M.N.; Saras, E.; Médaille, C.; Boulouis, H.J.; Madec, J.Y.; Haenni, M. OXA-48-producing ST372 Escherichia coli in a French dog. J. Antimicrob. Chemother. 2017, 72, 1256–1258. [Google Scholar] [PubMed] [Green Version]
- Liu, X.; Thungrat, K.; Boothe, D.M. Occurrence of OXA-48 Carbapenemase and Other β-Lactamase Genes in ESBL-Producing Multidrug Resistant Escherichia coli from Dogs and Cats in the United States, 2009–2013. Front. Microbiol. 2016, 7, 1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Torralba, A.; Oteo, J.; Asenjo, A.; Bautista, V.; Fuentes, E.; Alós, J.I. Survey of Carbapenemase-Producing Enterobacteriaceae in Companion Dogs in Madrid, Spain. Antimicrob. Agents Chemother. 2016, 60, 2499–2501. [Google Scholar] [CrossRef] [Green Version]
- Nigg, A.; Brilhante, M.; Dazio, V.; Clément, M.; Collaud, A.; Gobeli Brawand, S.; Willi, B.; Endimiani, A.; Schuller, S.; Perreten, V. Shedding of OXA-181 carbapenemase-producing Escherichia coli from companion animals after hospitalisation in Switzerland: An outbreak in 2018. Eurosurveillance 2019, 24, 1900071. [Google Scholar] [CrossRef]
- Lefebvre, S.L.; Waltner-Toews, D.; Peregrine, A.S.; Reid-Smith, R.; Hodge, L.; Arroyo, L.G.; Weese, J.S. Prevalence of zoonotic agents in dogs visiting hospitalized people in Ontario: Implications for infection control. J. Hosp. Infect. 2006, 62, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, S.L.; Peregrine, A.S.; Golab, G.C.; Gumley, N.R.; Waltner-Toews, D.; Weese, J.S. A veterinary perspective on the recently published guidelines for animal-assisted interventions in health-care facilities. J. Am. Vet. Med. Assoc. 2008, 233, 394–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lefebvre, S.L.; Reid-Smith, R.; Boerlin, P.; Weese, J.S. Evaluation of the risks of shedding Salmonellae and other potential pathogens by therapy dogs fed raw diets in Ontario and Alberta. Zoonoses Public Health 2008, 55, 470–480. [Google Scholar] [CrossRef]
- Edner, A.; Lindström-Nilsson, M.; Melhus, Å. Low risk of transmission of pathogenic bacteria between children and the assistance dog during animal-assisted therapy if strict rules are followed. J. Hosp. Infect. 2021, 115, 5–9. [Google Scholar] [CrossRef]
- Lefebvre, S.L.; Reid-Smith, R.; Waltner-Toews, D.; Weese, J.S. Incidence of acquisition of methicillin-resistant Staphylococcus aureus, Clostridium difficile, and other healthcare-associated pathogens by dogs that participate in animal-assisted interventions. J. Am. Vet. Med. Assoc. 2009, 234, 1404–1417. [Google Scholar] [CrossRef] [Green Version]
- De Aguiar, A.C.; Perlin Silva, J.F.; Kim, L.M.; Rosot, R.K.; Espinola Filho, R.; Castanho, L.S.; Cieslinski, J.; Tasca Ribeiro, V.S.; Tuon, F.F. Investigation of multidrug-resistant bacteria in dogs enrolled at animal-assisted therapy in a trauma and surgical emergency hospital. Infect. Control Hosp. Epidemiol. 2021, 16, 1–2. [Google Scholar] [CrossRef]
- Dalton, K.R.; Ruble, K.; Redding, L.E.; Morris, D.O.; Mueller, N.T.; Thorpe, R.J., Jr.; Agnew, J.; Carroll, K.C.; Planet, P.J.; Rubenstein, R.C.; et al. Microbial Sharing between Pediatric Patients and Therapy Dogs during Hospital Animal-Assisted Intervention Programs. Microorganisms 2021, 9, 1054. [Google Scholar] [CrossRef] [PubMed]
- Caprilli, S.; Messeri, A. Animal-Assisted Activity at A. Meyer Children’s Hospital: APilot Study. ECAM 2006, 3, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Hardin, P.; Brown, J.; Wright, M.E. Prevention of transmitted infections in a pet therapy program: An exemplar. Am. J. Infect. Control 2016, 44, 846–850. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roscetto, E.; Varriale, C.; Galdiero, U.; Esposito, C.; Catania, M.R. Extended-Spectrum Beta-Lactamase-Producing and Carbapenem-Resistant Enterobacterales in Companion and Animal-Assisted Interventions Dogs. Int. J. Environ. Res. Public Health 2021, 18, 12952. https://doi.org/10.3390/ijerph182412952
Roscetto E, Varriale C, Galdiero U, Esposito C, Catania MR. Extended-Spectrum Beta-Lactamase-Producing and Carbapenem-Resistant Enterobacterales in Companion and Animal-Assisted Interventions Dogs. International Journal of Environmental Research and Public Health. 2021; 18(24):12952. https://doi.org/10.3390/ijerph182412952
Chicago/Turabian StyleRoscetto, Emanuela, Chiara Varriale, Umberto Galdiero, Camilla Esposito, and Maria Rosaria Catania. 2021. "Extended-Spectrum Beta-Lactamase-Producing and Carbapenem-Resistant Enterobacterales in Companion and Animal-Assisted Interventions Dogs" International Journal of Environmental Research and Public Health 18, no. 24: 12952. https://doi.org/10.3390/ijerph182412952