Sensitivity Analysis of Emission Models of Parcel Lockers vs. Home Delivery Based on HBEFA
Abstract
:1. Introduction
1.1. The Problem of Last-Mile Delivery
1.2. Description of the Study and Contribution
2. Methods
2.1. Parcel Delivery Simulation
2.2. Delivery Tour Distance and Customer Travel
2.3. Emission Modeling—HBEFA
- Maximum mode share for private motor vehicles,
- Emission factors of light commercial vehicles (warm),
- Emission factors of passenger vehicles (warm),
- Cold-start emission factors of passenger vehicles,
- Share of the parcel pick-up trip of the total trip length (customer),
- Distance per parcel by delivery van (home delivery),
- Distance per parcel by delivery van (locker delivery), and
- Roundtrip distance between customer and locker.
2.4. Limitations
3. Results
3.1. Distance
3.2. Average Case for All Emissions
3.3. Overview: Variation in the Emission Model
3.4. Variation in the Street Types and Max Speed (Figure 5)
3.5. Variation in the Gradients (Figure 6)
3.6. Variation in the Vehicle Age (Figure 7)
3.7. Variation in the Delivery Vehicle Fleet Age (Figure 8 and Figure 9)
3.8. Variation in the Delivery Vehicle Drivetrain (Figure 10)
3.9. Variation in the Traffic Flow/Level of Service (LOS) (Figure 11)
3.10. Variation in the LOS Assuming That Lockers Are Always Delivered under Free-Flow Traffic Conditions (Figure 12)
3.11. Variation in the Parking Duration between Customer Trips (Figure 13)
3.12. Variation in the Temperature (Figure 14)
3.13. Variation in the Length of Trips by Customers (Figure 15)
3.14. Maximum Spread in the Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramacher, M.O.P.; Matthias, V.; Aulinger, A.; Quante, M.; Bieser, J.; Karl, M. Contributions of traffic and shipping emissions to city-scale NOx and PM2.5 exposure in Hamburg. Atmos. Environ. 2020, 237, 117674. [Google Scholar] [CrossRef]
- European Environment Agency. Air Quality in Europe—2015 Report; European Environment Agency: København, Denmark, 2015.
- Jiang, X.; Ma, J.; Zhu, H.; Guo, X.; Huang, Z. Evaluating the Carbon Emissions Efficiency of the Logistics Industry Based on a Super-SBM Model and the Malmquist Index from a Strong Transportation Strategy Perspective in China. Int. J. Environ. Res. Public Health 2020, 17, 8459. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Q.; Susilo, Y.O. Assessing the impacts of collection-delivery points to individual’s activity-travel patterns: A greener last mile alternative? Transp. Res. Part E Logist. Transp. Rev. 2019, 121, 84–99. [Google Scholar] [CrossRef]
- Weiss, C.; Onnen-Weber, U. The challenge of sustainable last mile distribution of CEP services in small towns. Transp. Res. Procedia 2019, 39, 597–604. [Google Scholar] [CrossRef]
- Moroz, M.; Polkowski, Z. The Last Mile Issue and Urban Logistics: Choosing Parcel Machines in the Context of the Ecological Attitudes of the Y Generation Consumers Purchasing Online. Transp. Res. Procedia 2016, 16, 378–393. [Google Scholar] [CrossRef] [Green Version]
- Iwan, S.; Kijewska, K.; Lemke, J. Analysis of Parcel Lockers’ Efficiency as the Last Mile Delivery Solution—The Results of the Research in Poland. Transp. Res. Procedia 2016, 12, 644–655. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Chang, H.; Zhao, S.; Dong, J.; Lu, W. A Travelling Salesman Problem with Carbon Emission Reduction in the Last Mile Delivery. IEEE Access 2019, 7, 61620–61627. [Google Scholar] [CrossRef]
- Morganti, E.; Seidel, S.; Blanquart, C.; Dablanc, L.; Lenz, B. The Impact of E-commerce on Final Deliveries: Alternative Parcel Delivery Services in France and Germany. Transp. Res. Procedia 2014, 4, 178–190. [Google Scholar] [CrossRef] [Green Version]
- Ducret, R. Parcel deliveries and urban logistics: Changes and challenges in the courier express and parcel sector in Europe—the French case. Res. Transp. Bus. Manag. 2014, 11, 15–22. [Google Scholar] [CrossRef]
- Wu, H.; Shao, D.; Ng, W.S. Locating Self-Collection Points for Last-Mile Logistics Using Public Transport Data. In Pacific-Asia Conference on Knowledge Discovery and Data Mining; Springer: Berlin/Heidelberg, Germany, 2015; pp. 498–510. [Google Scholar]
- Faugere, L.; Montreuil, B. Hyperconnected Pickup & Delivery Locker Networks. In Proceedings of the 4th International Physical Internet Conference, Graz, Austria, 4–6 July 2017; Volume 6, pp. 1–14. [Google Scholar]
- Yuen, K.F.; Wang, X.; Ma, F.; Wong, Y.D. The determinants of customers’ intention to use smart lockers for last-mile deliveries. J. Retail. Consum. Serv. 2019, 49, 316–326. [Google Scholar] [CrossRef]
- Zenezini, G.; Lagorio, A.; Pinto, R.; De Marco, A.; Golini, R. The Collection-And-Delivery Points Implementation Process from the Courier, Express and Parcel Operator’s Perspective. IFAC PapersOnLine 2018, 51, 594–599. [Google Scholar] [CrossRef]
- Ulmer, M.W.; Streng, S. Same-Day delivery with pickup stations and autonomous vehicles. Comput. Oper. Res. 2019, 108, 1–19. [Google Scholar] [CrossRef]
- Yuen, K.F.; Wang, X.; Ng, L.T.W.; Wong, Y.D. An investigation of customers’ intention to use self-collection services for last-mile delivery. Transp. Policy 2018, 66, 1–8. [Google Scholar] [CrossRef]
- Lemke, J.; Iwan, S.; Korczak, J. Usability of the Parcel Lockers from the Customer Perspective—The Research in Polish Cities. Transp. Res. Procedia 2016, 16, 272–287. [Google Scholar] [CrossRef] [Green Version]
- Lachapelle, U.; Burke, M.; Brotherton, A.; Leung, A. Parcel locker systems in a car dominant city: Location, characterisation and potential impacts on city planning and consumer travel access. J. Transp. Geogr. 2018, 71, 1–14. [Google Scholar] [CrossRef]
- Carotenuto, P.; Gastaldi, M.; Giordani, S.; Rossi, R.; Rabachin, A.; Salvatore, A. Comparison of various urban distribution systems supporting e-commerce. Point-to-point vs collection-point-based deliveries. Transp. Res. Procedia 2018, 30, 188–196. [Google Scholar] [CrossRef]
- Punakivi, M.; Tanskanen, K. Increasing the cost efficiency of e-fulfilment using shared reception boxes. Int. J. Retail. Distrib. Manag. 2002, 30, 498–507. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Cherrett, T.; McLeod, F.; Guan, W. Addressing the last mile problem: Transport impacts of collection and delivery points. Transp. Res. Rec. 2009, 2097, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Giuffrida, M.; Mangiaracina, R.; Perego, A.; Tumino, A. Home delivery vs parcel lockers: An economic and environmental assessment. In Proceedings of the 21th Summer School Francesco Turco, Naples, Italy, 13–15 September 2016; pp. 225–230. [Google Scholar]
- Faugere, L.; Montreuil, B. Smart Locker Bank Design: A Scenario Based Optimization Approach. In Actes du Congrès International de Génie Industriel; Proceedings of Industrial Engineering Congress; 2017; Available online: https://www.researchgate.net/profile/Louis_Faugere/publication/316812958_Smart_Locker_Bank_Design_A_Scenario_Based_Optimization_Approach/links/59124b51a6fdcc963e7cdf8a/Smart-Locker-Bank-Design-A-Scenario-Based-Optimization-Approach.pdf (accessed on 18 February 2019).
- Edwards, J.; McKinnon, A.; Cherrett, T.; McLeod, F.; Song, L. The impact of failed home deliveries on carbon emissions: Are collection/delivery points environmentally-friendly alternatives? In Proceedings of the 14th Annual Logistics Research Network Conference, Cardiff, UK, 9–11 September 2009; p. M117. [Google Scholar]
- Arnold, F.; Cardenas, I.; Sörensen, K.; Dewulf, W. Simulation of B2C e-commerce distribution in Antwerp using cargo bikes and delivery points. Eur. Transp. Res. Rev. 2017, 10, 2. [Google Scholar] [CrossRef]
- McLeod, F.; Cherrett, T.; Song, L. Transport impacts of local collection/delivery points. Int. J. Logist. Res. Appl. 2006, 9, 307–317. [Google Scholar] [CrossRef]
- Hofer, K.; Flucher, S.; Fellendorf, M.; Schadler, M.; Hafner, N. Estimation of Changes in Customer’s Mobility Behaviour by the Use of Parcel Lockers. Transp. Res. Procedia 2020, 47, 425–432. [Google Scholar] [CrossRef]
- Rai, H.B.; Cetinkaya, A.; Verlinde, S.; Macharis, C. How are consumers using collection points? Evidence from Brussels. Transp. Res. Procedia 2020, 46, 53–60. [Google Scholar] [CrossRef]
- Gatta, V.; Marcucci, E.; Nigro, M.; Patella, S.M.; Serafini, S. Public Transport-Based Crowdshipping for Sustainable City Logistics: Assessing Economic and Environmental Impacts. Sustainability 2018, 11, 145. [Google Scholar] [CrossRef] [Green Version]
- Gatta, V.; Marcucci, E.; Nigro, M.; Serafini, S. Sustainable urban freight transport adopting public transport-based crowdshipping for B2C deliveries. Eur. Transp. Res. Rev. 2019, 11, 13. [Google Scholar] [CrossRef] [Green Version]
- Saadm, S.M.; Bahadori, R. Sustainability evaluation of last mile food delivery: Pickup point using lockers versus home delivery. Int. Food Oper. Process. Simul. Work. 2018, 2018, 37–42. [Google Scholar]
- van Duin, J.; Wiegmans, B.; van Arem, B.; van Amstel, Y. From home delivery to parcel lockers: A case study in Amsterdam. Transp. Res. Procedia 2020, 46, 37–44. [Google Scholar] [CrossRef]
- Kiousis, V.; Nathanail, E.; Karakikes, I. Assessing Traffic and Environmental Impacts of Smart Lockers Logistics Measure in a Medium-Sized Municipality of Athens. In The 4th Conference on Sustainable Urban Mobility; Springer: Cham, Switzerland, 2019; pp. 614–621. [Google Scholar]
- Song, L.; Guan, W.; Cherrett, T.; Li, B. Quantifying the Greenhouse Gas Emissions of Local Collection-and-Delivery Points for Last-Mile Deliveries. Transp. Res. Rec. J. Transp. Res. Board 2013, 2340, 66–73. [Google Scholar] [CrossRef]
- Edwards, J.; McKinnon, A.; Cherrett, T.; McLeod, F.; Song, L. Carbon Dioxide Benefits of Using Collection–Delivery Points for Failed Home Deliveries in the United Kingdom. Transp. Res. Rec. J. Transp. Res. Board 2010, 2191, 136–143. [Google Scholar] [CrossRef] [Green Version]
- Greater London Authority (GLA). Key Performance Indicators of Freight Delivery Performance with Electric vans in Central London—London Datastore. 2017. Available online: https://data.london.gov.uk/dataset/key-performance-indicators-of-demonstrator-freight-delivery-performance-with-electric-vans-in-central-london (accessed on 18 February 2019).
- Notter, B.; Keller, M.; Althaus, H.; Cox, B.; Knörr, W.; Heidt, C.; Biemann, K.; Räder, D.; Jamet, M. HBEFA (Handbook Emission Factors for Road Transport) 4.1 Development Report; INFRAS: Bern, Switzerland; Heidelberg, Germany, 2019. [Google Scholar]
- Beddows, D.C.; Harrison, R.M. PM10 and PM2.5 emission factors for non-exhaust particles from road vehicles: Dependence upon vehicle mass and implications for battery electric vehicles. Atmos. Environ. 2021, 244, 117886. [Google Scholar] [CrossRef]
- Department of Information Technology and Telecommunications (DoITT). NYC Address Points|NYC Open Data. 2019. Available online: https://data.cityofnewyork.us/City-Government/NYC-Address-Points/g6pj-hd8k (accessed on 5 February 2019).
- Department of City Planning (DCP). Census Demographics at the Neighborhood Tabulation Area (NTA) Level|NYC Open Data. 2018. Available online: https://data.cityofnewyork.us/City-Government/Census-Demographics-at-the-Neighborhood-Tabulation/rnsn-acs2 (accessed on 17 April 2019).
- Harris, C.R.; Millman, K.J.; Van Der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Department of Transportation. Citywide Mobility Survey—Main Survey|NYC Open Data. 2017. Available online: https://data.cityofnewyork.us/Transportation/Citywide-Mobility-Survey-Main-Survey/dd6w-hnq9 (accessed on 13 February 2019).
- Motivate. Citi Bike System Data|Citi Bike NYC. 2019. Available online: https://www.citibikenyc.com/system-data (accessed on 8 May 2019).
- Kedia, A.; Kusumastuti, D.; Nicholson, A. Acceptability of collection and delivery points from consumers’ perspective: A qualitative case study of Christchurch city. Case Stud. Transp. Policy 2017, 5, 587–595. [Google Scholar] [CrossRef]
- van Duin, J.; de Goffau, W.; Wiegmans, B.; Tavasszy, L.; Saes, M. Improving Home Delivery Efficiency by Using Principles of Address Intelligence for B2C Deliveries. Transp. Res. Procedia 2016, 12, 14–25. [Google Scholar] [CrossRef] [Green Version]
- Luxen, D.; Vetter, C. Real-time routing with OpenStreetMap data. In Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems—GIS’11, Chicago, IL, USA, 1–4 November 2011; pp. 513–516. [Google Scholar]
- OpenStreetMap Contributors. Planet Dump. 2019. Available online: https://planet.openstreetmap.org (accessed on 1 May 2019).
- Smit, R.; Ntziachristos, L.; Boulter, P. Validation of road vehicle and traffic emission models—A review and meta-analysis. Atmos. Environ. 2010, 44, 2943–2953. [Google Scholar] [CrossRef]
- Allen, J.; Piecyk, M.; Piotrowska, M.; McLeod, F.; Cherrett, T.; Ghali, K.; Nguyen, T.; Bektas, T.; Bates, O.; Friday, A.; et al. Understanding the impact of e-commerce on last-mile light goods vehicle activity in urban areas: The case of London. Transp. Res. Part D Transp. Environ. 2018, 61, 325–338. [Google Scholar] [CrossRef] [Green Version]
- Holguín-Veras, J.; Sánchez-Díaz, I.; Browne, M. Sustainable Urban Freight Systems and Freight Demand Management. Transp. Res. Procedia 2016, 12, 40–52. [Google Scholar] [CrossRef] [Green Version]
- Holguín-Veras, J.; Silas, M.; Polimeni, J.M.; Cruz, B. An Investigation on the Effectiveness of Joint Receiver–Carrier Policies to Increase Truck Traffic in the Off-peak Hours. Netw. Spat. Econ. 2008, 8, 327–354. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Seaborn: v0.5.0 (November 2014). Available online: https://zenodo.org/record/12710#.YMLKtaERWUk (accessed on 1 May 2019).
- Mommens, K.; Lebeau, P.; Verlinde, S.; van Lier, T.; Macharis, C. Evaluating the impact of off-hour deliveries: An application of the TRansport Agent-BAsed model. Transp. Res. Part D Transp. Environ. 2018, 62, 102–111. [Google Scholar] [CrossRef]
- Ranieri, L.; Digiesi, S.; Silvestri, B.; Roccotelli, M. A Review of Last Mile Logistics Innovations in an Externalities Cost Reduction Vision. Sustainability 2018, 10, 782. [Google Scholar] [CrossRef] [Green Version]
Authors | Pollutants | Locker vs. | Customer Trips | 1st Delivery to Lockers | Best | Simulation/Real |
---|---|---|---|---|---|---|
Jiang et al. [8] | carbon emissions | Home delivery | No | Yes | Lockers | Simulation |
Carotenuto et al. [19] | CO2 | Home delivery | No | Yes | Lockers | Simulation |
Saad et al. [31] | CO2 | Home delivery | No | Yes | Lockers | Simulation |
Mentioned in [6,7,17,32] | CO2, fuel consumption | Home delivery | No | Yes | Lockers | Real |
Giuffrida et al. [22] | CO2e | Home delivery + depot | Yes | Yes | Lockers 1 | Simulation |
Kiousis et al. [33] | CO2, NOx, PM10 | Home delivery | Yes | Yes | Lockers | Simulation Vissim |
Song et al. [21] | CO2 | Depot (failed deliveries) | Yes | No | Depends on, e.g., customer mode choice | Simulation |
Song et al. [34] | CO2 | Redelivery to home, or depot | Yes | No | Lockers | Simulation |
Edwards et al. [35] | CO2 | Redelivery to home, or depot | Yes | No | Post office (i.e., Lockers) | Simulation (only average values) |
Scenario | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Size (km2) | 12 | 20 | 31 | 44 | 55 | 68 | 83 | 96 | 116 | 134 | 154 | 178 | 196 | 219 | 244 | 265 | 298 | 318 | 350 | 372 |
Parcels per km2 | 16.2 | 10.3 | 6.4 | 4.5 | 3.7 | 2.9 | 2.4 | 2.1 | 1.7 | 1.5 | 1.3 | 1.1 | 1.0 | 0.9 | 0.8 | 0.8 | 0.7 | 0.6 | 0.6 | 0.5 |
Drivetrain/Fuel Type | HC | CO | NOx | PM10 | PM10 (Non-Exhaust) | CO2 | CO2 WTW |
---|---|---|---|---|---|---|---|
petrol (4S) | 50% | 79% | 6% | 7% | 15% | 14% | 14% |
diesel | 11% | 9% | 34% | 67% | 15% | 19% | 19% |
electricity | 0% | 0% | 0% | 0% | 15% | 0% | 11% |
biofuel CNG/petrol | 13% | 63% | 4% | 7% | 15% | 13% | 13% |
plug-in hybrid petrol/electric | 3% | 8% | 0% | 2% | 15% | 4% | 10% |
plug-in hybrid diesel/electric | 6% | 0% | 1% | 7% | 15% | 5% | 13% |
Simulation | HC | CO | NOx | PM10 | PM10 (Non-Exhaust) | CO2 | CO2 WTW |
---|---|---|---|---|---|---|---|
3.10. LOS for Home Delivery/Customer | 0.373 | 0.406 | 0.239 | 0.385 | 0.259 | 0.287 | 0.288 |
3.8. Vehicle Type—Van | 1.215 | 1.200 | 1.627 | 1.568 | 0.000 | 0.725 | 0.227 |
3.7. Delivery Van Age | 1.710 | 1.724 | 0.847 | 1.238 | 0.000 | 0.200 | 0.182 |
3.13. Customer Trip Length | 0.013 | 0.031 | 0.032 | 0.189 | 0.000 | 0.068 | 0.068 |
3.11. Customer Parking | 0.671 | 0.828 | 0.060 | 0.222 | 0.000 | 0.180 | 0.180 |
3.6. Vehicle Age | 0.533 | 0.696 | 0.218 | 0.211 | 0.000 | 0.079 | 0.048 |
3.9. Level of Service (traffic flow) | 0.024 | 0.097 | 0.103 | 0.045 | 0.000 | 0.085 | 0.085 |
3.5 Gradient | 0.042 | 0.024 | 0.016 | 0.008 | 0.000 | 0.019 | 0.019 |
3.4. Street Type | 0.057 | 0.184 | 0.113 | 0.040 | 0.000 | 0.082 | 0.082 |
3.12. Temperature | 0.664 | 0.576 | 0.288 | 0.235 | 0.000 | 0.067 | 0.067 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schnieder, M.; Hinde, C.; West, A. Sensitivity Analysis of Emission Models of Parcel Lockers vs. Home Delivery Based on HBEFA. Int. J. Environ. Res. Public Health 2021, 18, 6325. https://doi.org/10.3390/ijerph18126325
Schnieder M, Hinde C, West A. Sensitivity Analysis of Emission Models of Parcel Lockers vs. Home Delivery Based on HBEFA. International Journal of Environmental Research and Public Health. 2021; 18(12):6325. https://doi.org/10.3390/ijerph18126325
Chicago/Turabian StyleSchnieder, Maren, Chris Hinde, and Andrew West. 2021. "Sensitivity Analysis of Emission Models of Parcel Lockers vs. Home Delivery Based on HBEFA" International Journal of Environmental Research and Public Health 18, no. 12: 6325. https://doi.org/10.3390/ijerph18126325