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Abstract: Global concerns about the environmental effects (e.g., pollution, land use, noise) of last-
mile deliveries are increasing. Parcel lockers are seen as an option to reduce these external effects
of last-mile deliveries. The contributions of this paper are threefold: firstly, the research studies
simulating the emissions caused by parcel delivery to lockers are summarized. Secondly, a demand
model for parcel deliveries in New York City (NYC) is created for 365 days and delivery trips to
lockers and homes are optimized for 20 “real-world” scenarios. Thirdly, using the emission factors
included in the HandBook Emission Factors for Road Transport (HBEFA) database, the maximum
percentage of customers who could pick up a parcel by car from parcel lockers that would result in
fewer total emissions (driving customers + walking customers) than if home deliveries were adopted
is calculated for various pollutants and scenario assumptions (i.e., street types, temperature, parking
duration, level of service and vehicle drivetrain). This paper highlights how small changes in the
calibration can significantly change the results and therefore using average values for emission factors
or only considering one pollutant like most studies may not be appropriate.

Keywords: last-mile delivery; city logistics; emissions; pollution; collection and delivery point; parcel
locker; HBEFA; PM10; non-exhaust emissions; cold-start emissions

1. Introduction
1.1. The Problem of Last-Mile Delivery

Air pollution is a critical societal concern due to the adverse effects on human health.
Particularly in cities, residents are exposed to air pollution levels which are considered
dangerous [1]. The European Environment Agency (EEA) names particulate matter (PM),
NO2 and ground-level O3 as the most harmful pollutants to human life [2]. The logistics
industry [3], and especially last-mile delivery, is one of the causes of air pollution especially
in residential areas [4–6] and the city center [7,8], which increases the interest in alternative
delivery options.

Parcel lockers are seen as a solution for failed deliveries [9–13], for problems in finding
addresses [14] and for return deliveries [14]. Parcel lockers also increase the consolidation
of deliveries [7,9,12,15–17], decrease the number of drop-off points [16], decrease the ve-
hicle kilometer traveled (VKT) [14,18,19] and decrease delivery cost [8,9,13,20,21]. From
an environmental viewpoint, authors have stated that parcel lockers are more sustain-
able [22], and reduce exhaust emissions [6,8,12,17,23,24], transport-related noise [6] and
traffic jams [6]. Only Arnold et al. [25] concluded that, based on a simulation study, parcel
lockers reduce the operational costs but increase the external costs.

McLeod et al. [26], Song et al. [21], Hoffer et al. [27], Rai et al. [28] and Liu et al. [4]
report that cars are used to pick up parcels from a Collection Delivery Point (CDP) in 43%,
48%, 44.5%, 47%, and 70% of the trips, respectively. Additionally, 50% [4] and 30.6% [28] of
the parcel pick-up trips were roundtrips to the CDP (i.e., not integrated into a trip chain). Of
those who chained their pick-up trips with other trips, 52.8% made a detour [28]. So, these
figures indicate that the environmental effect of these pick-up trips can be substantial [4].
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However, according to Liu et al. [4], most studies ignore the external effects of pick-
ing up a parcel from a CDP. Some authors state that customers are inclined to use non-
motorized modes of transport to pick up parcels or the pick-up trip would not increase the
distance travelled (e.g., [6,8,19]). As shown in Table 1, almost no published study considers
pick-up trips by customers and assumes that first delivery attempts are made to lockers.
Only two studies consider emissions, customer trips and first-attempt deliveries to lockers.
However, one of these includes the customer trips only in the sensitivity analysis and
not as part of the main simulation [22]. Most of the studies which consider the trips by
customers compare the effect of returning a failed delivery to a depot with delivering these
to a nearby CDP. Table 1 is limited to studies where parcels are delivered by a company
and not by crowd shipping given that the delivery methods are dissimilar. Studies that
evaluated the emissions of public transport based crowd shipping are reported in [29,30].

Table 1. Studies about emissions and parcel lockers.

Authors Pollutants Locker vs. Customer
Trips

1st Delivery to
Lockers Best Simulation/Real

Jiang et al. [8] carbon emissions Home delivery No Yes Lockers Simulation

Carotenuto et al. [19] CO2 Home delivery No Yes Lockers Simulation

Saad et al. [31] CO2 Home delivery No Yes Lockers Simulation

Mentioned in
[6,7,17,32]

CO2, fuel
consumption Home delivery No Yes Lockers Real

Giuffrida et al. [22] CO2e Home delivery +
depot Yes Yes Lockers 1 Simulation

Kiousis et al. [33] CO2, NOx, PM10 Home delivery Yes Yes Lockers Simulation Vissim

Song et al. [21] CO2
Depot (failed

deliveries) Yes No
Depends on, e.g.,
customer mode

choice
Simulation

Song et al. [34] CO2
Redelivery to

home, or depot Yes No Lockers Simulation

Edwards et al. [35] CO2
Redelivery to

home, or depot Yes No Post office (i.e.,
Lockers)

Simulation (only
average values)

1 if customer travels < 0.94 km.

Jiang et al. [8], Carotenuto et al. [19], Saad et al. [31] and a study by the Department of
Robotics and Mechatronics at the AGH University of Science and Technology in Krakow
(Poland) (reported in [6,7,17,32]) compared the emissions produced by home delivery with
delivery to parcel lockers as a first attempt.

Jiang et al. [8] proposed a traveling salesman algorithm to minimize carbon emissions
for delivery to customer homes and parcel lockers. Depending on the willingness of
customers to travel to the locker, they concluded that the carbon emissions can be reduced
by 18.7–51.2%. However, they ignore the potential emissions generated by the customer
stating that “In reality, customers prefer to walk to PLs within 500 m to pick up their
parcels” [8], (p. 61625). Furthermore, only straight-line distances are used. They limited
the study to only 81 customers and simulated a relatively small area of just 1.3 km2 with
10 parcel lockers.

Carotenuto et al. [19] focused on solving a Multi-Depot Capacitated Vehicle Routing
Problem (MDCVRP) and therefore ignored the trips by customers. The simulated CO2
emissions of delivery to lockers was 21% lower than those resulting from delivery to homes.
The study included comparably large stem miles. Based on the map, the stem miles are
larger than double the diagonal of the delivery area.

Saad et al. [31] assumed that the delivery vehicles would only pollute 0.00028324 kg
of CO2 per km and considered an average velocity of 30 m/h. However, the estimated
average speed of a delivery van in London including the time spent driving and walking is
3 km/h (i.e., 100-fold larger) (own calculation based on the results reported in [36]) and
typical emissions of vehicles usually range from 0.1 to 0.3 kg/km (i.e. 300 to 1000-fold
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larger). In contrast with Jiang et al. [8] and Carotenuto et al. [19], Saad et al. [31] considered
that a delivery vehicle can transport more parcels when delivering to parcel lockers than
home delivery due to the reduced delivery time.

Iwan et al. [7], Lemke et al. [17], Moroz et al. [6], and Kiousis [32] reported the
results of a study conducted by the Department of Robotics and Mechatronics at the AGH
University of Science and Technology in Krakow (Poland), which compares real delivery
trips to customer homes with real delivery trips to parcel lockers. All of the four papers
concluded that delivery to parcel lockers produces only 5% of the emission produced by
home deliveries. They state that, on average, 60 parcels were delivered in a home delivery
shift, while 600 parcels were delivered per shift to parcel lockers. However, it is unknown
whether the deliveries serve the same area. If the home delivery trips cover the entire
city area, while trips to lockers only cover the dense central area, it would be an unfair
comparison. Additionally, 60 parcels per shift appears low for a dense area as it is only
one-third of the average number of parcels delivered per shift in London [36].

Giuffrida et al. [22] assumed that parcels are either delivered to a parcel locker and
stored for three days or three home delivery attempts are made. If the parcel has not been
picked up from the locker or all three of the home delivery attempts fail, the parcel will
be returned to the depot. Only the customer trips to the depot are considered but not to
the locker in the main simulation. Thus, they conclude that the emissions caused by the
customer are significantly lower than those of the courier as customer trips only occur
when a regular delivery fails. Home delivery produced 0.299 kg CO2e per parcel and
delivery to lockers produced 0.102 kg CO2e per parcel. In the sensitivity analysis, they
determined that the customer can only deviate by less than 0.94 km from their usual route
in urban areas and 6 km in non-urban areas before home delivery becomes a better option.

Kiousis et al. [33] concluded, based on a simulation in PTV VISSIM, that parcel lockers
offer great benefits for the delivery company and the municipality. However, the table in
their results section shows, for example, that 1,118,742 customer vehicles were required
to pick up the parcels while the baseline scenario only required 5 vans. This seems to
be a printing error. They present minimal reductions in the emissions (i.e., −0.40% to
−0.30%), while the VKT increases significantly (i.e., home delivery: 58,097 m; parcel locker:
5265 m (van) + 118,742 m (customer)). The reduction in the emissions can only be explained
by their assumption that 49% of customers are not driving and it may be assumed that
customer vehicles produce less emissions per km.

While the previously mentioned studies are focused on delivering to parcel lockers
and homes as a first attempt, the following three studies are focused on delivering failed
deliveries to either the depot or a CDP. Generally, the studies assume that a courier will at
first attempt to deliver the parcel to the customer’s home and if this fails, will either deliver
the parcel to a CDP or return it to the depot. Thus, these studies are essentially comparing:
(i) multiple home delivery attempts and a trip by the customer to the depot, with (ii) one
home delivery attempt, a drive to a CDP by the delivery vehicle and a customer picking up
the parcel from this CDP. Thus, the potential advantages of the reduced VKT, which can be
seen when the delivery to lockers has been made as a first attempt, is not considered in
this research.

Song et al. [21] assumed that the courier will at first attempt to deliver a parcel to the
customer’s home and if that is unsuccessful will either deliver it to a CDP or a depot. They
estimated the delivery cost for various combinations of failed deliveries, CDP locations and
percentages of customers traveling to the depot ranging from 10% to 50%. They calculated
the CO2 emissions only for one of these scenarios and depending on the density of CDPs,
the CO2 emissions can be reduced by up to 40%. Song et al. [21] acknowledged that a large
percentage of customers need to walk to a CDP in order for the reduction in emissions to
be achieved.

The study by Song et al. [34] reported the CO2 emissions for percentages of failed
deliveries (varying from 0% to 50%) and number of CDPs (varying from 4 to 139) in two
different cities. If the percentage of failed deliveries is either 10% or 20%, redelivery to the
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customers was better than delivery to CDPs as redeliveries can be optimized into the order
of deliveries whereas delivery to CDPs happens only after all parcels in the area have been
delivered to customers.

Edwards et al. [35] calculated the CO2 emissions for three options to handle failed
deliveries: (i) redelivery, (ii) delivery to depot, and (iii) delivery to a CDP. They did not
simulate individual parcel delivery trips. Instead, they only use average values (e.g., one de-
livery trip length (i.e., 50 miles), one number of parcels per trip (i.e., 120), and four distances
between customers and depots). However, in contrast with other studies, they consider
that the customer might choose public transport to pick up parcels. They concluded that
CDPs are always the better option given that customers travel a shorter distance.

1.2. Description of the Study and Contribution

In contrast with the published studies, the research outlined in this paper considers
the emissions of the customers as well as the delivery vehicles and assumes that first
delivery attempts are either made to a parcel locker or the customer’s home. While all
of the studies mentioned in the literature review only consider CO2 emissions or CO2
equivalents, this study considers five key emission parameters and their variations (i.e.,
PM10 (exhaust), PM10 (non-exhaust), CO2, and CO2e (WTW) [37]). The value of considering
only CO2 is limited given that PM10, NO2 and ground-level O3 but not CO2 are named as
the most harmful pollutants to human life by the European Environment Agency (EEA) [2].
Furthermore, Well-to-Wheel (WTW) and non-exhaust emissions are important to account
for drivetrain types where most of the emissions are not produced by the engine but
rather by the tires or by the production of the energy such as electric cars. The increased
non-exhaust emissions of electric vehicles caused by their heavier weight can result in
higher total (i.e., exhaust + non-exhaust) PM2.5 and PM10 emissions [38]. All papers listed
in Table 1 fail to acknowledge that the emissions vary depending on the gradients, level
of service (LOS, i.e., traffic flow), engine types, vehicle ages, cold start/warm start (i.e.,
customer trip length, prior parking duration), street types and temperatures.

The research contribution of this study is threefold: firstly, this study reviews pub-
lished literature comparing home delivery and delivery to lockers focusing on emissions.
Secondly, this study shows that the sustainability of delivery to lockers depends on the
mode the customers choose to pick up the parcels and the operating area. Thirdly, it is
shown how variations in the parameters in the emission model (e.g., temperature, street
types, drivetrain type) and the selection of pollutants (e.g., PM10, NOx) affect the results.
To achieve this, this study compares 20 scenarios of last-mile deliveries in New York City
(NYC) each simulated 365 times.

2. Methods
2.1. Parcel Delivery Simulation

The dataset of potential parcel recipients has been estimated based on a dataset of
all addresses [39], and the population density in NYC [40]. A binomial random number
generator in the Python programming language (n = number of residents at an address,
p = probability that a resident receives a parcel) [41] has been used to create a list of
customers receiving a parcel for each day of the simulation. The probability that a resident
receives a parcel has been estimated based on a survey [42] of the number of parcels received
by residents in NYC based on their neighborhood. Only non-food-based deliveries have
been included in this study. Each address has its deliveries assigned to the closest parcel
locker. It is assumed that customers choose to travel to the closest CDP. The bike-sharing
stations of Citi Bike NYC [43] have been used as representative locations of parcel locker
stations due to their continent location and easy access for pedestrians and cyclists.

In total 20 scenarios have been simulated (Table 2).
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Table 2. Parcels in each operating area.

Scenario 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Size (km2) 12 20 31 44 55 68 83 96 116 134 154 178 196 219 244 265 298 318 350 372
Parcels per

km2 16.2 10.3 6.4 4.5 3.7 2.9 2.4 2.1 1.7 1.5 1.3 1.1 1.0 0.9 0.8 0.8 0.7 0.6 0.6 0.5

Thus, each simulation run covers an area approximately 0.55 km further to both the east
and west and approximately 0.7 km further to both the north and south than the next smaller
one (1). The center point is at latitude = 40.764940 degrees, longitude = −73.977080 degrees
near the amazon fulfilment center in Manhattan.

40.764940 − (0.00457 ∗ (s + 3)) < longitudes < 40.764940 + (0.00457 ∗ (s + 3)) (1)

− 73.977080 − (0.00455 ∗ (s + 3)) > latitudes > −73.977080 + (0.00455 ∗ (s + 3))

0 ≤ s < 20

Each of the 20 operating areas is simulated for 365 days. For each day, 175 customers
have been randomly selected to receive a parcel. For home delivery, an additional 25 ran-
domly selected parcels are added to the delivery trip to account for failed deliveries. Hence,
25 of the 200 home delivery attempts are assumed to fail, while all 175 deliveries to lockers
are successful. Other authors suggested that failed deliveries account for approximately
10% [44], 18.8% [11], 15% [45], 12% [26] or 10–50% [21,35] of all deliveries. The failed
delivery rates vary due to the variation in policies for handling failed deliveries by couri-
ers [35]. Note: 200 deliveries represent the 0.77 percentile of the number of parcels handled
(i.e., failed and successful deliveries and pick-up trips of parcels) per tour for a delivery
company in London (own calculation based on [36]).

2.2. Delivery Tour Distance and Customer Travel

A locally hosted Open-Source Routing Machine (OSRM) [46] using Open Street Map
(OSM) street network data [47] has been used to optimize the order of the parcel drop-
off points and to calculate the travel distance. Even though 200 delivery attempts are
made for home delivery, it is assumed that only 175 parcels are delivered successfully to
account for failed deliveries. Thus, the distance per parcel is calculated by dividing the
total distance by the number of successful deliveries. The travel distance only includes
the round-trip distance between all delivery points and no stem miles are included as it is
assumed that the parcels will be delivered by van from a centrally located warehouse. For
example, the Amazon Fulfillment Center, 6 W 35th St, New York, NY 10001, United States,
is close to the center of the operating areas. The distance customers travel is calculated
based on the roundtrip distance by car between the customers’ homes and locker for every
delivered parcel.

2.3. Emission Modeling—HBEFA

Handbook Emission Factors for Road Transport (HBEFA 4.1) is an emission factor
database, which can be used to estimate emissions. It provides emission factors in g veh
km−1 for a variety of vehicle categories, drivetrains, traffic situations, cold and warm
start, and climatic conditions [37]. The emissions factors considered in this study are total
hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides in NOx equivalents (NOx),
particulate matter (PM10), PM10 caused by non-exhaust emissions such as tire wear (PM10
(non-exhaust)), reported carbon dioxide excluding biofuel share (CO2 (rep)), total carbon
dioxide including biofuel share CO2 (total), CO2 equivalents containing CO2, CH4 and N2
(CO2e), CO2 equivalents of Well-to-Wheel emissions (CO2 e WTW) [37]. HBEFA has been
chosen given that it is one of the most frequently used models and includes various traffic
situations [48]. Models such as COPERT, which define emission factors as a function of
average speed, are not appropriate for this study given their limited calibration options.
Models which consider variable traffic situations such as TEE could not be used in this
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study given that most of the required calibration options (e.g., signal settings, queue length)
are unknown in this simulation.

HBEFA is not calibrated for the use in American cities. Hence, an emission model
specific to Germany has been adopted to ensure that the changes in the model are calibrated
correctly. It was not the goal of this research to exactly quantify the amount of emissions
but rather to conduct a sensitivity analysis of the emission model to emphasize that even
small changes in the calibration of the model can significantly change the results. Thus, it
is not important whether the emission model is calibrated specifically for NYC. It is more
important that the emission model itself has been tested and validated. The default fleet
composition is representative of the vehicles registered in Germany in 2020. The default
traffic situation parameters in this study are urban, primary-city non-motorway, maximum
speed of 50 km/h, free flow and 0% gradient. The temperature, trip duration, Well-to-Tank
(WTT) emissions and parking duration is representative of the German average for light
commercial vehicles (LCV) and private motor vehicles (PMV).

Instead of calculating the emissions for locker and home delivery, this study reports
the maximum mode share, which is defined as the maximum share of customers who can
pick up a parcel by car before home delivery becomes the better option in terms of emission
generation. The maximum mode share is calculated as follows:

mc = min
{

ev(dH − dL)

ecw ∗ dc + ecc ∗ fc
, 1
}

(2)

where

mc Maximum mode share for private motor vehicles,
ev Emission factors of light commercial vehicles (warm),
ecw Emission factors of passenger vehicles (warm),
ecc Cold-start emission factors of passenger vehicles,
fc Share of the parcel pick-up trip of the total trip length (customer),
dH Distance per parcel by delivery van (home delivery),
dL Distance per parcel by delivery van (locker delivery), and
dc Roundtrip distance between customer and locker.

For some of the simulations in this paper, HBEFA is not differentiating between hot-
and cold-start emissions and therefore ecc is set to 0 in these cases. For changes in the
temperature, parking and trip duration, HBEFA supplies the hot- and cold-start emissions
separately. The factor fc is 1 in all cases except in the variation of the total trip length. For
the variation of the total trip length only the corresponding share of the cold-start emissions
has been considered for the parcel pick-up trip. In other words, if the total trip is twice as
long as the parcel pick-up trip, only half of the cold-start emissions are attributed to the
parcel pick-up trip.

The figures in this paper allow for a mode share for cars to be larger than 100% to
emphasize the sensitivity of the results. Hence, the following equation has been used:

mc =
ev(dH − dL)

ecw ∗ dc + ecc
(3)

2.4. Limitations

This simulation assumes that the driver stops right in front of the coordinates of each
address and not in a nearby parking spot. The walking distance between the parking
spot and customer homes accounts for 40% of the roundtrip distance and 62% of the total
round-trip time in central London [49]. This has been ignored as no data on parking
locations/restrictions were available for NYC. While the walking distance from the parking
spot to the customer in central London and Manhattan might be similar, the outer areas
in the larger operating areas are mainly family homes, which should allow drivers to
park in front of the address. Given that delivery companies in NYC pay, on average,
$750 per truck [50] or $1394 per driver [51] per month in parking fines, it can be assumed
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that drivers in NYC prefer to park close to the customer’s address instead of driving to a
close-by parking spot.

The simulation only considers the delivery of parcels but not the pick-up of returned
parcels. The failure rate of parcels picked up from the customer’s home might be similar
to the percentage of failed deliveries. However, it is possible that lockers might be full or
defect when customers want to use a locker to return their parcel. Hence, the failure rate of
0% for deliveries to parcel lockers cannot be applied to customers dropping of parcels.

3. Results
3.1. Distance

Figure 1 shows the distance per parcel for home delivery and delivery to lockers for
each operating area. The distance for delivery to lockers levels out given that lockers are
assumed to be only positioned in central areas of NYC to account for the fact that there
might be limited numbers of lockers located in rural areas. Hence, the customers living
outside the parcel locker network pick up the parcel from a parcel locker at the edge of
the parcel locker network. The more customers live outside the parcel locker network, the
more parcels are delivered to the lockers at the edge of the parcel locker network, which
reduces the number of lockers the driver has to drive to. Hence, the distance per parcel
for delivery to parcel lockers has a peak at operating area 10 and reduces slightly in larger
operating areas.
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Figure 1. Distance per parcel for delivery to lockers (delivery van) and customer’s homes as well as
the difference between both delivery types.

The difference between the distance travelled per parcel for home delivery and deliv-
ery to parcel locker has a slight decreasing trend until operating area 7 due to the reduction
in the number of parcels delivered to the same locker as explained before. Therefore, the
advantage of reducing the number of drop off points by using parcel lockers is decreasing.
The difference is increasing in operating areas larger than 7 as explained before.

The round-trip distance customers travel to parcel lockers is low until operating area
8 given that the number of customers living outside the parcel locker network area is
insignificantly small (Figure 2). The roundtrip distance in operating area 0 is larger than in
operating area 8 due to one-way streets and turn restrictions in central Manhattan. The
share of customers living outside the parcel locker network area is constantly increasing
for larger operating areas.



Int. J. Environ. Res. Public Health 2021, 18, 6325 8 of 21Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 8 of 21 
 

 

 

Figure 2. Average roundtrip distance to between lockers and customer’s homes. 

The chosen distribution of parcel lockers in this research is similar to the spatial dis-

tribution of parcel lockers in Germany. In this simulation, the round-trip distance in op-

erating area 0 to operating area 9 is approximately 1 km (Figure 2), which is similar to the 

one-way distance of 600 m for residents in German cities [9]. In larger operating area, the 

percentage of customers living outside the area with parcel lockers is increasing and the 

average roundtrip distance is increasing to 4.3 km in operating area 19, which is similar 

to rural parts of Germany, where residents live, on average, 3 km away (one-way) from 

parcel lockers [9]. 

3.2. Average Case for All Emissions 

In the following example, every customer drives a car to pick up a parcel. The traffic 

situation is “URB/Trunk-City/50/Freeflow”, with 0% gradient and a 2020 vehicle fleet. The 

average temperatures and parking duration in between trips representative of Germany 

have been used. The customer’s trip to the parcel locker is either assumed to be part of a 

trip of average length in Germany (i.e., proportionate consideration of cold-start emis-

sions) or is a separate round trip (i.e., full consideration of cold-start emissions). Figures 3 

and 4 shows the total emissions of customers and delivery van combined. The figures 

compare the effect of cold start (i.e., the parcel pick-up trip is the only trip taken by the 

customer) and warm start (i.e., the customer integrated the pick-up trip into a larger trip) 

as well as home delivery vs. delivery to parcel lockers. Delivery to parcel lockers causes 

CO2 emissions per parcel that are approximately twice as high than those for home deliv-

ery for every operating area when the customer picks up the parcel with a car that has a 

warm engine (Figure 3). For the cold start, it is assumed that the vehicle has been parked 

for more than 12 h before the trip to the locker and the CO2 emissions per parcel are almost 

3-fold as high for lockers than for home delivery. 

Figure 2. Average roundtrip distance to between lockers and customer’s homes.

The chosen distribution of parcel lockers in this research is similar to the spatial
distribution of parcel lockers in Germany. In this simulation, the round-trip distance in
operating area 0 to operating area 9 is approximately 1 km (Figure 2), which is similar to
the one-way distance of 600 m for residents in German cities [9]. In larger operating area,
the percentage of customers living outside the area with parcel lockers is increasing and
the average roundtrip distance is increasing to 4.3 km in operating area 19, which is similar
to rural parts of Germany, where residents live, on average, 3 km away (one-way) from
parcel lockers [9].

3.2. Average Case for All Emissions

In the following example, every customer drives a car to pick up a parcel. The traffic
situation is “URB/Trunk-City/50/Freeflow”, with 0% gradient and a 2020 vehicle fleet. The
average temperatures and parking duration in between trips representative of Germany
have been used. The customer’s trip to the parcel locker is either assumed to be part of a
trip of average length in Germany (i.e., proportionate consideration of cold-start emissions)
or is a separate round trip (i.e., full consideration of cold-start emissions). Figures 3 and 4
shows the total emissions of customers and delivery van combined. The figures compare
the effect of cold start (i.e., the parcel pick-up trip is the only trip taken by the customer)
and warm start (i.e., the customer integrated the pick-up trip into a larger trip) as well
as home delivery vs. delivery to parcel lockers. Delivery to parcel lockers causes CO2
emissions per parcel that are approximately twice as high than those for home delivery for
every operating area when the customer picks up the parcel with a car that has a warm
engine (Figure 3). For the cold start, it is assumed that the vehicle has been parked for more
than 12 h before the trip to the locker and the CO2 emissions per parcel are almost 3-fold as
high for lockers than for home delivery.

The HC and CO emissions are 3-fold higher for deliveries to lockers compared with
home deliveries under warm start conditions, but more than 208-fold and 68-fold, respec-
tively, larger for lockers during cold start (Figures 3 and 4). The effect of cold start is not as
extreme for NOx, PM10. PM10 (non-exhaust) emissions are not affected by the cold-start
emissions. The emissions of these pollutants are approximately 1–3-fold (warm start) and
2–5-fold (cold start) larger for delivery to lockers than home delivery.
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In the following scenarios, one of seven parameters (e.g., gradient, temperature, trip
length, street type) of the emission model is varied, while all others are assumed to be as
described in 3.2.

To compare the emissions produced by both delivery options, the maximum fraction
of customers, who can pick up a parcel by car from a locker and would still produce fewer
emissions than home delivery, is calculated. In other words, if more customers would drive
to pick up a parcel, home delivery would be better. If fewer customers drive, delivery to
parcel lockers is better. This fraction is referred to as maximum mode share hereafter.

3.3. Overview: Variation in the Emission Model

In the following simulations, the maximum mode share has been calculated for every
combination of pollutant, operating area and variation of a selected parameter. For example,
in Section 3.2, the maximum mode share is calculated for every combination of pollutant,
operating area and gradient (i.e., 0%, +/−2%, +/−4%, +/−6%). To ease the interpretability
of the figures, only the means of the maximum mode share for each combination of
pollutant and operating area are shown in Figures 5–15. By how much the maximum mode
share changes due to the variation in the simulation parameter is noted in the text.
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The lines in Figures 5–11 have a similar trend. While the maximum mode share is
overall increasing with the operating area size, it follows a distinct fluctuation: a local
minimum for operating area 1, 6, and 13 as well as local maxima around operating area 9
to 12. The first two local minima can be explained by the local minima of the difference
between the distance per parcel for delivery to parcel lockers and homes (Figure 1). The
distance the customer travels to a parcel locker (i.e., part of the denominator in (2)) stays
relatively constant for operating area 1 to 8, while the difference between the distance per
parcel for delivery to parcel lockers and homes (i.e., part of the numerator in (2)) have
local minimum at operating areas 1 and 6. While both the numerator and denominator
are increasing from operating area 12 to 13, the numerator (i.e., difference between the
distance per parcel for delivery to parcel lockers and homes) is increasing much less than
the denominator (i.e., 1.13 vs. 1.23). Hence, the local minimum at operating area 13.
The steep increase in between operating area 7 to 11 is caused by the steep increase in
the difference between the distance per parcel for delivery to parcel lockers and homes
(approximately 1.2 per operating area), while the distance to parcel lockers starts increasing
only from operating area 8 onwards with a lower rate (approximately 1.1 per operating
area). In short, the shape of the curves is mainly caused by the relationship and increase in
distance the customer travels to parcel lockers (i.e., denominator in (2)) and the difference
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between the distance per parcel for delivery to parcel lockers and homes (i.e., numerator
in (2)).

It should be noted that the mode shares for CO2 (total) and CO2e WTW are usually the
same and hence only one line is visible in the graphs. All the graphs have been produced
using the python libraries Matplotlib [52] and Seaborn [53].

3.4. Variation in the Street Types and Max Speed (Figure 5)

The following street types and maximum speeds have been considered: Trunk-City/50,
Trunk-City/60, Distr/30, Distr/40, Distr/50, Distr/60, Local/30, Local/40, Local/50,
Local/60, Access/30, Access/40 and Access/50. All are assumed to be under free-flow
conditions in an urban setting.

The lines have a similar shape as described before. If the two delivery types would
only be compared based on their PM10 emissions, approximately 50–70% of all customers
could pick up a parcel from a parcel locker and delivery to lockers would still be better.
This is due to the higher emission factor for LCV than PMV. If the comparison would be
based on HC, CO, CO2, and PM (non-exhaust) emission, less that 20% of customers could
drive to pick up a parcel. Changing the street type results into a +/−1.4 pp change in
the maximum mode share for the pollutant HC. For CO, this is +/−3.9 pp, NOx +/−5.3,
PM10 +/−4.2 pp, PM10 (non-exhaust) +/−0.0 pp, CO2 (total) +/−2.2 pp, and CO2e WTW
+/−2.2 pp.

3.5. Variation in the Gradients (Figure 6)

The simulation is run under the assumption that the maximum gradient is either
0%, +/−2%, +/−4%, or +/−6% (Figure 6). The average maximum mode share in
Figures 5 and 6 is similar. The variation in the maximum mode share due to changes
in the gradient is much lower with +/−0.4 pp to +/−0.7 pp for all pollutants except for
PM10 (non-exhaust).

3.6. Variation in the Vehicle Age (Figure 7)

In this simulation, the maximum mode share has been calculated for historic and
projected fleet compositions in Germany for the years from 1995 to 2050 in 5 years steps
(Figure 7). The aim of the simulation is to predict how the maximum mode share will
change in the future and has changed in the past.

While the trend of the lines is similar to Figures 5 and 6, the average maximum mode
share is approximately 30 pp higher for PM10 and 20 pp for HC. The variation in the
maximum mode share due to changes in the annual traffic composition is in most cases
much larger compared to the previous examples: +/−19.7 pp for HC, +/−11.2 pp for CO,
+/−11.1 pp for NOx, +/−32.6 pp for PM10, +/−0.0 pp for PM10 (non-exhaust), +/−2.4 pp
for CO2 (total), and +/−1.5 pp for CO2e WTW.

3.7. Variation in the Delivery Vehicle Fleet Age (Figures 8 and 9)

The following simulation is the same as before apart from that the customer always
uses a vehicle representative of the fleet composition in Germany in 2020. The aim of the
simulation is to estimate how the emissions change if delivery companies update their
fleet more or less proactively. The average maximum mode share has the same trend but is
higher than the previous scenarios. The average maximum mode share is larger than 1,
meaning that even if everyone drives to pick up a parcel, delivery to parcel locker would
always be better (Figure 8). Additionally, the variation caused by changes in the delivery
vehicle stock is larger than in the previous examples: +/−296.4 pp for HC, +/−170.8 pp
for CO, +/−29.7 pp for NOx, +/−424.8 pp for PM10, +/−0.0 pp for PM10 (non-exhaust),
+/−4.8 pp for CO2 (total), and +/−4.5 pp for CO2e WTW.

Figure 9 highlights the large change in emissions of the delivery vehicle fleets over the
years. Particularly the PM10, HC and CO emissions of delivery vehicles have improved
massively over the last 25 years. The maximum mode share of 2020 is only 2–7% of the
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maximum mode share of 1995 for these pollutants. However, the maximum mode share is
predicted to stay rather constant in the following years. Hence, it is not predicted that the
emissions of LCVs will reduce as much over the next years compared to before.

3.8. Variation in the Delivery Vehicle Drivetrain (Figure 10)

In this simulation, the delivery vehicle drivetrain varies (i.e., petrol, diesel, electricity,
biofuel CNG/petrol, plug-in hybrid petrol/electric, and plug-in hybrid diesel/electric)
while the customer uses a vehicle representative of the annual traffic composition in
Germany in 2020. The results indicate that even if the delivery vehicle is electric, parcel
lockers are still a better option based on PM10 (non-exhaust) and CO2 WTW if less than
15% or 11% of customers pick up a parcel by car, respectively. If all delivery vehicles are
diesel vans, NOx and PM10 allow for the highest maximum mode share (i.e., 34%, 67%),
while for petrol vans HC and CO petrol vehicles allow for the highest maximum mode
share (i.e., 50%, 79%). The maximum mode share is less than 20% for all other drive trains
and pollutant combinations (Table 3).

Table 3. Maximum mode share for varying delivery vehicle drive trains (average over all operating areas).

Drivetrain/Fuel Type HC CO NOx PM10
PM10

(Non-Exhaust) CO2 CO2 WTW

petrol (4S) 50% 79% 6% 7% 15% 14% 14%
diesel 11% 9% 34% 67% 15% 19% 19%

electricity 0% 0% 0% 0% 15% 0% 11%
biofuel CNG/petrol 13% 63% 4% 7% 15% 13% 13%

plug-in hybrid petrol/electric 3% 8% 0% 2% 15% 4% 10%
plug-in hybrid diesel/electric 6% 0% 1% 7% 15% 5% 13%

The trend of the average of the maximum mode share (Figure 10) is similar to the
previous examples.

3.9. Variation in the Traffic Flow/Level of Service (LOS) (Figure 11)

Figure 11 shows how variations in the LOS affect the maximum mode share. It is
assumed that the same LOS applies to all trips. The street type is an urban road (trunk-city)
with a maximum speed of 50 km/h. The LOS ranges from free flow (~49 km/h), heavy
(~38 km/h), saturated (~24 km/h), stop and go (~12 km/h), to stop and go2 (~6 km/h).
Like in the previous examples, PM10 allows for the largest maximum mode share of
approximately 45–75%. NOx allows for a mode share of 20–35%. The maximum mode
share is less than 20% for all other pollutants.

The change in the maximum mode share due to variation in the LOS is +/−0.5 pp
for HC, +/−1.5 pp for CO, +/−4.5 pp for NOx, +/−4.0 pp for PM10, +/−0.0 pp for PM10
(non-exhaust), +/−2.0 pp for CO2 (total), and +/−2.0 pp for CO2e WTW.

3.10. Variation in the LOS Assuming That Lockers Are Always Delivered under Free-Flow Traffic
Conditions (Figure 12)

The delivery to locker happens under free-flow conditions (i.e., night time) and the
LOS for delivery to homes and customer travel varies. While delivery to lockers at night
might offer advantages by potentially reducing the emissions, night time delivery causes
other environmental problems such as noise [54].

The variation in the maximum mode share due to changing the traffic condition for
home delivery and the customer pick-up trips is larger compared to most of the previous
examples: +/−13.8 pp for HC, +/−14.7 pp for CO, +/−14.8 pp for NOx, +/−64.9 pp for
PM10, +/−10.2 pp for PM10 (non-exhaust), +/−11.8 pp for CO2 (total), and +/−11.8 pp for
CO2e WTW. The results indicate that the maximum mode share is in some cases (e.g., PM10)
larger than 1, which means that delivery to lockers is always better than home delivery
even if every customer uses a car to pick up their parcel (Figure 12). The overall trend
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also differs from the previous examples, given that maximum mode share has a peak at
operating area 9.

3.11. Variation in the Parking Duration between Customer Trips (Figure 13)

The time a customer’s vehicle is parked before a trip ranges from 0 to 1 h to more
than 12 h in 1 h steps in this simulation. The trend of the average maximum mode share
is different due to the effect of cold-start emissions. The cold-start emissions increase
the emissions of shorter customer trips more than for larger trips. The maximum mode
share for all pollutants is less then 25% for operating areas 0 to 7 given that the customer
travel distance is small and relatively constant for operating areas 0 to 7 (Figure 2). The
overall increase in the maximum mode share from operating areas 7 onwards is stronger
given that the effect of the cold-start emissions per km is reduced due to the increase in
the customer trip length. The variation in the maximum mode share due to changes in
the parking duration before customer trips is rather small: +/−0.3 pp for HC, +/−1.3 pp
for CO, +/−2.4 pp for NOx, +/−11.6 pp for PM10, +/−0.0 pp for PM10 (non-exhaust),
+/−3.7 pp for CO2 (total), and +/−3.7 pp for CO2e WTW.

3.12. Variation in the Temperature (Figure 14)

The temperature of the simulations has been varied from −10 to +25 ◦C in 5 ◦C steps.
The trend of the average maximum mode share is almost the same in Figures 13 and 14
due to the cold-start emissions. The variation in the maximum mode share due to changes
in the temperature is rather small: +/−0.3 pp for HC, +/−0.9 pp for CO, +/−9.1 pp for
NOx, +/−13.3 pp for PM10, +/−0.0 pp for PM10 (non-exhaust), +/−1.4 pp for CO2 (total),
and +/−1.4 pp for CO2e WTW.

3.13. Variation in the Length of Trips by Customers (Figure 15)

The trip of the customer to the locker is modelled as part of another 1–2 km, 2–3 km,
3–4 km, or >20 km long trip. If the trip to the locker is longer than these km ranges, no
maximum mode share has been calculated.

While the effect in regard to cold-start emissions which can be seen in the previ-
ous example (Figures 13 and 14) can also be seen in Figure 15, the effect is much lower.
The average maximum mode share is similar in Figures 13–15 in larger operating areas.
However, the average maximum mode share is approximately twice as high in smaller
operating areas in Figure 15 compared to Figures 13 and 14. The variation in the maximum
mode share due to changes in the customer trips length is rather small: +/−1.0 pp for
HC, +/−2.1 pp for CO, +/−3.0 pp for NOx, +/−7.6 pp for PM10, +/−0.0 pp for PM10
(non-exhaust), +/−1.1 pp for CO2 (total), and +/−1.1 pp for CO2e WTW.

3.14. Maximum Spread in the Results

Table 4 shows the average coefficient of variance for each simulation and emission
factor. The coefficient of variance is largest for most pollutants (i.e., HC, CO, NOx, PM10)
when the delivery van age or vehicle type (i.e., drivetrain) is changed while the customer
vehicle stays as is. The coefficient of variance is the smallest (i.e., <0.02) when the gradient is
changed for all pollutants but HC. The coefficients of variance of the maximum mode share
based on CO2 and CO2e WTW are similar unless the delivery vehicle type (i.e., drivetrain)
or vehicle age is changed. This is due to the total CO2 emissions of different drivetrains
being much more similar when the WTT emissions resulting from the production of energy
for the vehicle are considered as well. Hence, the coefficient of variance is smaller. The
PM10 (non-exhaust) emission factor of LCV and PMV are the same and only change when
the LOS changes. Hence, the maximum mode share based on PM10 (non-exhaust) only
changes when the delivery to lockers and delivery to customer homes happen under
different LOS, e.g., the PM10 (non-exhaust) per km is almost double when a vehicle travels
at stop-and-go (0.045 g/km) compared to free-flow (0.026 g/km).
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Table 4. Average coefficient of variance.

Simulation HC CO NOx PM10
PM10

(Non-Exhaust) CO2 CO2 WTW

3.10. LOS for Home Delivery/Customer 0.373 0.406 0.239 0.385 0.259 0.287 0.288
3.8. Vehicle Type—Van 1.215 1.200 1.627 1.568 0.000 0.725 0.227
3.7. Delivery Van Age 1.710 1.724 0.847 1.238 0.000 0.200 0.182
3.13. Customer Trip Length 0.013 0.031 0.032 0.189 0.000 0.068 0.068
3.11. Customer Parking 0.671 0.828 0.060 0.222 0.000 0.180 0.180
3.6. Vehicle Age 0.533 0.696 0.218 0.211 0.000 0.079 0.048
3.9. Level of Service (traffic flow) 0.024 0.097 0.103 0.045 0.000 0.085 0.085
3.5 Gradient 0.042 0.024 0.016 0.008 0.000 0.019 0.019
3.4. Street Type 0.057 0.184 0.113 0.040 0.000 0.082 0.082
3.12. Temperature 0.664 0.576 0.288 0.235 0.000 0.067 0.067

Figure 16 shows a boxplot for all pollutants and simulations, which highlights the
problem of comparing the emissions produced by home delivery and delivery to parcel
lockers: The results largely depend on the parameters chosen in the simulation. In fact,
any result can be achieved through either changing the pollutant or the parameters of the
emission simulation. Hence, it is concerning that small changes in the assumptions of
the emission simulations have a significant effect on whether delivery to parcel locker or
home delivery is better. This also shows that simply using an average emission factor as all
studies did in Table 1 might not be representative of the real world. It is crucial to perform
a sensitivity analysis specifically for the relevant parameters in the simulated case.

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 18 of 21 
 

 

 

Figure 16. Variance in the maximum mode share. 

4. Conclusions 

Several solutions to the last-mile delivery problem have been proposed in the litera-

ture including innovative vehicles, parcel lockers, collaborations, policies, as well as 

transport management and routing optimization [55]. This paper focuses on evaluating 

the emissions produced by home delivery with delivery to parcel lockers. This paper high-

lights two things: the importance of sensitivity analysis of emission simulations as well as 

the large effect of the customer trip to parcel lockers on the total emissions. When com-

paring the emissions of home delivery and delivery to parcel lockers, the fraction of cus-

tomers picking up a parcel from a parcel locker by car has to be kept low as otherwise, 

home delivery would result in fewer emissions. If only CO2 emissions and PM10 (non-

exhaust) are evaluated, the mode share for cars needs to be less than 20% and 15%, respec-

tively, which is significantly lower than the share of people stating that they would drive 

a car to pick up a parcel (43–70%) [4,21,26–28]. However, the maximum mode share for 

cars based on PM10 (exhaust) emissions is usually approximately 60%. This can vary sig-

nificantly depending on the assumptions made in this study and can exceed 100%. For 

example, when the traffic flow for home delivery and customer trips is worse than for the 

delivery trip to lockers (i.e., delivery at night time), the customer can always pick up a 

parcel by car and parcel locker delivery would still be better. For NOx, the maximum mode 

share for cars ranges between 20% and 40%. 

While it is vital to minimize CO2 emissions, only considering CO2 emissions fails to 

appreciate the impact of other pollutants on the environment. Firstly, PM10 and NOx are 

named as one of the most harmful pollutants in cities in Europe [2]. Secondly, the PM10 

Figure 16. Variance in the maximum mode share.



Int. J. Environ. Res. Public Health 2021, 18, 6325 18 of 21

Almost any maximum mode share based on PM10 can be reached when the assump-
tions in the simulation are changed. A similar picture can be seen for NOx, HC and CO
emissions, where any maximum mode share between 0% and 60% can be reached. Only the
range of possible maximum mode shares based on PM10 (non-exhaust) and CO2 emissions
is small (i.e., the maximum mode shares rarely exceeds 30%).

4. Conclusions

Several solutions to the last-mile delivery problem have been proposed in the literature
including innovative vehicles, parcel lockers, collaborations, policies, as well as transport
management and routing optimization [55]. This paper focuses on evaluating the emissions
produced by home delivery with delivery to parcel lockers. This paper highlights two
things: the importance of sensitivity analysis of emission simulations as well as the large
effect of the customer trip to parcel lockers on the total emissions. When comparing
the emissions of home delivery and delivery to parcel lockers, the fraction of customers
picking up a parcel from a parcel locker by car has to be kept low as otherwise, home
delivery would result in fewer emissions. If only CO2 emissions and PM10 (non-exhaust)
are evaluated, the mode share for cars needs to be less than 20% and 15%, respectively,
which is significantly lower than the share of people stating that they would drive a car to
pick up a parcel (43–70%) [4,21,26–28]. However, the maximum mode share for cars based
on PM10 (exhaust) emissions is usually approximately 60%. This can vary significantly
depending on the assumptions made in this study and can exceed 100%. For example,
when the traffic flow for home delivery and customer trips is worse than for the delivery
trip to lockers (i.e., delivery at night time), the customer can always pick up a parcel by car
and parcel locker delivery would still be better. For NOx, the maximum mode share for
cars ranges between 20% and 40%.

While it is vital to minimize CO2 emissions, only considering CO2 emissions fails to
appreciate the impact of other pollutants on the environment. Firstly, PM10 and NOx are
named as one of the most harmful pollutants in cities in Europe [2]. Secondly, the PM10
emission factor and NOx emission factor is 4- and 2-fold larger for LCV than for passenger
vehicles, respectively, in the default configuration, while all other pollutants are similar
(±20%). Thus, a reduction in VKT of the delivery van by delivering to lockers has a much
larger effect on PM10 emissions even if the customer VKT increases.

In the default case, the PM10 and NOx emissions, which are two of the most dan-
gerous pollutants to humans in cities [2], can be reduced by delivering to parcel lockers
(Figures 3 and 4) even if half or one-third, respectively, of the customers pick up a parcel by
car. However, to reduce the CO2 and other pollutants (e.g., CO, HC), almost no customers
should use a car to pick up a parcel from CDPs. The maximum mode share for customers
varies significantly depending on the drivetrain of the delivery vehicle, delivery vehicle
age, cold/warm start of the customer pick-up trip, and temperature. Thus, it is important to
utilize a detailed emission model relevant for a specific city as well as a sensitivity analysis
and not just use average values as in other studies in order to determine insight into parcel
delivery strategies that minimize the impact on the environment. This paper also highlights
that policy makers should not just believe a simulation that only considers average values.
Instead, they should require that simulations include a variety of scenarios and conduct a
sensitivity analysis. By doing so, the range of possible results can be appreciated. If only a
single value is presented as result, it is unknown how precise the simulated result is.
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