Biomonitoring of Hg0, Hg2 and Particulate Hg in a Mining Context Using Tree Barks+
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Hg in Biological Samples and in the Atmosphere
Site | Bark THg | SD | PI | Leaf THg | SD | PI | Reference |
---|---|---|---|---|---|---|---|
00 | 524.0 | 77.4 | 22.6 | 90.1 | 42.4 | 1.0 | |
01 | 23.2 | 5.5 | 1.0 | 90.2 | 22.9 | 1.0 | |
02 | 627.6 | 119.1 | 27.1 | 1231.0 | 141.8 | 13.6 | |
03 | 655.6 | 70.1 | 28.3 | 682.8 | 55.5 | 7.6 | |
04 | 248.7 | 44.3 | 10.7 | 604.9 | 177.9 | 6.7 | |
05 | 472.3 | 116.2 | 20.4 | 985.9 | 196.3 | 10.9 | |
06 | 1666.0 | 221.1 | 71.8 | 497.9 | 53.4 | 5.5 | |
07 | 756.7 | 54.0 | 32.6 | 471.8 | 47.5 | 5.2 | |
08 | 197.0 | 20.8 | 8.5 | 237.2 | 17.9 | 2.6 | |
09 | 140.0 | 24.9 | 6.0 | 136.7 | 13.1 | 1.5 | |
10 | 145.5 | 21.7 | 6.3 | 335.5 | 53.6 | 3.7 | |
11 | 236.7 | 31.9 | 10.2 | 198.0 | 27.2 | 2.2 | |
12 | 73.1 | 18.1 | 3.2 | 129.4 | 27.3 | 1.4 | |
13 | 108.0 | 21.3 | 4.7 | 118.1 | 11.7 | 1.3 | |
14 | 42.5 | 2.6 | 1.8 | 263.4 | 86.6 | 2.9 | |
European cities | 63–86 | [19] | |||||
Poland | 62–160 | [19] |
3.2. Speciation Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stock, A.; Heller, R. Determination of Small Quantities of Mercury, Zeits. f. Angew. Chem. 1926, 39, 466. [Google Scholar] [CrossRef]
- Stock, A.; Cucuel, F. Determination of the Mercury Content of Air. Ber. Dtsch. Chem. Ges. 1934, 67, 122–127. [Google Scholar] [CrossRef]
- Buckell, M. The rapid estimation of mercury in the atmosphere of workrooms. Br. J. Ind. Med. 1951, 8, 181–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, S. Stationary cold-vapor atomic absorption spectrometric method for mercury determination. Anal. Chem. 1978, 50, 412–414. [Google Scholar] [CrossRef]
- Gustin, M.S.; Huang, J.; Miller, M.B.; Peterson, C.; Jaffe, D.A.; Ambrose, J.; Finley, B.D.; Lyman, S.N.; Call, K.; Talbot, R. Do we understand what the mercury speciation instruments are actually measuring? results of RAMIX. Environ. Sci. Technol. 2013, 47, 7295–7306. [Google Scholar] [CrossRef] [PubMed]
- McLagan, D.S.; Mitchell, C.P.; Steffen, A.; Hung, H.; Shin, C.; Stupple, G.W.; Olson, M.L.; Luke, W.T.; Kelley, P.; Howard, D. Global evaluation and calibration of a passive air sampler for gaseous mercury. Atmos. Chem. Phys. 2018, 18, 5905–5919. [Google Scholar] [CrossRef] [Green Version]
- Bargagli, R. Moss and lichen biomonitoring of atmospheric mercury: A review. Sci. Total Environ. 2016, 572, 216–231. [Google Scholar] [CrossRef] [PubMed]
- Rimondi, V.; Benesperi, R.; Beutel, M.W.; Chiarantini, L.; Costagliola, P.; Lattanzi, P.; Medas, D.; Morelli, G. Monitoring of airborne mercury: Comparison of different techniques in the monte Amiata district, southern Tuscany, Italy. Int. J. Environ. Res. Public Health 2020, 17, 2353. [Google Scholar] [CrossRef] [Green Version]
- Lendzian, K.J. Survival strategies of plants during secondary growth: Barrier properties of phellems and lenticels towards water, oxygen, and carbon dioxide. J. Exp. Bot. 2006, 57, 2535–2546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esbrí, J.M.; Martínez-Coronado, A.; Higueras, P.L. Temporal variations in gaseous elemental mercury concentrations at a contaminated site: Main factors affecting nocturnal maxima in daily cycles. Atmos. Environ. 2016, 125, 8–14. [Google Scholar] [CrossRef]
- Higueras, P.; Esbrí, J.M.; Oyarzun, R.; Llanos, W.; Martínez-Coronado, A.; Lillo, J.; López-Berdonces, M.A.; García-Noguero, E. Industrial and natural sources of gaseous elemental mercury in the Almaden district (Spain): An updated report on this issue after the ceasing of mining and metallurgical activities in 2003 and major land reclamation works. Environ. Res. 2013, 125, 197–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tejero, J.; Higueras, P.L.; Garrido, I.; Esbrí, J.M.; Oyarzun, R.; Español, S. An estimation of mercury concentrations in the local atmosphere of Almadén (ciudad real province, south central Spain) during the twentieth century. Environ. Sci. Pollut. Res. 2015, 22, 4833–4841. [Google Scholar] [CrossRef]
- Carrasco Milara, F.J. The mining park of Almadén. Urban Res. Pract. 2011, 4, 215–218. [Google Scholar] [CrossRef]
- Gray, J.E.; Hines, M.E.; Higueras, P.L.; Adatto, I.; Lasorsa, B.K. Mercury speciation and microbial transformations in mine wastes, stream sediments, and surface waters at the Almadén mining district, Spain. Environ. Sci. Technol. 2004, 38, 4285–4292. [Google Scholar] [CrossRef] [Green Version]
- Molina, J.A.; Oyarzun, R.; Esbrí, J.M.; Higueras, P. Mercury accumulation in soils and plants in the Almadén mining district, Spain: One of the most contaminated sites on earth. Environ. Geochem. Health 2006, 28, 487–498. [Google Scholar] [CrossRef]
- Rumayor, M.; Lopez-Anton, M.A.; Díaz-Somoano, M.; Maroto-Valer, M.M.; Richard, J.H.; Biester, H.; Martínez-Tarazona, M.R. A comparison of devices using thermal desorption for mercury speciation in solids. Talanta 2016, 150, 272–277. [Google Scholar] [CrossRef] [Green Version]
- Esbrí, J.M.; Bernaus, A.; Ávila, M.; Kocman, D.; García-Noguero, E.M.; Guerrero, B.; Gaona, X.; Álvarez, R.; Pérez-Gonzalez, G.; Valiente, M.; et al. XANES speciation of mercury in three mining districts-Almadén, Asturias (Spain), Idrija (Slovenia). J. Synchrotron Radiat. 2010, 17, 179–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esbrí, J.M.; Izquierdo, C.; Martínez-Coronado, A.; Miteva, I.; Higueras, P.L. Particulate matter and particulate-bound mercury in a heavily polluted site related to ancient mining and metallurgy: A proposal for dry deposition modeling based on micrometeorological conditions. Environ. Sci. Pollut. Res. 2018, 25, 35312–35321. [Google Scholar] [CrossRef] [PubMed]
- Rykowska, I.; Wasiak, W. Bioconcentration of mercury and heavy metals by the bark of maple-leaf plane tree. Proc. ECOpole 2011, 5, 103–108. [Google Scholar]
- Stamenkovic, J.; Gustin, M.S. Nonstomatal versus stomatal uptake of atmospheric mercury. Environ. Sci. Technol. 2009, 43, 1367–1372. [Google Scholar] [CrossRef]
- Naharro, R.; Esbrí, J.M.; Amorós, J.Á.; García-Navarro, F.J.; Higueras, P. Assessment of mercury uptake routes at the soil-plant-atmosphere interface. Geochem. Explor. Environ. Anal. 2018, 19, 146–154. [Google Scholar] [CrossRef]
- Naharro, R.; Esbrí, J.M.; Amorós, J.A.; Higueras, P.L. Experimental assessment of the daily exchange of atmospheric mercury in Epipremnum aureum. Environ. Geochem. Health 2020, 42, 3185–3198. [Google Scholar] [CrossRef] [PubMed]
- Lodenius, M. Use of plants for biomonitoring of airborne mercury in contaminated areas. Environ. Res. 2013, 125, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Barquero, J.I.; Rojas, S.; Esbrí, J.M.; García-Noguero, E.M.; Higueras, P. Factors influencing mercury uptake by leaves of stone pine (Pinus pinea L.) in Almadén (central Spain). Environ. Sci. Pollut. Res. 2019, 26, 3129–3137. [Google Scholar] [CrossRef]
- Esbrí, J.M.; Cacovean, H.; Higueras, P. Usage proposal of a common urban decorative tree (salix alba L.) to monitor the dispersion of gaseous mercury: A case study from Turda (Romania). Chemosphere 2018, 193, 74–81. [Google Scholar] [CrossRef]
- Hutnik, R.J.; McClenahen, J.R.; Long, R.P.; Davis, D.D. Mercury accumulation in Pinus nigra (austrian pine). Northeast. Nat. 2014, 21, 529–540. [Google Scholar] [CrossRef]
- Peckham, M.A.; Gustin, M.S.; Weisberg, P.J.; Weiss-Penzias, P. Results of a controlled field experiment to assess the use of tree tissue concentrations as bioindicators of air hg. Biogeochemistry 2019, 142, 265–279. [Google Scholar] [CrossRef]
- Jiménez-Oyola, S.; García-Martínez, M.; Ortega, M.F.; Bolonio, D.; Rodríguez, C.; Esbrí, J.M.; Llamas, J.F.; Higueras, P. Multi-pathway human exposure risk assessment using Bayesian modeling at the historically largest mercury mining district. Ecotoxicol. Environ. Saf. 2020, 201, 110833. [Google Scholar] [CrossRef]
- Groh, B.; Hübner, C.; Lendzian, K.J. Water and oxygen permeance of phellems isolated from trees: The role of waxes and lenticels. Planta 2002, 215, 794–801. [Google Scholar] [CrossRef] [PubMed]
- Langenfeld-Heyser, R.; Schella, B.; Buschmann, K.; Speck, F. Microautoradiographic detection of CO2-fixation in lenticel chlorenchyma of young Fraxinus excelsior L. stem in early spring. Trees 1996, 10, 255–260. [Google Scholar]
- Chiarantini, L.; Rimondi, V.; Bardelli, F.; Benvenuti, M.; Cosio, C.; Costagliola, P.; Di Benedetto, F.; Lattanzi, P.; Sarret, G. Mercury speciation in Pinus nigra barks from Monte Amiata (Italy): An X-ray absorption spectroscopy study. Environ. Pollut. 2017, 227, 83–88. [Google Scholar] [CrossRef] [PubMed]
Barks THg | Leaves THg | TGM Sites | TGM Survey | |
---|---|---|---|---|
Leaves | 0.422 | |||
0.118 | ||||
TGM sites | 0.189 | 0.890 | ||
0.499 | 0.000 | |||
TGM survey | 0.782 | 0.701 | 0.462 | |
0.001 | 0.004 | 0.083 | ||
TGM night | −0.130 | −0.064 | −0.091 | −0.112 |
0.645 | 0.820 | 0.748 | 0.691 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viso, S.; Rivera, S.; Martinez-Coronado, A.; Esbrí, J.M.; Moreno, M.M.; Higueras, P. Biomonitoring of Hg0, Hg2 and Particulate Hg in a Mining Context Using Tree Barks+. Int. J. Environ. Res. Public Health 2021, 18, 5191. https://doi.org/10.3390/ijerph18105191
Viso S, Rivera S, Martinez-Coronado A, Esbrí JM, Moreno MM, Higueras P. Biomonitoring of Hg0, Hg2 and Particulate Hg in a Mining Context Using Tree Barks+. International Journal of Environmental Research and Public Health. 2021; 18(10):5191. https://doi.org/10.3390/ijerph18105191
Chicago/Turabian StyleViso, Sandra, Sofía Rivera, Alba Martinez-Coronado, José María Esbrí, Marta M. Moreno, and Pablo Higueras. 2021. "Biomonitoring of Hg0, Hg2 and Particulate Hg in a Mining Context Using Tree Barks+" International Journal of Environmental Research and Public Health 18, no. 10: 5191. https://doi.org/10.3390/ijerph18105191
APA StyleViso, S., Rivera, S., Martinez-Coronado, A., Esbrí, J. M., Moreno, M. M., & Higueras, P. (2021). Biomonitoring of Hg0, Hg2 and Particulate Hg in a Mining Context Using Tree Barks+. International Journal of Environmental Research and Public Health, 18(10), 5191. https://doi.org/10.3390/ijerph18105191