Greener Extraction Solutions for Microalgal Compounds
Abstract
1. Introduction
2. Green Extraction Techniques
2.1. Supercritical Fluid Extraction (SFE)
2.2. Microwave-Assisted Extraction
2.3. Pressurized Liquid Extraction (PLE)
2.4. Ultrasound-Assisted Extraction (UAE)
2.5. Subcritical Water Extraction (SWE)
2.6. Enzyme-Assisted Extraction (EAE)
2.7. Green Solvents Extraction
3. Green Extraction Techniques Compared with Conventional Techniques
4. Compounds Extracted from Microalgae with Green Extraction Techniques
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, W.; Nelson, D.R.; Yi, Z.; Xu, M.; Khraiwesh, B.; Jijakli, K.; Chaiboonchoe, A.; Alzahmi, A.; Al-Khairy, D.; Brynjolfsson, S.; et al. Bioactive Compounds from Microalgae: Current Development and Prospects. Stud. Nat. Prod. Chem. 2017, 54, 199–225. [Google Scholar]
- Saide, A.; Riccio, G.; Ianora, A.; Lauritano, C. The Diatom Cylindrotheca closterium and the Chlorophyll Breakdown Product Pheophorbide a for Photodynamic Therapy Applications. Appl. Sci. 2023, 13, 2590. [Google Scholar] [CrossRef]
- Lauritano, C.; Andersen, J.H.; Hansen, E.; Albrigtsen, M.; Escalera, L.; Esposito, F.; Helland, K.; Hanssen, K.Ø.; Romano, G.; Ianora, A. Bioactivity Screening of Microalgae for Antioxidant, Anti-Inflammatory, Anticancer, Anti-Diabetes, and Antibacterial Activities. Front. Mar. Sci. 2016, 3, 68. [Google Scholar] [CrossRef]
- Nelson, D.M.; Tréguer, P.; Brzezinski, M.A.; Leynaert, A.; Quéguiner, B. Production and Dissolution of Biogenic Silica in the Ocean: Revised Global Estimates, Comparison with Regional Data and Relationship to Biogenic Sedimentation. Glob. Biogeochem. Cycles 1995, 9, 359–372. [Google Scholar] [CrossRef]
- Bozarth, A.; Maier, U.-G.; Zauner, S. Diatoms in Biotechnology: Modern Tools and Applications. Appl. Microbiol. Biotechnol. 2009, 82, 195–201. [Google Scholar] [CrossRef]
- MacKinnon, S.L.; Cembella, A.D.; Burton, I.W.; Lewis, N.; LeBlanc, P.; Walter, J.A. Biosynthesis of 13-Desmethyl Spirolide C by the Dinoflagellate Alexandrium ostenfeldii. J. Org. Chem. 2006, 71, 8724–8731. [Google Scholar] [CrossRef]
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, G.M.H.; Prinsep, R.M. Marine Natural Products. Nat. Prod. Rep. 2015, 32, 116–211. [Google Scholar] [CrossRef] [PubMed]
- Samarakoon, K.W.; Ko, J.-Y.; Shah, M.M.R.; Lee, J.-H.; Kang, M.-C.; Kwon, O.-N.; Lee, J.-B.; Jeon, Y.-J. In Vitro Studies of Anti-Inflammatory and Anticancer Activities of Organic Solvent Extracts from Cultured Marine Microalgae. ALGAE 2013, 28, 111–119. [Google Scholar] [CrossRef]
- Kobayashi, J. Amphidinolides and Its Related Macrolides from Marine Dinoflagellates. J. Antibiot. 2008, 61, 271–284. [Google Scholar] [CrossRef]
- Saide, A.; Martínez, K.A.; Ianora, A.; Lauritano, C. Unlocking the Health Potential of Microalgae as Sustainable Sources of Bioactive Compounds. Int. J. Mol. Sci. 2021, 22, 4383. [Google Scholar] [CrossRef]
- Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial Applications of Microalgae. J. Biosci. Bioeng. 2006, 101, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Baumberger, S.; Bellon-Fontaine, M.-N. Chimie Verte et Industries Agroalimentaires: Vers une Bioéconomie Durable; Tec & Doc: Paris, France, 2020; ISBN 978-2-7430-7513-2. [Google Scholar]
- Khavari, F.; Saidijam, M.; Taheri, M.; Nouri, F. Microalgae: Therapeutic Potentials and Applications. Mol. Biol. Rep. 2021, 48, 4757–4765. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Ye, X.; Bi, H.; Shen, Z. Microalgae Biofuels: Illuminating the Path to a Sustainable Future amidst Challenges and Opportunities. Biotechnol. Biofuels 2024, 17, 10. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, S.; Mientus, M.; Frey, D.; Amini-Hajibashi, A.; Ozturk, S.; Shaikh, F.; Sengupta, D.; El-Halwagi, M.M. A Review of Biodiesel Production from Microalgae. Clean. Techn. Environ. Policy 2017, 19, 637–668. [Google Scholar] [CrossRef]
- Chisti, Y. Biodiesel from Microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef]
- Amin, S. Review on Biofuel Oil and Gas Production Processes from Microalgae. Energy Convers. Manag. 2009, 50, 1834–1840. [Google Scholar] [CrossRef]
- Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for Biodiesel Production and Other Applications: A Review. Renew. Sustain. Energy Rev. 2010, 14, 217–232. [Google Scholar] [CrossRef]
- Delavar, M.A.; Wang, J. Advanced Methods and Mathematical Modeling of Biofilms: Applications in Health Care, Medicine, Food, Aquaculture, Environment, and Industry; Academic Press: Cambridge, MA, USA, 2022; ISBN 978-0-323-90374-5. [Google Scholar]
- Yarkent, Ç.; Gürlek, C.; Oncel, S.S. Potential of Microalgal Compounds in Trending Natural Cosmetics: A Review. Sustain. Chem. Pharm. 2020, 17, 100304. [Google Scholar] [CrossRef]
- Mobin, S.M.A.; Chowdhury, H.; Alam, F. Commercially Important Bioproducts from Microalgae and Their Current Applications—A Review. Energy Procedia 2019, 160, 752–760. [Google Scholar] [CrossRef]
- Coulombier, N.; Jauffrais, T.; Lebouvier, N. Antioxidant Compounds from Microalgae: A Review. Mar. Drugs 2021, 19, 549. [Google Scholar] [CrossRef]
- De Luca, M.; Pappalardo, I.; Limongi, A.R.; Viviano, E.; Radice, R.P.; Todisco, S.; Martelli, G.; Infantino, V.; Vassallo, A. Lipids from Microalgae for Cosmetic Applications. Cosmetics 2021, 8, 52. [Google Scholar] [CrossRef]
- Xia, D.; Qiu, W.; Wang, X.; Liu, J. Recent Advancements and Future Perspectives of Microalgae-Derived Pharmaceuticals. Mar. Drugs 2021, 19, 703. [Google Scholar] [CrossRef]
- Jha, D.; Jain, V.; Sharma, B.; Kant, A.; Garlapati, V.K. Microalgae-Based Pharmaceuticals and Nutraceuticals: An Emerging Field with Immense Market Potential. ChemBioEng Rev. 2017, 4, 257–272. [Google Scholar] [CrossRef]
- Samuels, R.; Mani, U.V.; Iyer, U.M.; Nayak, U.S. Hypocholesterolemic Effect of Spirulina in Patients with Hyperlipidemic Nephrotic Syndrome. J. Med. Food 2002, 5, 91–96. [Google Scholar] [CrossRef]
- Raposo, M.F.; Morais, A.M.M.B. Microalgae for the Prevention of Cardiovascular Disease and Stroke. Life Sci. 2015, 125, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Deepa, P.K.; Subramanian, A.; Manjusha, W.A. Phytochemical Screening and Evaluation of Antidiabetic Activity of the Marine Microalgae: Nannochloropsis sp. Int. J. Life Sci. Pharm. Res. 2022, 10, L36–L40. [Google Scholar] [CrossRef]
- Priatni, S.; Ratnaningrum, D.; Kosasih, W. The Screening of Antidiabetic Activity and The Cultivation Study of Local Marine Microalgae. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1011, 012066. [Google Scholar] [CrossRef]
- Santoyo, S.; Plaza, M.; Jaime, L.; Ibañez, E.; Reglero, G.; Señorans, F.J. Pressurized Liquid Extraction as an Alternative Process To Obtain Antiviral Agents from the Edible Microalga Chlorella vulgaris. J. Agric. Food Chem. 2010, 58, 8522–8527. [Google Scholar] [CrossRef]
- Tabarsa, M.; Shin, I.-S.; Lee, J.H.; Surayot, U.; Park, W.; You, S. An Immune-Enhancing Water-Soluble α-Glucan from Chlorella vulgaris and Structural Characteristics. Food Sci. Biotechnol. 2015, 24, 1933–1941. [Google Scholar] [CrossRef]
- Cutignano, A.; Nuzzo, G.; Ianora, A.; Luongo, E.; Romano, G.; Gallo, C.; Sansone, C.; Aprea, S.; Mancini, F.; D’Oro, U.; et al. Development and Application of a Novel SPE-Method for Bioassay-Guided Fractionation of Marine Extracts. Mar. Drugs 2015, 13, 5736–5749. [Google Scholar] [CrossRef]
- Krause-Hielscher, S.; Demuth, H.-U.; Wessjohann, L.; Arnold, N.; Griehl, C. Microalgae as Source for Potential Anti-Alzheimer’s Disease Directed Compounds—Screening for Glutaminyl Cyclase (QC) Inhibiting Metabolites. Int. J. Pharm. Biol. Sci. 2015, 5, 164–170. [Google Scholar]
- Martin, M.; Pusceddu, M.M.; Teichenné, J.; Negra, T.; Connolly, A.; Escoté, X.; Torrell Galceran, H.; Cereto Massagué, A.; Samarra Mestre, I.; del Pino Rius, A.; et al. Preventive Treatment with Astaxanthin Microencapsulated with Spirulina Powder, Administered in a Dose Range Equivalent to Human Consumption, Prevents LPS-Induced Cognitive Impairment in Rats. Nutrients 2023, 15, 2854. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.; Raj, A.; Tiwari, A.; Saxena, A.; Raj, A.; Tiwari, A. Exploring the Anti-Cancer Potential of Microalgae. In Progress in Microalgae Research—A Path for Shaping Sustainable Futures; IntechOpen: London, UK, 2022; ISBN 978-1-80356-024-3. [Google Scholar]
- Martínez, K.A.; Saide, A.; Crespo, G.; Martín, J.; Romano, G.; Reyes, F.; Lauritano, C.; Ianora, A. Promising Antiproliferative Compound from the Green Microalga Dunaliella tertiolecta Against Human Cancer Cells. Front. Mar. Sci. 2022, 9, 778108. [Google Scholar] [CrossRef]
- Imbimbo, P.; D’Elia, L.; Liberti, D.; Olivieri, G.; Monti, D.M. Towards Green Extraction Methods from Microalgae Learning from the Classics. Appl. Microbiol. Biotechnol. 2020, 104, 9067–9077. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.; Martín-Álvarez, P.J.; Señoráns, F.J.; Cifuentes, A.; Ibáñez, E. Optimization of Accelerated Solvent Extraction of Antioxidants from Spirulina platensis Microalga. Food Chem. 2005, 93, 417–423. [Google Scholar] [CrossRef]
- Esquivel-Hernández, D.A.; Ibarra-Garza, I.P.; Rodríguez-Rodríguez, J.; Cuéllar-Bermúdez, S.P.; Rostro-Alanis, M.; Alemán-Nava, G.S.; García-Pérez, J.S.; Parra-Saldívar, R. Green Extraction Technologies for High-Value Metabolites from Algae: A Review. Biofuels Bioprod. Biorefining 2017, 11, 215–231. [Google Scholar] [CrossRef]
- TRI National Analysis: Introduction. 2014. Available online: https://www.epa.gov/sites/default/files/2017-01/documents/tri_na_2014_complete_english.pdf (accessed on 25 June 2025).
- Iverson, S.J.; Lang, S.L.C.; Cooper, M.H. Comparison of the Bligh and Dyer and Folch Methods for Total Lipid Determination in a Broad Range of Marine Tissue. Lipids 2001, 36, 1283–1287. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green Extraction of Natural Products: Concept and Principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef]
- Filaire, E.; Gerbore, J.; Guyo, J.B.; Dreux-Zigha, A.; Terrisse, F.; Ranouille, E.; Berthon, J.Y. Chapter 7: Biotechnologie Au Service de La Cosmétique. In Matières Premières Cosmétiques—Actifs Naturels, 2nd ed.; Cosmetic Valleys: Paris, France, 2020; pp. 103–120. [Google Scholar]
- Marino, T.; Leone, G.P.; Casella, P.; Iovine, A.; Musmarra, D.; Zoani, C.; Balducchi, R.; Molino, A. Green Extraction of Microalgae Components for Incorporation in Food and Feed Supplements. Chem. Eng. Trans. 2021, 87, 457–462. [Google Scholar] [CrossRef]
- Molino, A.; Mehariya, S.; Di Sanzo, G.; Larocca, V.; Martino, M.; Leone, G.P.; Marino, T.; Chianese, S.; Balducchi, R.; Musmarra, D. Recent Developments in Supercritical Fluid Extraction of Bioactive Compounds from Microalgae: Role of Key Parameters, Technological Achievements and Challenges. J. CO2 Util. 2020, 36, 196–209. [Google Scholar] [CrossRef]
- Nobre, B.P.; Villalobos, F.; Barragán, B.E.; Oliveira, A.C.; Batista, A.P.; Marques, P.A.S.S.; Mendes, R.L.; Sovová, H.; Palavra, A.F.; Gouveia, L. A Biorefinery from Nannochloropsis sp. Microalga—Extraction of Oils and Pigments. Prod. Production Biohydrogen from the Leftover Biomass. Bioresour. Technol. 2013, 135, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Uddin, S.; Sarker, Z.I.; Ferdosh, S.; Akanda, J.H.; Easmin, S.; Shamsudin, S.H.; Yunus, K.B. Phytosterols and Their Extraction from Various Plant Matrices Using Supercritical Carbon Dioxide: A Review. J. Sci. Food Agric. 2015, 95, 1385–1394. [Google Scholar] [CrossRef]
- Herrero, M.; Cifuentes, A.; Ibañez, E. Sub- and Supercritical Fluid Extraction of Functional Ingredients from Different Natural Sources: Plants, Food-by-Products, Algae and Microalgae: A Review. Food Chem. 2006, 98, 136–148. [Google Scholar] [CrossRef]
- López-Salas, L.; Expósito-Almellón, X.; Borrás-Linares, I.; Lozano-Sánchez, J.; Segura-Carretero, A. Design of Experiments for Green and GRAS Solvent Extraction of Phenolic Compounds from Food Industry By-Products—A Systematic Review. TrAC Trends Anal. Chem. 2024, 171, 117536. [Google Scholar] [CrossRef]
- Molino, A.; Martino, M.; Larocca, V.; Di Sanzo, G.; Spagnoletta, A.; Marino, T.; Karatza, D.; Iovine, A.; Mehariya, S.; Musmarra, D. Eicosapentaenoic Acid Extraction from Nannochloropsis gaditana Using Carbon Dioxide at Supercritical Conditions. Mar. Drugs 2019, 17, 132. [Google Scholar] [CrossRef]
- Sanzo, G.D.; Mehariya, S.; Martino, M.; Larocca, V.; Casella, P.; Chianese, S.; Musmarra, D.; Balducchi, R.; Molino, A. Supercritical Carbon Dioxide Extraction of Astaxanthin, Lutein, and Fatty Acids from Haematococcus pluvialis Microalgae. Mar. Drugs 2018, 16, 334. [Google Scholar] [CrossRef] [PubMed]
- Leone, G.P.; Balducchi, R.; Mehariya, S.; Martino, M.; Larocca, V.; Di Sanzo, G.; Iovine, A.; Casella, P.; Marino, T.; Karatza, D.; et al. Selective Extraction of ω-3 Fatty Acids from Nannochloropsis sp. Using Supercritical CO2 Extraction. Molecules 2019, 24, 2406. [Google Scholar] [CrossRef] [PubMed]
- Quitain, A.T.; Kai, T.; Sasaki, M.; Goto, M. Microwave–Hydrothermal Extraction and Degradation of Fucoidan from Supercritical Carbon Dioxide Deoiled Undaria pinnatifida. Ind. Eng. Chem. Res. 2013, 52, 7940–7946. [Google Scholar] [CrossRef]
- Pan, J.-L.; Wang, H.-M.; Chen, C.-Y.; Chang, J.-S. Extraction of Astaxanthin from Haematococcus pluvialis by Supercritical Carbon Dioxide Fluid with Ethanol Modifier. Eng. Life Sci. 2012, 12, 638–647. [Google Scholar] [CrossRef]
- Becerra, M.; Boutefnouchet, S.; Córdoba, O.; Vitorino, G.P.; Brehu, L.; Lamour, I.; Laimay, F.; Efstathiou, A.; Smirlis, D.; Michel, S.; et al. Antileishmanial Activity of Fucosterol Recovered from Lessonia vadosa Searles (Lessoniaceae) by SFE, PSE and CPC. Phytochem. Lett. 2015, 11, 418–423. [Google Scholar] [CrossRef]
- Tsevdou, M.; Ntzimani, A.; Katsouli, M.; Dimopoulos, G.; Tsimogiannis, D.; Taoukis, P. Comparative Study of Microwave, Pulsed Electric Fields, and High Pressure Processing on the Extraction of Antioxidants from Olive Pomace. Molecules 2024, 29, 2303. [Google Scholar] [CrossRef] [PubMed]
- Sparr Eskilsson, C.; Björklund, E. Analytical-Scale Microwave-Assisted Extraction. J. Chromatogr. A 2000, 902, 227–250. [Google Scholar] [CrossRef] [PubMed]
- Ganzler, K.; Salgó, A.; Valkó, K. Microwave Extraction: A Novel Sample Preparation Method for Chromatography. J. Chromatogr. A 1986, 371, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Jeevan Kumar, S.P.; Vijay Kumar, G.; Dash, A.; Scholz, P.; Banerjee, R. Sustainable Green Solvents and Techniques for Lipid Extraction from Microalgae: A Review. Algal Res. 2017, 21, 138–147. [Google Scholar] [CrossRef]
- Krishnan, S.; Ghani, N.A.; Aminuddin, N.F.; Quraishi, K.S.; Azman, N.S.; Cravotto, G.; Leveque, J.-M. Microwave-Assisted Lipid Extraction from Chlorella vulgaris in Water with 0.5%–2.5% of Imidazolium Based Ionic Liquid as Additive. Renew. Energy 2020, 149, 244–252. [Google Scholar] [CrossRef]
- Bermúdez Menéndez, J.M.; Arenillas, A.; Menéndez Díaz, J.Á.; Boffa, L.; Mantegna, S.; Binello, A.; Cravotto, G. Optimization of Microalgae Oil Extraction under Ultrasound and Microwave Irradiation. J. Chem. Technol. Biotechnol. 2014, 89, 1779–1784. [Google Scholar] [CrossRef]
- Chaari, M.; Akermi, S.; Elhadef, K.; Said-Al Ahl, H.A.H.; Hikal, W.M.; Mellouli, L.; Smaoui, S. Microwave-Assisted Extraction of Bioactive and Nutraceuticals. In Bioactive Extraction and Application in Food and Nutraceutical Industries; Sarkar, T., Pati, S., Eds.; Springer: New York, NY, USA, 2024; pp. 79–102. ISBN 978-1-0716-3601-5. [Google Scholar]
- Juin, C.; Chérouvrier, J.-R.; Thiéry, V.; Gagez, A.-L.; Bérard, J.-B.; Joguet, N.; Kaas, R.; Cadoret, J.-P.; Picot, L. Microwave-Assisted Extraction of Phycobiliproteins from Porphyridium purpureum. Appl. Biochem. Biotechnol. 2015, 175, 1–15. [Google Scholar] [CrossRef]
- Xiao, X.-H.; Yuan, Z.-Q.; Li, G.-K. Preparation of Phytosterols and Phytol from Edible Marine Algae by Microwave-Assisted Extraction and High-Speed Counter-Current Chromatography. Sep. Purif. Technol. 2013, 104, 284–289. [Google Scholar] [CrossRef]
- Pasquet, V.; Chérouvrier, J.-R.; Farhat, F.; Thiéry, V.; Piot, J.-M.; Bérard, J.-B.; Kaas, R.; Serive, B.; Patrice, T.; Cadoret, J.-P.; et al. Study on the Microalgal Pigments Extraction Process: Performance of Microwave Assisted Extraction. Process Biochem. 2011, 46, 59–67. [Google Scholar] [CrossRef]
- Rodriguez-Jasso, R.M.; Mussatto, S.I.; Pastrana, L.; Aguilar, C.N.; Teixeira, J.A. Microwave-Assisted Extraction of Sulfated Polysaccharides (Fucoidan) from Brown Seaweed. Carbohydr. Polym. 2011, 86, 1137–1144. [Google Scholar] [CrossRef]
- Kapoore, R.V.; Butler, T.O.; Pandhal, J.; Vaidyanathan, S. Microwave-Assisted Extraction for Microalgae: From Biofuels to Biorefinery. Biology 2018, 7, 18. [Google Scholar] [CrossRef]
- Waldebäck, M. Pressurized Fluid Extraction: A Sustainable Technique with Added Values. Ph.D. Thesis, Uppsala University, Uppsala, Sweden, 2005. [Google Scholar]
- Nickerson, B.; Colón, I. Liquid–Liquid and Solid-Phase Extraction Techniques. In Sample Preparation of Pharmaceutical Dosage Forms: Challenges and Strategies for Sample Preparation and Extraction; Nickerson, B., Ed.; Springer: Boston, MA, USA, 2011; pp. 63–92. ISBN 978-1-4419-9631-2. [Google Scholar]
- Turner, C.; Waldebäck, M. 2—Principles of Pressurized Fluid Extraction and Environmental, Food and Agricultural Applications. In Separation, Extraction and Concentration Processes in the Food, Beverage and Nutraceutical Industries; Rizvi, S.S.H., Ed.; Woodhead Publishing Series in Food Science; Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2013; pp. 39–70. ISBN 978-1-84569-645-0. [Google Scholar]
- Cha, K.H.; Lee, H.J.; Koo, S.Y.; Song, D.-G.; Lee, D.-U.; Pan, C.-H. Optimization of Pressurized Liquid Extraction of Carotenoids and Chlorophylls from Chlorella vulgaris. J. Agric. Food Chem. 2010, 58, 793–797. [Google Scholar] [CrossRef] [PubMed]
- Reighard, T.S.; Olesik, S.V. Bridging the Gap Between Supercritical Fluid Extraction and Liquid Extraction Techniques: Alternative Approaches to the Extraction of Solid and Liquid Environmental Matrices. Crit. Rev. Anal. Chem. 1996, 26, 61–99. [Google Scholar] [CrossRef]
- Misirli, H.; Domaç, F.M.; Somay, G.; Araal, O.; Ozer, B.; Adigüzel, T. N-Hexane Induced Polyneuropathy: A Clinical and Electrophysiological Follow Up. Electromyogr. Clin. Neurophysiol. 2008, 48, 103–108. [Google Scholar]
- Virot, M.; Tomao, V.; Ginies, C.; Visinoni, F.; Chemat, F. Green Procedure with a Green Solvent for Fats and Oils’ Determination: Microwave-Integrated Soxhlet Using Limonene Followed by Microwave Clevenger Distillation. J. Chromatogr. 2008, 1196–1197, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Cháfer, A.; Muñoz, R.; Burguet, M.C.; Berna, A. The Influence of the Temperature on the Liquid–Liquid Equlibria of the Mixture Limonene + Ethanol + H2O. Fluid. Phase Equilibria 2004, 224, 251–256. [Google Scholar] [CrossRef]
- Ramos, L.; Kristenson, E.M.; Brinkman, U.A.T. Current Use of Pressurised Liquid Extraction and Subcritical Water Extraction in Environmental Analysis. J. Chromatogr. 2002, 975, 3–29. [Google Scholar] [CrossRef]
- Wang, M.; Morón-Ortiz, Á.; Zhou, J.; Benítez-González, A.; Mapelli-Brahm, P.; Meléndez-Martínez, A.J.; Barba, F.J. Effects of Pressurized Liquid Extraction with Dimethyl Sulfoxide on the Recovery of Carotenoids and Other Dietary Valuable Compounds from the Microalgae Spirulina, Chlorella and Phaeodactylum tricornutum. Food Chem. 2023, 405, 134885. [Google Scholar] [CrossRef]
- Jaime, L.; Rodríguez-Meizoso, I.; Cifuentes, A.; Santoyo, S.; Suarez, S.; Ibáñez, E.; Señorans, F.J. Pressurized Liquids as an Alternative Process to Antioxidant Carotenoids’ Extraction from Haematococcus pluvialis Microalgae. LWT Food Sci. Technol. 2010, 43, 105–112. [Google Scholar] [CrossRef]
- Castro-Puyana, M.; Herrero, M.; Urreta, I.; Mendiola, J.A.; Cifuentes, A.; Ibáñez, E.; Suárez-Alvarez, S. Optimization of Clean Extraction Methods to Isolate Carotenoids from the Microalga Neochloris oleoabundans and Subsequent Chemical Characterization Using Liquid Chromatography Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2013, 405, 4607–4616. [Google Scholar] [CrossRef]
- Herrero, M.; Jaime, L.; Martín-Álvarez, P.J.; Cifuentes, A.; Ibáñez, E. Optimization of the Extraction of Antioxidants from Dunaliella salina Microalga by Pressurized Liquids. J. Agric. Food Chem. 2006, 54, 5597–5603. [Google Scholar] [CrossRef] [PubMed]
- Plaza, M.; Santoyo, S.; Jaime, L.; Avalo, B.; Cifuentes, A.; Reglero, G.; García-Blairsy Reina, G.; Señoráns, F.J.; Ibáñez, E. Comprehensive Characterization of the Functional Activities of Pressurized Liquid and Ultrasound-Assisted Extracts from Chlorella vulgaris. LWT Food Sci. Technol. 2012, 46, 245–253. [Google Scholar] [CrossRef]
- Herrero, M.; Simó, C.; Ibáñez, E.; Cifuentes, A. Capillary Electrophoresis-Mass Spectrometry of Proteins Obtained by Pressurized Liquid Extraction. Electrophoresis 2005, 26, 4215–4224. [Google Scholar] [CrossRef] [PubMed]
- Golmakani, M.-T.; Mendiola, J.A.; Rezaei, K.; Ibáñez, E. Pressurized Limonene as an Alternative Bio-Solvent for the Extraction of Lipids from Marine Microorganisms. J. Supercrit. Fluids 2014, 92, 1–7. [Google Scholar] [CrossRef]
- Pieber, S.; Schober, S.; Mittelbach, M. Pressurized Fluid Extraction of Polyunsaturated Fatty Acids from the Microalga Nannochloropsis oculata. Biomass Bioenergy 2012, 47, 474–482. [Google Scholar] [CrossRef]
- Adam, F.; Abert-Vian, M.; Peltier, G.; Chemat, F. “Solvent-Free” Ultrasound-Assisted Extraction of Lipids from Fresh Microalgae Cells: A Green, Clean and Scalable Process. Bioresour. Technol. 2012, 114, 457–465. [Google Scholar] [CrossRef]
- Zhao, G.; Chen, X.; Wang, L.; Zhou, S.; Feng, H.; Chen, W.N.; Lau, R. Ultrasound Assisted Extraction of Carbohydrates from Microalgae as Feedstock for Yeast Fermentation. Bioresour. Technol. 2013, 128, 337–344. [Google Scholar] [CrossRef]
- Shirsath, S.R.; Sonawane, S.H.; Gogate, P.R. Intensification of Extraction of Natural Products Using Ultrasonic Irradiations—A Review of Current Status. Chem. Eng. Process. Process Intensif. 2012, 53, 10–23. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications. A Review. Ultrason. Sonochemistry 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Tiwari, B.K. Ultrasound: A Clean, Green Extraction Technology. TrAC Trends Anal. Chem. 2015, 71, 100–109. [Google Scholar] [CrossRef]
- Usman, M.; Nakagawa, M.; Cheng, S. Emerging Trends in Green Extraction Techniques for Bioactive Natural Products. Processes 2023, 11, 3444. [Google Scholar] [CrossRef]
- Parniakov, O.; Apicella, E.; Koubaa, M.; Barba, F.J.; Grimi, N.; Lebovka, N.; Pataro, G.; Ferrari, G.; Vorobiev, E. Ultrasound-Assisted Green Solvent Extraction of High-Added Value Compounds from Microalgae Nannochloropsis spp. Bioresour. Technol. 2015, 198, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Deenu, A.; Naruenartwongsakul, S.; Kim, S.M. Optimization and Economic Evaluation of Ultrasound Extraction of Lutein from Chlorella vulgaris. Biotechnol. Bioproc. Eng. 2013, 18, 1151–1162. [Google Scholar] [CrossRef]
- Roselló-Soto, E.; Galanakis, C.M.; Brnčić, M.; Orlien, V.; Trujillo, F.J.; Mawson, R.; Knoerzer, K.; Tiwari, B.K.; Barba, F.J. Clean Recovery of Antioxidant Compounds from Plant Foods, by-Products and Algae Assisted by Ultrasounds Processing. Modeling Approaches to Optimize Processing Conditions. Trends Food Sci. Technol. 2015, 42, 134–149. [Google Scholar] [CrossRef]
- Zhang, J.; Wen, C.; Zhang, H.; Duan, Y.; Ma, H. Recent Advances in the Extraction of Bioactive Compounds with Subcritical Water: A Review. Trends Food Sci. Technol. 2020, 95, 183–195. [Google Scholar] [CrossRef]
- Thiruvenkadam, S.; Izhar, S.; Yoshida, H.; Danquah, M.K.; Harun, R. Process Application of Subcritical Water Extraction (SWE) for Algal Bio-Products and Biofuels Production. Appl. Energy 2015, 154, 815–828. [Google Scholar] [CrossRef]
- Zakaria, S.M.; Kamal, S.M.M. Subcritical Water Extraction of Bioactive Compounds from Plants and Algae: Applications in Pharmaceutical and Food Ingredients. Food Eng. Rev. 2016, 8, 23–34. [Google Scholar] [CrossRef]
- Plaza, M.; Amigo-Benavent, M.; del Castillo, M.D.; Ibáñez, E.; Herrero, M. Facts about the Formation of New Antioxidants in Natural Samples after Subcritical Water Extraction. Food Res. Int. 2010, 43, 2341–2348. [Google Scholar] [CrossRef]
- Rodríguez-Meizoso, I.; Jaime, L.; Santoyo, S.; Señoráns, F.J.; Cifuentes, A.; Ibáñez, E. Subcritical Water Extraction and Characterization of Bioactive Compounds from Haematococcus pluvialis Microalga. J. Pharm. Biomed. Anal. 2010, 51, 456–463. [Google Scholar] [CrossRef]
- Ho, B.C.H.; Kamal, S.M.M.; Danquah, M.K.; Harun, R. Optimization of Subcritical Water Extraction (SWE) of Lipid and Eicosapentaenoic Acid (EPA) from Nannochloropsis gaditana. BioMed Res. Int. 2018, 2018, 8273581. [Google Scholar] [CrossRef]
- Reddy, H.K.; Muppaneni, T.; Sun, Y.; Li, Y.; Ponnusamy, S.; Patil, P.D.; Dailey, P.; Schaub, T.; Holguin, F.O.; Dungan, B.; et al. Subcritical Water Extraction of Lipids from Wet Algae for Biodiesel Production. Fuel 2014, 133, 73–81. [Google Scholar] [CrossRef]
- Zainan, N.H.; Thiruvenkadam, S.; Danquah, M.K.; Harun, R. Biochemical Analysis and Potential Applications of Aqueous and Solid Products Generated from Subcritical Water Extraction of Microalgae Chlorella pyrenoidosa Biomass. J. Appl. Phycol. 2020, 32, 111–126. [Google Scholar] [CrossRef]
- Álvarez-Viñas, M.; Rodríguez-Seoane, P.; Flórez-Fernández, N.; Torres, M.D.; Díaz-Reinoso, B.; Moure, A.; Domínguez, H. Subcritical Water for the Extraction and Hydrolysis of Protein and Other Fractions in Biorefineries from Agro-Food Wastes and Algae: A Review. Food Bioprocess. Technol. 2021, 14, 373–387. [Google Scholar] [CrossRef]
- Zheng, H.; Yin, J.; Gao, Z.; Huang, H.; Ji, X.; Dou, C. Disruption of Chlorella vulgaris Cells for the Release of Biodiesel-Producing Lipids: A Comparison of Grinding, Ultrasonication, Bead Milling, Enzymatic Lysis, and Microwaves. Appl. Biochem. Biotechnol. 2011, 164, 1215–1224. [Google Scholar] [CrossRef] [PubMed]
- Nadar, S.S.; Rao, P.; Rathod, V.K. Enzyme Assisted Extraction of Biomolecules as an Approach to Novel Extraction Technology: A Review. Food Res. Int. 2018, 108, 309–330. [Google Scholar] [CrossRef]
- Corrêa, P.S.; Morais Júnior, W.G.; Martins, A.A.; Caetano, N.S.; Mata, T.M. Microalgae Biomolecules: Extraction, Separation and Purification Methods. Processes 2021, 9, 10. [Google Scholar] [CrossRef]
- Zuorro, A.; Miglietta, S.; Familiari, G.; Lavecchia, R. Enhanced Lipid Recovery from Nannochloropsis Microalgae by Treatment with Optimized Cell Wall Degrading Enzyme Mixtures. Bioresour. Technol. 2016, 212, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Puri, M.; Sharma, D.; Barrow, C.J. Enzyme-Assisted Extraction of Bioactives from Plants. Trends Biotechnol. 2012, 30, 37–44. [Google Scholar] [CrossRef]
- Sanjeewa, K.K.A.; Herath, K.H.I.N.M.; Kim, Y.-S.; Jeon, Y.-J.; Kim, S.-K. Enzyme-Assisted Extraction of Bioactive Compounds from Seaweeds and Microalgae. TrAC Trends Anal. Chem. 2023, 167, 117266. [Google Scholar] [CrossRef]
- Marsol-Vall, A.; Aitta, E.; Guo, Z.; Yang, B. Green Technologies for Production of Oils Rich in N-3 Polyunsaturated Fatty Acids from Aquatic Sources. Crit. Rev. Food Sci. Nutr. 2022, 62, 2942–2962. [Google Scholar] [CrossRef]
- Liang, K.; Zhang, Q.; Cong, W. Enzyme-Assisted Aqueous Extraction of Lipid from Microalgae. J. Agric. Food Chem. 2012, 60, 11771–11776. [Google Scholar] [CrossRef] [PubMed]
- Tavanandi, H.A.; Vanjari, P.; Raghavarao, K.S.M.S. Synergistic Method for Extraction of High Purity Allophycocyanin from Dry Biomass of Arthrospira platensis and Utilization of Spent Biomass for Recovery of Carotenoids. Sep. Purif. Technol. 2019, 225, 97–111. [Google Scholar] [CrossRef]
- Law, S.Q.K.; Halim, R.; Scales, P.J.; Martin, G.J.O. Conversion and Recovery of Saponifiable Lipids from Microalgae Using a Nonpolar Solvent via Lipase-Assisted Extraction. Bioresour. Technol. 2018, 260, 338–347. [Google Scholar] [CrossRef]
- Huo, S.; Wang, Z.; Cui, F.; Zou, B.; Zhao, P.; Yuan, Z. Enzyme-Assisted Extraction of Oil from Wet Microalgae Scenedesmus sp. G4. Energies 2015, 8, 8165–8174. [Google Scholar] [CrossRef]
- Chaminda Lakmal, H.H.; Samarakoon, K.W.; Jeon, Y.-J. Enzyme-Assisted Extraction to Prepare Bioactive Peptides from Microalgae. In Marine Algae Extracts; John Wiley & Sons: Weinheim, Germany, 2015; pp. 305–318. ISBN 978-3-527-67957-7. [Google Scholar]
- Angles, E.; Jaouen, P.; Pruvost, J.; Marchal, L. Wet Lipid Extraction from the Microalga Nannochloropsis sp.: Disruption, Physiological Effects and Solvent Screening. Algal Res. 2017, 21, 27–34. [Google Scholar] [CrossRef]
- Yang, F.; Xiang, W.; Sun, X.; Wu, H.; Li, T.; Long, L. A Novel Lipid Extraction Method from Wet Microalga Picochlorum sp. Room Temperature. Mar. Drugs 2014, 12, 1258–1270. [Google Scholar] [CrossRef] [PubMed]
- Rehan, S.S.; Aftab, D.S. Evaluation of Antioxidant and Anti-Cancer Potential of Ethanolic and n-Hexane Extracts of Fresh Water Algae from Lahore. Preprint 2023. [Google Scholar] [CrossRef]
- Yang, F.; Cheng, C.; Long, L.; Hu, Q.; Jia, Q.; Wu, H.; Xiang, W. Extracting Lipids from Several Species of Wet Microalgae Using Ethanol at Room Temperature. Energy Fuels 2015, 29, 2380–2386. [Google Scholar] [CrossRef]
- Chen, M.; Chen, X.; Liu, T.; Zhang, W. Subcritical Ethanol Extraction of Lipid from Wet Microalgae Paste of Nannochloropsis sp. J. Biobased Mater. Bioenergy 2011, 5, 385–389. [Google Scholar] [CrossRef]
- Prat, D.; Wells, A.; Hayler, J.; Sneddon, H.; Robert McElroy, C.; Abou-Shehada, S.; Dunn, J.P. CHEM21 Selection Guide of Classical- and Less Classical-Solvents. Green. Chem. 2016, 18, 288–296. [Google Scholar] [CrossRef]
- Dejoye Tanzi, C.; Abert Vian, M.; Ginies, C.; Elmaataoui, M.; Chemat, F. Terpenes as Green Solvents for Extraction of Oil from Microalgae. Molecules 2012, 17, 8196–8205. [Google Scholar] [CrossRef] [PubMed]
- Ghandi, K. A Review of Ionic Liquids, Their Limits and Applications. Green. Sustain. Chem. 2014, 4, 44–53. [Google Scholar] [CrossRef]
- Zhang, Y.; Bakshi, B.R.; Demessie, E.S. Life Cycle Assessment of an Ionic Liquid versus Molecular Solvents and Their Applications. Environ. Sci. Technol. 2008, 42, 1724–1730. [Google Scholar] [CrossRef]
- Al-Ameri, M.; Al-Zuhair, S. Using Switchable Solvents for Enhanced, Simultaneous Microalgae Oil Extraction-Reaction for Biodiesel Production. Biochem. Eng. J. 2019, 141, 217–224. [Google Scholar] [CrossRef]
- Asevedo, E.A.; das Chagas, B.M.E.; de Oliveira Júnior, S.D.; dos Santos, E.S. Recovery of Lipids and Carotenoids from Dunaliella salina Microalgae Using Deep Eutectic Solvents. Algal Res. 2023, 69, 102940. [Google Scholar] [CrossRef]
- Florindo, C.; Branco, L.C.; Marrucho, I.M. Quest for Green-Solvent Design: From Hydrophilic to Hydrophobic (Deep) Eutectic Solvents. ChemSusChem 2019, 12, 1549–1559. [Google Scholar] [CrossRef] [PubMed]
- Mehariya, S.; Fratini, F.; Lavecchia, R.; Zuorro, A. Green Extraction of Value-Added Compounds Form Microalgae: A Short Review on Natural Deep Eutectic Solvents (NaDES) and Related Pre-Treatments. J. Environ. Chem. Eng. 2021, 9, 105989. [Google Scholar] [CrossRef]
- Patrice Didion, Y.; Gijsbert Tjalsma, T.; Su, Z.; Malankowska, M.; Pinelo, M. What Is next? The Greener Future of Solid Liquid Extraction of Biobased Compounds: Novel Techniques and Solvents Overpower Traditional Ones. Sep. Purif. Technol. 2023, 320, 124147. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, M.; Saraiva, J.A.; Martins, A.P.; Pinto, C.A.; Prieto, M.A.; Simal-Gandara, J.; Cao, H.; Xiao, J.; Barba, F.J. Extraction of Lipids from Microalgae Using Classical and Innovative Approaches. Food Chem. 2022, 384, 132236. [Google Scholar] [CrossRef]
- Samorì, C.; Barreiro, D.L.; Vet, R.; Pezzolesi, L.; Brilman, D.W.F.; Galletti, P.; Tagliavini, E. Effective Lipid Extraction from Algae Cultures Using Switchable Solvents. Green. Chem. 2013, 15, 353–356. [Google Scholar] [CrossRef]
- Zullaikah, S.; Jessinia, M.C.P.; Rinaldi, R.; Yasmin, M.; Rachimoellah, M.; Wu, D.W. Lipids Extraction from Wet and Unbroken Microalgae Chlorella vulgaris Using Subcritical Water. Mater. Sci. Forum 2019, 964, 103–108. [Google Scholar] [CrossRef]
- Imbimbo, P.; Bueno, M.; D’Elia, L.; Pollio, A.; Ibañez, E.; Olivieri, G.; Monti, D.M. Green Compressed Fluid Technologies To Extract Antioxidants and Lipids from Galdieria phlegrea in a Biorefinery Approach. ACS Sustain. Chem. Eng. 2020, 8, 2939–2947. [Google Scholar] [CrossRef] [PubMed]
- Zghaibi, N.; Omar, R.; Mustapa Kamal, S.M.; Awang Biak, D.R.; Harun, R. Microwave-Assisted Brine Extraction for Enhancement of the Quantity and Quality of Lipid Production from Microalgae Nannochloropsis sp. Molecules 2019, 24, 3581. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Schuur, B.; Brilman, D.W.F. Maximizing Lipid Yield in Neochloris oleoabundans Algae Extraction by Stressing and Using Multiple Extraction Stages with N-Ethylbutylamine as Switchable Solvent. Ind. Eng. Chem. Res. 2017, 56, 8073–8080. [Google Scholar] [CrossRef]
- Zimmerer, J.; Pingen, D.; Hess, S.K.; Koengeter, T.; Mecking, S. Integrated Extraction and Catalytic Upgrading of Microalgae Lipids in Supercritical Carbon Dioxide. Green. Chem. 2019, 21, 2428–2435. [Google Scholar] [CrossRef]
- Kalsum, U.; Kusuma, H.S.; Roesyadi, A.; Mahfud, M. Lipid Extraction from Spirulina platensis Using Microwave for Biodiesel Production. Korean Chem. Eng. Res. 2019, 57, 301–304. [Google Scholar] [CrossRef]
- Hadiyanto, H. Suttrisnorhadi Response Surface Optimization of Ultrasound Assisted Extraction (UAE) of Phycocyanin from Microalgae Spirulina platensis|EBSCOhost. Available online: https://openurl.ebsco.com/contentitem/doi:10.9755%2Fejfa.2015-05-193?sid=ebsco:plink:crawler&id=ebsco:doi:10.9755%2Fejfa.2015-05-193 (accessed on 13 March 2025).
- Esquivel-Hernández, D.A.; López, V.H.; Rodríguez-Rodríguez, J.; Alemán-Nava, G.S.; Cuéllar-Bermúdez, S.P.; Rostro-Alanis, M.; Parra-Saldívar, R. Supercritical Carbon Dioxide and Microwave-Assisted Extraction of Functional Lipophilic Compounds from Arthrospira platensis. Int. J. Mol. Sci. 2016, 17, 658. [Google Scholar] [CrossRef]
- Du, L.; Kruse, A. Cell Disruption and Value-Added Substances Extraction from Arthrospira platensis Using Subcritical Water. J. Supercrit. Fluids 2021, 171, 105193. [Google Scholar] [CrossRef]
- Goto, M.; Kanda, H.; Wahyudiono; Machmudah, S. Extraction of Carotenoids and Lipids from Algae by Supercritical CO2 and Subcritical Dimethyl Ether. J. Supercrit. Fluids 2015, 96, 245–251. [Google Scholar] [CrossRef]
- Machmudah, S.; Shotipruk, A.; Goto, M.; Sasaki, M.; Hirose, T. Extraction of Astaxanthin from Haematococcus pluvialis Using Supercritical CO2 and Ethanol as Entrainer. Ind. Eng. Chem. Res. 2006, 45, 3652–3657. [Google Scholar] [CrossRef]
- Ruen-ngam, D.; Shotipruk, A.; Pavasant, P. Comparison of Extraction Methods for Recovery of Astaxanthin from Haematococcus pluvialis. Sep. Sci. Technol. 2010, 46, 64–70. [Google Scholar] [CrossRef]
- Ruiz-Domínguez, M.C.; Salinas, F.; Medina, E.; Rincón, B.; Martín, M.Á.; Gutiérrez, M.C.; Cerezal-Mezquita, P. Supercritical Fluid Extraction of Fucoxanthin from the Diatom Phaeodactylum tricornutum and Biogas Production through Anaerobic Digestion. Mar. Drugs 2022, 20, 127. [Google Scholar] [CrossRef] [PubMed]
- Gilbert-López, B.; Barranco, A.; Herrero, M.; Cifuentes, A.; Ibáñez, E. Development of New Green Processes for the Recovery of Bioactives from Phaeodactylum tricornutum. Food Res. Int. 2017, 99, 1056–1065. [Google Scholar] [CrossRef] [PubMed]
- Vintila, A.C.N.; Vlaicu, A.; Radu, E.; Ciltea-Udrescu, M.; Enascuta, E.C.; Banu, I.; Oprescu, E.-E. Evaluation of Ultrasound Assisted Extraction of Bioactive Compounds from Microalgae. Food Meas. 2022, 16, 2518–2526. [Google Scholar] [CrossRef]
- Taher, H.; Al-Zuhair, S.; Al-Marzouqi, A.H.; Haik, Y.; Farid, M.; Tariq, S. Supercritical Carbon Dioxide Extraction of Microalgae Lipid: Process Optimization and Laboratory Scale-Up. J. Supercrit. Fluids 2014, 86, 57–66. [Google Scholar] [CrossRef]
- Guldhe, A.; Singh, B.; Rawat, I.; Ramluckan, K.; Bux, F. Efficacy of Drying and Cell Disruption Techniques on Lipid Recovery from Microalgae for Biodiesel Production. Fuel 2014, 128, 46–52. [Google Scholar] [CrossRef]
- Francesch, A.M.; Glaser, K.B.; Jaspars, M.; Jiménez, C.; Luesch, H.; Mayer, A.M.; Newman, D.J.; Pierce, M.L.; Jaspars, O.T.-S. Author M. Pharmaceuticals from Marine Sources: Past, Present and Future. Available online: https://pharmaceutical-journal.com/article/research/pharmaceuticals-from-marine-sources-past-present-and-future (accessed on 31 March 2025).
- Guedes, A.C.; Amaro, H.M.; Malcata, F.X. Microalgae as Sources of High Added-Value Compounds—A Brief Review of Recent Work. Biotechnol. Prog. 2011, 27, 597–613. [Google Scholar] [CrossRef]
- Cauduro, V.H.; Gohlke, G.; da Silva, N.W.; Cruz, A.G.; Flores, E.M. A Review on Scale-up Approaches for Ultrasound-Assisted Extraction of Natural Products. Curr. Opin. Chem. Eng. 2025, 48, 101120. [Google Scholar] [CrossRef]
- Fernández-Ponce, M.T.; Parjikolaei, B.R.; Lari, H.N.; Casas, L.; Mantell, C.; Martínez de la Ossa, E.J. Pilot-Plant Scale Extraction of Phenolic Compounds from Mango Leaves Using Different Green Techniques: Kinetic and Scale up Study. Chem. Eng. J. 2016, 299, 420–430. [Google Scholar] [CrossRef]
- Belwal, T.; Chemat, F.; Venskutonis, P.R.; Cravotto, G.; Jaiswal, D.K.; Bhatt, I.D.; Devkota, H.P.; Luo, Z. Recent Advances in Scaling-up of Non-Conventional Extraction Techniques: Learning from Successes and Failures. TrAC Trends Anal. Chem. 2020, 127, 115895. [Google Scholar] [CrossRef]
- Ameer, K.; Shahbaz, H.M.; Kwon, J.-H. Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.; Ibañez, E. Green Extraction Processes, Biorefineries and Sustainability: Recovery of High Added-Value Products from Natural Sources. J. Supercrit. Fluids 2018, 134, 252–259. [Google Scholar] [CrossRef]
- Rombaut, N.; Tixier, A.-S.; Bily, A.; Chemat, F. Green Extraction Processes of Natural Products as Tools for Biorefinery. Biofuels Bioprod. Biorefining 2014, 8, 530–544. [Google Scholar] [CrossRef]
- Tabernero, A.; Martín del Valle, E.M.; Galán, M.A. Evaluating the Industrial Potential of Biodiesel from a Microalgae Heterotrophic Culture: Scale-up and Economics. Biochem. Eng. J. 2012, 63, 104–115. [Google Scholar] [CrossRef]
- Hogan, P.; Otero, P.; Murray, P.; Saha, S.K. Effect of Biomass Pre-Treatment on Supercritical CO2 Extraction of Lipids from Marine Diatom Amphora sp. and Its Biomass Evaluation as Bioethanol Feedstock. Heliyon 2021, 7, e05995. [Google Scholar] [CrossRef]
- Eynde, E.V.; Lenaerts, B.; Tytgat, T.; Verbruggen, S.W.; Hauchecorne, B.; Blust, R.; Lenaerts, S. Effect of Pretreatment and Temperature on the Properties of Pinnularia Biosilica Frustules. RSC Adv. 2014, 4, 56200–56206. [Google Scholar] [CrossRef]
- Sharma, A.K.; Sahoo, P.K.; Singhal, S.; Joshi, G. Exploration of Upstream and Downstream Process for Microwave Assisted Sustainable Biodiesel Production from Microalgae Chlorella vulgaris. Bioresour. Technol. 2016, 216, 793–800. [Google Scholar] [CrossRef]
- Vanleenhove, B.; Xu, L.; De Meester, S.; Raes, K. Impact of Stabilization Technology on the Extraction Yield and Functionality of Macroconstituents from Biomass: A Systematic Review. J. Agric. Food Chem. 2023, 71, 9628–9643. [Google Scholar] [CrossRef]
- Mashhadinejad, A. Effect of Growth Conditions and Extraction Solvents on Enhancement of Antimicrobial Activity of the Microalgae Chlorella vulgaris. Pharm. Biomed. Res. 2016, 2, 65–73. [Google Scholar] [CrossRef]
- Miao, X.; Wu, Q. Biodiesel Production from Heterotrophic Microalgal Oil. Bioresour. Technol. 2006, 97, 841–846. [Google Scholar] [CrossRef]
- Vuppaladadiyam, A.K.; Prinsen, P.; Raheem, A.; Luque, R.; Zhao, M. Microalgae Cultivation and Metabolites Production: A Comprehensive Review. Biofuels Bioprod. Biorefining 2018, 12, 304–324. [Google Scholar] [CrossRef]
- Singh, G.; Patidar, S.K. Microalgae Harvesting Techniques: A Review. J. Environ. Manag. 2018, 217, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Ribalet, F.; Wichard, T.; Pohnert, G.; Ianora, A.; Miralto, A.; Casotti, R. Age and Nutrient Limitation Enhance Polyunsaturated Aldehyde Production in Marine Diatoms. Phytochemistry 2007, 68, 2059–2067. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Vijayan, D.; Praveenkumar, R.; Han, J.-I.; Lee, K.; Park, J.-Y.; Chang, W.-S.; Lee, J.-S.; Oh, Y.-K. Cell-Wall Disruption and Lipid/Astaxanthin Extraction from Microalgae: Chlorella and Haematococcus. Bioresour. Technol. 2016, 199, 300–310. [Google Scholar] [CrossRef]
- Sousa, S.C.; Freitas, A.C.; Gomes, A.M.; Carvalho, A.P. Extraction of Nannochloropsis Fatty Acids Using Different Green Technologies: The Current Path. Mar. Drugs 2023, 21, 365. [Google Scholar] [CrossRef]
- Oliveira, C.Y.B.; Jacob, A.; Nader, C.; Oliveira, C.D.L.; Matos, Â.P.; Araújo, E.S.; Shabnam, N.; Ashok, B.; Gálvez, A.O. An Overview on Microalgae as Renewable Resources for Meeting Sustainable Development Goals. J. Environ. Manag. 2022, 320, 115897. [Google Scholar] [CrossRef] [PubMed]
- Seyfabadi, J.; Ramezanpour, Z.; Amini Khoeyi, Z. Protein, Fatty Acid, and Pigment Content of Chlorella vulgaris under Different Light Regimes. J. Appl. Phycol. 2011, 23, 721–726. [Google Scholar] [CrossRef]
- Burlew, J.S. Algal Culture from Laboratory to Pilot Plant. Available online: https://library.wur.nl/WebQuery/titel/533590 (accessed on 1 April 2025).
- Sheehan, J.; Dunahay, T.; Benemann, J.; Roessler, P. A Look Back at the US Department of Energy’s Aquatic Species Program: Biodiesel from Algae; National Renewable Energy Laboratory: Golden, CO, USA, 1998.
- Widjaja, A.; Chien, C.-C.; Ju, Y.-H. Study of Increasing Lipid Production from Fresh Water Microalgae Chlorella vulgaris. J. Taiwan. Inst. Chem. Eng. 2009, 40, 13–20. [Google Scholar] [CrossRef]
- Abreu, A.P.; Martins, R.; Nunes, J. Emerging Applications of Chlorella sp. Spirulina (Arthrospira) sp. Bioengineering 2023, 10, 955. [Google Scholar] [CrossRef]
- Hui, G.T.; Meng, T.K.; Kassim, M.A. Green Ultrasonication-Assisted Extraction of Microalgae Chlorella sp. for Polysaturated Fatty Acid (PUFA) Rich Lipid Extract Using Alternative Solvent Mixture. Bioprocess. Biosyst. Eng. 2023, 46, 1499–1512. [Google Scholar] [CrossRef]
- Ma, X.-N.; Chen, T.-P.; Yang, B.; Liu, J.; Chen, F. Lipid Production from Nannochloropsis. Mar. Drugs 2016, 14, 61. [Google Scholar] [CrossRef] [PubMed]
- Gentscheva, G.; Nikolova, K.; Panayotova, V.; Peycheva, K.; Makedonski, L.; Slavov, P.; Radusheva, P.; Petrova, P.; Yotkovska, I. Application of Arthrospira platensis for Medicinal Purposes and the Food Industry: A Review of the Literature. Life 2023, 13, 845. [Google Scholar] [CrossRef] [PubMed]
- Tzima, S.; Georgiopoulou, I.; Louli, V.; Magoulas, K. Recent Advances in Supercritical CO2 Extraction of Pigments, Lipids and Bioactive Compounds from Microalgae. Molecules 2023, 28, 1410. [Google Scholar] [CrossRef] [PubMed]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE—Analytical GREEnness Metric Approach and Software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef]
Microalgae | Enzyme | Optimum Temperature (°C) | Optimum pH | Compounds Recovery | References |
---|---|---|---|---|---|
Chlorella vulgaris Scenedesmus dimorphus Nannochloropsis sp. | Cellulase | 55 | 4.8 | Lipids (15.11% of dry biomass) Lipids (10.62% of dry biomass) Lipids (15.98% of dry biomass) | [110] |
Neutral Protease | 50 | 7.0 | |||
Alkaline Protease | 55 | 8.5 | |||
Trypsin | 37 | 8.0 | |||
Snailase | 37 | 5.8 | |||
Arthrospira platensis | Lysozyme | 37 | 6.8 | Allophycocyanin (32.27 ± 1.90% of dry biomass) | [111] |
Nannochloropsis salina | Rhizomucor miehei lipase | 40 | - | Lipids (0.416 ± 0.008 g/g of dry biomass) | [112] |
Chlorella vulgaris | Cellulase | 55 | 4.8 | Lipids (18% of dry biomass) | [103] |
Lysozyme | 55 | - | Lipids (24% of dry weight) | ||
Snailase | 37 | 5.8 | Lipids (22% of dry biomass) | ||
Scenedesmus sp. | Mixture of cellulase, hemicellulase, and pectinase | 30/50 °C | 3.5/4.5 | Oil recovery (86.1% g/g of dry biomass) | [113] |
Microalgae | Extraction Method | Solvent | Biomass | Yield | References |
---|---|---|---|---|---|
Chlorella sp. | Switchable Solvent | EBA b (1:1 water) | Wet | Oil (12.35 ± 3.18% dw a) | [130] |
Switchable Solvent | DMCHA c | Wet | Oil (13.30 ± 0.42% dw) | ||
Organic solvent | Hexane | Dry | Oil (9.38 ± 0.73% dw) | ||
Chlorella sp. | UAE | Media | Wet | Carbohydrates (36.85 ± 1.35 g/100 g dw) | [86] |
Conventional | Distilled Water | Dry | Carbohydrates (9.06 ± 0.05 g/100 g dw) | ||
Chlorella vulgaris | MAE | Water/[Omim][OAc] 2.5% | Dry | Lipids (19.2% dw) | [60] |
Bligh and Dyer | Methanol/chloroform (2:1) | Dry | Lipids (10.9% dw) | ||
Chlorella vulgaris | PLE | Ethanol 90% | Dry | Lutein (3.78 ± 0.19 mg/g dw) ß-carotene (0.50 ± 0.25 mg/g dw) Chlorophyll a (9.63 ± 0.65 mg/g dw) Pheophorbide a (0.01 ± 0.00 mg/g dw) | [71] |
Soxhlet | Ethanol 90% | Dry | Lutein (3.42 ± 0.11 mg/g dw) ß-carotene (0.26 ± 0.09 mg/g dw) Chlorophyll a (3.32 ± 0.30 mg/g dw) Pheophorbide a (5.15 ± 0.59 mg/g dw) | ||
Maceration | Ethanol 90% | Dry | Lutein (2.97 ± 0.31 mg/g dw) ß-carotene (0.08 ± 0.01 mg/g dw) Chlorophyll a (4.26 ± 0.53 mg/g dw) Pheophorbide a (0.85 ± 0.09 mg/g dw) | ||
Chlorella vulgaris | SWE | Water/ethyl acetate | Wet | Lipids (53.40% dw) | [131] |
Bligh and Dyer | Chloroform/methanol | Dry | Lipids (10.4% dw) | ||
Galdieria phlegrea | SFE-CO2 | CO2 | Wet | Lipids (184 ± 5 mg/g dw) | [132] |
Organic solvent | Chloroform/methanol/sodium chloride | Dry | Lipids (164 ± 6 mg/g dw) | ||
PLE | Ethanol | Wet | Carotenoids (89 ± 6 mg/g dw) | ||
Organic solvent | Acetone | Dry | Carotenoids (100 ± 5 mg/g dw) | ||
Nannochloropsis gaditana | Switchable Solvent | DMCHA2 | Wet | Lipids (57.9 ± 1.3% dw) | [130] |
Bligh and Dyer | Chloroform/methanol/water | Dry | Lipids (45.1 ± 0.9% dw) | ||
Nannochloropsis gaditana | MAE | Methanol (1:10) | Dry | Fatty acids (14.36 ± 0.41% dw) | [61] |
UAE | Methanol (1:10) | Dry | Fatty acids (14.11 ± 0.40% dw) | ||
Conventional | Methanol (1:10) | Dry | Fatty acids (13.59 ± 0.39% dw) | ||
Nannochloropsis oculata | UAE | Medium | 30% Dry | FAMEs d (0.2 ± 0.03% dw) | [85] |
Bligh and Dyer | Methanol–chloroform (2:1) | 20% Dry | FAMEs (5.7% dw) | ||
Nannochloropsis sp. | SFE-CO2 | CO2 | Dry | Lipids (34 g/100 g dw) Pigments (38 mg/100 g dw) | [46] |
CO2 + 20% ethanol | Lipids (45 g/100 g dw) Pigments (100 mg/100 g dw) | ||||
Soxhlet | Hexane | Dry | Lipids (40.7% dw) | ||
Bligh and Dyer | Methanol/chloroform/water (10:5:4) | Dry | Lipids (25.3% dw) | ||
Nannochloropsis sp. | MAE | NaCl solution | Dry | Lipids (16.1% dw) | [133] |
Bligh and Dyer | Chloroform/methanol/water (1:2:0.8) | Dry | Lipids (18% dw) | ||
Soxhlet | Hexane | Dry | Lipids (4.5% dw) | ||
Neochloris oleoabundans | Bligh and Dyer with Switchable Solvent | EBA | Wet | Lipids (47% dw) | [134] |
Bligh and Dyer | Methanol/chloroform (2:1) | Dry | Lipids (13% dw) | ||
Phaeodactylum tricornutum | SFE-CO2 | CO2 | Dry | Lipids (25% dw) | [135] |
Folch | Chloroform/methanol/water | Dry | Lipids (28% dw) | ||
Spirulina platensis | MAE | Methanol/hexane (1:2) | Dry | Lipids (12.53% dw) | [136] |
Soxhlet | Hexane | Dry | Lipids (1.293% dw) | ||
Spirulina platensis | UAE | Ethanol | Dry | Phycocyanin (13.61% dw) | [137] |
Conventional | Ethanol | Dry | Phycocyanin (11.13% dw) |
Microalgae | Techniques | Methodology and Solvents | Environment | Compounds and Yield | Application Field | Ref. |
---|---|---|---|---|---|---|
Anabaena planctonica | PLE | T: 200 °C P: 20.7 MPa Time: 15 min Solvent: Limonene:ethanol (1:1) | Freshwater | Total Yield (3.1 ± 0.5% w/w) a Lipids (6.0 ± 1.1% w/w) b Gamma-linolenic acid (1.3 ± 0.4% w/w) | Biodiesel production | [83] |
Arthrospira platensis | SFE-CO2 | T: 60 °C P: 450 bar Time: 50 min Co-solvent: Ethanol/water 96% (v/v) | Freshwater | Carotenoids (283 ± 0.10 μg/g dw b) Tocopherols (5.01 ± 0.05 μg/g dw) Fatty acids (34.76 ± 0.08 mg/g dw) | [138] | |
MAE | T: 50 °C P: 1 bar Time: 15 min Power: 400 W Solvent: Methanol/ethyl acetate/light petroleum (1:1:1 v/v) | Carotenoids (629 ± 0.13 μg/g dw) Tocopherols (2.46 ± 0.09 μg/g dw) | ||||
T: 70 °C P: 1 bar Time: 15 min Power: 400 W Solvent: Methanol/ethyl acetate/light petroleum (1:1:1 v/v) | Fatty acids (15.88 ± 0.06 mg/g dw) | |||||
T: - P: - Time: 40 min Power: 600 W Solvent: Methanol-hexane solvent (1:2) | Lipids yield (% dw) 12.53% | Biodiesel Production | [136] | |||
PLE | T: 40 °C P: 103.4 bar Time: 15 min Solvent: DMSO (100%) Magnetic stirring | ß-carotene (29.11 mg/L) Myxoxanthophyll (1.54 mg/L) Zeaxanthin (24.93 mg/L) | Food Industry | [77] | ||
Pretreatment T: 25 °C P: 1500 psi Time: 15 min Solvent: Water | Proteins Yield (8% dw) | Food and Research sectors | [82] | |||
T: 200 °C P: 20.7 MPa Time: 15 min Solvent: Limonene:ethanol (1:1, v/v) | Total Yield (17.6 ± 0.2% w/w) Lipids (33.7 ± 2.4% w/w) Gamma-Linolenic acid (7.3 ± 0.5% w/w) | Biodiesel Production | [83] | |||
UAE | T: 52.5 °C Time: 42 min Power: - Solvent: Ethanol | Phycocyanin (14.94 ± 0.21% g/g) Anti-oxidant activity EC50 (86.3 ± 1.65 mg/mL) | Food, Pharmaceutical, Cosmetic Industries | [137] | ||
SWE | T: 180 °C P: 20 bar Flow rate: 6 mL/min Time: 14 s | Protein Yield (60.2 ± 0.7% dw) Total Phenolic Compounds (≈25 mg GAE/L) TEAC c (≈5 µmol TEAC/L) | Microalgae biorefinery | [139] | ||
T: 210 °C P: 20 bar Flow rate: 5 mL/min Time: 17 s | Carbohydrate Yield (>100% dw) Total Phenolic Compounds (40 mg GAE/L) TEAC (≈7 µmol TEAC/L) | |||||
EAE | Ultrasonication Enzyme: Lysozyme T: 27 ± 2 °C pH: 6.8 Time: 4 h Intermittent stirring | Allophycocyanin (44.08 mg/g dw) | [111] | |||
Chlorella pyrenoidosa | SWE | T: 270 °C Time: 10 min | Marine | Proteins Yield (18.773% dw) Carbohydrates Yield (1.34% dw) | Biproduct from microalgae | [101] |
Chlorella vulgaris | SFE-CO2 | T: 60 °C P: 30 MPa Time: 120 min Co-solvent: Ethanol 7.5% (v/v) | Marine | Chlorophyll a (37.50%) Chlorophyll b (2.83%) Lutein (19%) β-Carotene (2.93%) | Pigments for foods and use in pharmaceutical sector | [140] |
MAE | T: 60 °C P: - Time: 5 min Power: 700 W Solvent: 2.5% of hydrophilic Ionic Liquids [Omim][OAc] | Lipids yield (20% dw) FAMEs d (8.3% total lipid weight) | [60] | |||
PLE | T: 200 °C P: 1500 psi Time: 20 min Solvent: Water | Total yield (39.31% dw) TEAC (1.913 ± 0.099 mmol Trolox/g extract) | Antioxidant and antimicrobial activities for food industries | [81] | ||
T: 200 °C P: 1500 psi Time: 20 min Solvent: Ethanol | Total yield (36.43% dw) TEAC (0.196 ± 0.003 mmol Trolox/g extract) | |||||
T: 50 °C P: 1500 psi Time: 20 min Solvent: Acetone | Total yield (0.94% dw) TEAC (0.479 ± 0.009 mmol Trolox/g extract) | |||||
T: 40 °C P: 103.4 bar Time: 15 min Solvent: DMSO (100%) Magnetic stirring | Lutein (0.82 mg/L) ß-carotene (0.2 mg/L) α-carotene (0.41 mg/L) | Food Industry | [77] | |||
T: 160 °C P: 1500 psi Time: 30 min Solvent: Ethanol (90%) | Lutein (3.78 ± 0.19 mg/g of extract) ß-carotene (0.50 ± 0.25 mg/g of extract) Chlorophyll a (9.63 ± 0.65 mg/g of extract) Pheophorbide a (0.01 ± 0.00 mg/g of extract) | Food and Pharmaceuticals industries | [71] | |||
UAE | T: 25 °C Time: 25 min Solvent: Ethanol Magnetic stirring | Total yield (4.79% dw) TEAC (0.588 ± 0.021 mmol Trolox/g extract) | Antioxidant and antimicrobial activities for food industries | [81] | ||
Enzymatic pretreatment T: 37.7 °C Time: 162 min Solvent: Ethanol (35.6 mL/g) | Lutein (3.36 ± 0.10 mg/g of wet biomass) | Food and Pharmaceuticals industries | [92] | |||
T: - Time: 30 s on, 5 s off (20 min) Power: 600 W Solvent: - | Lipid concentration (≈15% dw) | Biodiesel Production | [103] | |||
SWE | T: 200 °C P: 1500 psi Time: 20 min | Total yield (>55% dw) Total phenols (32.91 ± 4.47 mg gallic acid/g extract) | Recovering antioxidant compounds from natural ressources | [97] | ||
T: 160 °C P: 80 bar Time: 30 min Co-solvent: Ethyl Acetate | Lipids (53.40% dw) | Biorefinery | [131] | |||
EAE | Enzyme: Cellulase Concentration: 5.00 mg/L T: 55 °C Time: 10 h | Lipid concentration (≈25% dw) | Biodiesel Production | [103] | ||
Enzyme: Lysozyme Concentration: 5.00 mg/L T: 55 °C Time: 10 h | Lipid concentration (≈22% dw) | |||||
Enzyme: Snailase Concentration: 5.00 mg/L T: 37 °C Time: 2 h | Lipid concentration (≈7% dw) | |||||
Pretreatment Enzyme: Snailase + trypsin T: 37 °C pH: 4 Time: 12 h | Lipid recovery (49.82% lipid content) | Biodiesel Production | [110] | |||
Cylindrotheca closterium | MAE | T: 56 °C P: 101.325 Pa Power: 50 W Time: 5 min | Marine | Fucoxanthin (4.24 ± 0.09 μg/mg per extract) Chlorophyll a (8.65 ± 0.29 μg/mg per extract) | Food, Health and Biotechnology applications | [65] |
UAE | T: 8.5 °C P: 101.325 Pa Time: 10 min Power: 12.2 W Solvent: Acetone | Fucoxanthin (4.49 ± 0.08 μg/mg per extract) Chlorophyll a (4.95 ± 0.27 μg/mg per extract) | ||||
Dunaliella tertiolecta | MAE | T: 56 °C P: 101.325 Pa Power: 50 W Time: 5 min | Marine | Chlorophyll a (>4 μg/mg per extract) Chlorophyll b (>1 μg/mg per extract) ß-carotene (>1 μg/mg per extract) | ||
UAE | T: 8.5 °C P: 101.325 Pa Time: 10 min Power: 12.2 W Solvent: Acetone | Chlorophyll a (>4 μg/mg per extract) Chlorophyll b (>1 μg/mg per extract) ß-carotene (>1 μg/mg per extract) | ||||
Galdieria phlegrea | SFE-CO2 | Pretreatment T: 60 °C P: 350 bar Time: 100 min | Freshwater | Lipids (184 ± 5 mg/g dw) | Nutraceutical, pharmaceutical, foods, and biofuel industries | [132] |
PLE | Pretreatment T: 50 °C P: 100 bar Time: 30 min Solvent: Ethanol | Carotenoids (89 ± 6 mg/g dw) | ||||
Haematococcus pluvialis | SFE-CO2 | T: 50 °C P: 4500 psi Time: 20 mi8 Co-solvent: Ethanol 99.5% | Freshwater | Astaxanthin (10.92 mg/g dw) | Antioxidant for foods and cosmetics | [54] |
T: 343 K P: 40 MPa Time: 30 min 8 Co-solvent: Ethanol 7.5% (v/v) | Astaxanthin (80.6% per extract) | Pigments for foods, Antioxidant for foods and cosmetics | [141] | |||
PLE | Pretreatment T: 40 °C P: 10.34 MPa Time: 20 min Solvent: Ethanol | Total Yield (3.7 g/100 g dw) TEAC (0.426 ± 0.004 mmol Trolox/g extract) | Food and pharmaceuticals industries | [78] | ||
Pretreatment T: 200 °C P: 10.34 MPa Time: 20 min Solvent: Ethanol | Total Yield (37.1 g/100 g dw) TEAC (0.287 ± 0.005 mmol Trolox/g extract) | |||||
UAE | T: 45 °C Time: 60 min Power: 18.4 W Solvent: Acetone | Astaxanthin (60% dw) | Pigments for foods, Antioxidant for foods and cosmetics | [142] | ||
SWE | Pretreatment T: 200 °C P: 1500 psi Time: 20 min | Total Yield (33% dw) MBC e (5.0 mg/mL) MFC f (5.5; 15 mg/mL) TEAC (1.974 ± 0.053 mmol TE/g d.m.) | Recovering antioxidant and antimicrobial compounds | [98] | ||
Nannochloropsis gaditana | SFE-CO2 | T: 50 °C P: 350 bar Time: 135 min | Marine | Proteins (42.73% dw) Carbohydrates (27.67% dw) Lipids (11.83% dw) SFAs g (32.20% lipids dw) MUFAs h (27.21% lipids dw) EPA i (33% lipids dw) Other PUFAs j (7.59% lipids dw) | Aquaculture: feed supplements | [44] |
MAE | T: 60 °C P: - Time: 10 min Power: 1000 W Solvent: Methanol (1:10 ratio) | Lipid yield (29.7% dw) | Biofuel production | [61] | ||
T: 90 °C P: - Time: 10 min Power: 1000 W Solvent: Methanol (1:10 ratio) | Lipid yield (40% dw) | |||||
UAE | T: 50 °C–60 °C Time: 20 min Power: 100 W Solvent: Methanol (1:10 ratio) | Lipid yield (36.2% dw) | Biofuel production | |||
SWE | T: 236.54 °C P: 1500 psi Time: 13.95 min | Lipid Yield (13.405% dw) EPA (15.040% of total FAMEs) | Pharmaceuticals sectors | [99] | ||
Nannochloropsis oculata | PLE | T: 60 °C P: 10–12 MPa Time: 5 × 10 min Solvent: Ethanol (vol.96%) | Marine | Total Yield (36 ± 4% dw) Fatty acids (16.7 ± 0.6% dw) EPA (3.7 ± 0.1% dw) | Biorefining | [84] |
UAE | T: - Time: 25 min Power: 1500 W | FAMEs (2606.0 μg/g dw) | Biodiesel production | [85] | ||
Nannochloropsis salina | SWE | T: 220 °C Time: 20 min | Marine | Lipid Yield (27 ± 1.3% dw) | Biodiesel production | [100] |
Nannochloropsis sp. | SFE-CO2 | Mechanical pretreatment T: 75 °C P: 550 bar Time: 20 min × 5 | Marine | Lipids (18.39 mg/g dw) Fatty acids (17.56 mg/g dw) SFAs (4.74 mg/g dw) MUFAs (5.89 mg/g dw) PUFAs (6.92 mg/g dw) EPA (15.59% dw) | Commercial products | [52] |
Mechanical pretreatment T: 50 °C P: 400 bar Time: 20 min × 5 | DHA k (79.63% dw) | |||||
Pretreatment T: 40 °C P: 300 bar Time: - | Lipids (34 g/100 g dw) Pigments (38 mg/100 g dw) | Biorefinery | [46] | |||
Pretreatment T: 40 °C P: 300 bar Time: - Co solvent: 20 wt.% Ethanol | Lipids (45 g/100 g dw) Pigments (100 mg/100 g dw) | |||||
MAE | T: 100 °C P: - Time: 5 min Power: 800 W Solvent: brine solution | Lipids (16.1% dw) | Food Industry | [133] | ||
EAE | Pretreatment Enzyme: Snailase + trypsin T: 37 °C pH: 4 Time: 12 h | Lipid recovery (11.73% total lipid) | Biodiesel production | [110] | ||
Neochloris oleoabundans | PLE | Pretreatment T: 40 °C P: 1500 psi Time: 20 min Solvent: Limonene | Marine Freshwater | Carotenoids (84.6 mg/g of extract) | Antioxidant activity | [79] |
Pretreatment T: 40 °C P: 1500 psi Time: 20 min Solvent: Ethanol | Carotenoids (120.2 mg/g of extract) | |||||
Phormidium sp. | PLE | T: 200 °C P: 20.7 MPa Time: 15 min Solvent: Limonene:ethanol (1:1, v/v) | Marine | Total Yield (6.8 ± 1.4% w/w) Lipids (13.0 ± 1.3% w/w) | Biodiesel production | [83] |
Phaeodactylum tricornutum | SFE-CO2 | T: 30 °C P: 30 MPa Time: 60 min Co-solvent: Ethanol 40% (v/v) | Marine | Fucoxanthin (66.60% w/w) | Algae biorefinery processes | [143] |
Pretreatment T: 90 °C P: 620 atm Time: - | Lipids (25% dw) | Biorefinery process | [135] | |||
MAE | T: 170 °C P: - Time: 20 min Power: - Solvent: Ethanol/water (1:2) Magnetic stirred: 1000 rpm | Total yield (48.54% dw) Total phenolic content (56.50 mg GAE/g extract) TEAC (0.529 mmol Trolox eq/g extract) Total carotenoids (1.07 mg/g extract) | Pharmacology sector | [144] | ||
PLE | T: 110 °C P: 100 bar Time: 20 min Solvent: Ethanol/water (1:2) | Total yield (57.84% dw) Total phenolic content (20.31 mg GAE/g extract) TEAC total antioxidant activity (0.16 mmol Trolox eq/g extract) Total carotenoids (12.51 mg/g extract) | ||||
T: 40 °C P: 103.4 bar Time: 15 min Solvent: DMSO (100%) Magnetic stirring | Lutein (3.31 mg/L) ß-carotene (2.84 mg/) Fucoxanthin (33.12 mg/L) Diatoxanthin (2.28 mg/L) | Food Industry | [77] | |||
Porphyridium purpureum | MAE | T: 40 °C P: 101.325 Pa Time: 10 s Magnetic stirring: 600 rpm | Marine | Phycoerythrin (73.7 ± 2.3 μg/mg per extract) | Cosmetics, Nutraceuticals and used as chemotaxonomic markers | [63] |
UAE | T: room temperature Time: 30 min Power: 70% Solvent: 70% Ethanol/hexane 2:1 (v/v) | Carotenoids (947.25 µg/g dw) Lipids (21.59 mg/g dw) | Pharmaceutical and Food Industries | [145] | ||
Scenedesmus dimorphus | EAE | Pretreatment Enzyme: Snailase + trypsin T: 37 °C pH: 4 Time: 12 h | Freshwater | Lipid recovery (46.81% total lipid) | Biodiesel production | [110] |
Scenedesmus sp. | SFE-CO2 | Pretreatment T: 53 °C P: 500 bar Time: - | Freshwater | Lipids (7.41% dw) | Biodiesel production | [146] |
MAE | T: 100 °C P: - Time: 10 min Power: 1000 W Solvent: Chloroform/ethanol (1:1, v/v) | Lipids yield (% dw) with different drying techniques Freez-drying: 29.65 ± 1.05% Oven drying: 28.63 ± 0.42% Sun drying: 28.33 ± 1.37% | Biodiesel production | [147] | ||
UAE | T: - Time: 2 min Power: 100 W Solvent: Chloroform/ethanol (1:1, v/v) | Lipid yield (% dw) with different drying techniques Freez-drying: 19.85 ± 0.35% Oven drying: 18.8 ± 0.1% Sun drying: 18.9 ± 0.5% | ||||
EAE | Enzyme: Cellulase + pectinase + hemicellulase Concentration: 1:1:1/1:2:1 T: 30 °C/50 °C pH: 3.5/4.5 Time: 72 h | Oil Yield (86.1% dw) | Oil extraction | [113] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopp, G.; Lauritano, C. Greener Extraction Solutions for Microalgal Compounds. Mar. Drugs 2025, 23, 269. https://doi.org/10.3390/md23070269
Kopp G, Lauritano C. Greener Extraction Solutions for Microalgal Compounds. Marine Drugs. 2025; 23(7):269. https://doi.org/10.3390/md23070269
Chicago/Turabian StyleKopp, Gwendoline, and Chiara Lauritano. 2025. "Greener Extraction Solutions for Microalgal Compounds" Marine Drugs 23, no. 7: 269. https://doi.org/10.3390/md23070269
APA StyleKopp, G., & Lauritano, C. (2025). Greener Extraction Solutions for Microalgal Compounds. Marine Drugs, 23(7), 269. https://doi.org/10.3390/md23070269