Development of Integrated Vectors with Strong Constitutive Promoters for High-Yield Antibiotic Production in Mangrove-Derived Streptomyces
Abstract
:1. Introduction
2. Results
2.1. Construction of Recombinant Plasmids Harboring Strong Constitutive Promoters and the Corresponding Reporter Plasmids
2.2. Comparison of Promoter Strength in Different Streptomyces Strains
2.3. Enhancement of Elaiophylin Production
2.4. Enhancement of Azalomycin F production
2.5. Enhancement of Armeniaspirol Production
3. Discussion
4. Materials and Methods
4.1. General Materials and Experimental Procedures
4.2. Determination of Promoter Strength in Streptomyces Strains
4.3. Fermentation, Extraction, and Quantitative Analysis of Elaiophylins
4.4. Fermentation, Extraction, and Quantitative Analysis of Azalomycin Fs
4.5. Fermentation, Extraction, and Quantitative Analysis of Armeniaspirols
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bierman, M.; Logan, R.; O’Brien, K.; Seno, E.T.; Rao, R.N.; Schoner, B.E. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 1992, 116, 43–49. [Google Scholar] [CrossRef]
- Bibb, M.J.; Janssen, G.R.; Ward, J.M. Cloning and analysis of the promoter region of the erythromycin resistance gene (ermE) of Streptomyces erythraeus. Gene 1985, 38, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, C.J.; Hughes-Thomas, Z.A.; Martin, C.J.; Bohm, I.; Mironenko, T.; Deacon, M.; Wheatcroft, M.; Wirtz, G.; Staunton, J.; Leadlay, P.F. Increasing the efficiency of heterologous promoters in actinomycetes. J. Mol. Microbiol. Biotechnol. 2002, 4, 417–426. [Google Scholar] [PubMed]
- Qiao, Y.; Yan, J.; Jia, J.; Xue, J.; Qu, X.; Hu, Y.; Deng, Z.; Bi, H.; Zhu, D. Characterization of the Biosynthetic Gene Cluster for the Antibiotic Armeniaspirols in Streptomyces armeniacus. J. Nat. Prod. 2019, 82, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Wu, S.; Zhu, L.; Zhang, C.; Xiang, W.; Deng, Z.; Ikeda, H.; Cane, D.E.; Zhu, D. Substitution of a Single Amino Acid Reverses the Regiospecificity of the Baeyer-Villiger Monooxygenase PntE in the Biosynthesis of the Antibiotic Pentalenolactone. Biochemistry 2016, 55, 6696–6704. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Burgo, Y.; Santos-Aberturas, J.; Rodriguez-Garcia, A.; Barreales, E.G.; Tormo, J.R.; Truman, A.W.; Reyes, F.; Aparicio, J.F.; Liras, P. Activation of Secondary Metabolite Gene Clusters in Streptomyces clavuligerus by the PimM Regulator of Streptomyces natalensis. Front. Microbiol. 2019, 10, 580. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Bai, L.; Zhu, D.; Lei, X.; Liu, G.; Deng, Z.; You, D. Enhancing macrolide production in Streptomyces by coexpressing three heterologous genes. Enzym. Microb. Technol. 2012, 50, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Tian, W.; Wang, S.; Yan, X.; Jia, X.; Pierens, G.K.; Chen, W.; Ma, H.; Deng, Z.; Qu, X. Activation of Natural Products Biosynthetic Pathways via a Protein Modification Level Regulation. ACS Chem. Biol. 2017, 12, 1732–1736. [Google Scholar] [CrossRef]
- Liu, K.; Hu, X.R.; Zhao, L.X.; Wang, Y.; Deng, Z.; Tao, M. Enhancing Ristomycin A Production by Overexpression of ParB-Like StrR Family Regulators Controlling the Biosynthesis Genes. Appl. Environ. Microbiol. 2021, 87, e0106621. [Google Scholar] [CrossRef]
- Yun, K.; Zhang, Y.; Li, S.; Wang, Y.; Tu, R.; Liu, H.; Wang, M. Droplet-Microfluidic-Based Promoter Engineering and Expression Fine-Tuning for Improved Erythromycin Production in Saccharopolyspora erythraea NRRL 23338. Front. Bioeng. Biotechnol. 2022, 10, 864977. [Google Scholar] [CrossRef]
- Wang, W.; Li, X.; Wang, J.; Xiang, S.; Feng, X.; Yang, K. An engineered strong promoter for streptomycetes. Appl. Environ. Microbiol. 2013, 79, 4484–4492. [Google Scholar] [CrossRef]
- Du, D.; Zhu, Y.; Wei, J.; Tian, Y.; Niu, G.; Tan, H. Improvement of gougerotin and nikkomycin production by engineering their biosynthetic gene clusters. Appl. Microbiol. Biotechnol. 2013, 97, 6383–6396. [Google Scholar] [CrossRef]
- Li, S.; Wang, J.; Li, X.; Yin, S.; Wang, W.; Yang, K. Genome-wide identification and evaluation of constitutive promoters in streptomycetes. Microb. Cell Factories 2015, 14, 172. [Google Scholar] [CrossRef]
- Bai, C.; Zhang, Y.; Zhao, X.; Hu, Y.; Xiang, S.; Miao, J.; Lou, C.; Zhang, L. Exploiting a precise design of universal synthetic modular regulatory elements to unlock the microbial natural products in Streptomyces. Proc. Natl. Acad. Sci. USA 2015, 112, 12181–12186. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.; Hwang, S.; Lee, Y.; Cho, S.; Palsson, B.; Cho, B.K. Synthetic Biology Tools for Novel Secondary Metabolite Discovery in Streptomyces. J. Microbiol. Biotechnol. 2019, 29, 667–686. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Tian, E.; Xu, D.; Ma, M.; Deng, Z.; Hong, K. Halichoblelide D a New Elaiophylin Derivative with Potent Cytotoxic Activity from Mangrove-Derived Streptomyces sp. 219807. Molecules 2016, 21, 970. [Google Scholar] [CrossRef]
- Yuan, G.; Lin, H.; Wang, C.; Hong, K.; Liu, Y.; Li, J. 1H and 13C assignments of two new macrocyclic lactones isolated from Streptomyces sp. 211726 and revised assignments of azalomycins F3a, F4a and F5a. Magn. Reson. Chem. MRC 2011, 49, 30–37. [Google Scholar] [CrossRef]
- Yuan, G.; Hong, K.; Lin, H.; She, Z.; Li, J. New azalomycin F analogs from mangrove Streptomyces sp. 211726 with activity against microbes and cancer cells. Mar. Drugs 2013, 11, 817–829. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zhai, G.; Liu, Y.; Li, Y.; Shi, Y.; Hong, K.; Hong, H.; Leadlay, P.F.; Deng, Z.; Sun, Y. An Iterative Module in the Azalomycin F Polyketide Synthase Contains a Switchable Enoylreductase Domain. Angew. Chem. 2017, 56, 5503–5506. [Google Scholar] [CrossRef]
- Jia, J.; Zhang, C.; Liu, Y.; Huang, Y.; Bai, Y.; Hang, X.; Zeng, L.; Zhu, D.; Bi, H. Armeniaspirol A: A novel anti-Helicobacter pylori agent. Microb. Biotechnol. 2022, 15, 442–454. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, X.; Liu, J.; Bao, K.; Zhang, G.; Tu, G.; Kieser, T.; Deng, Z. ‘Streptomyces nanchangensis’, a producer of the insecticidal polyether antibiotic nanchangmycin and the antiparasitic macrolide meilingmycin, contains multiple polyketide gene clusters. Microbiology 2002, 148 (Pt 2), 361–371. [Google Scholar] [CrossRef]
- Dufour, C.; Wink, J.; Kurz, M.; Kogler, H.; Olivan, H.; Sable, S.; Heyse, W.; Gerlitz, M.; Toti, L.; Nusser, A.; et al. Isolation and structural elucidation of armeniaspirols A-C: Potent antibiotics against gram-positive pathogens. Chemistry 2012, 18, 16123–16128. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Xie, F.; Hoffmann, J.; Wang, Q.; Bauer, A.; Bronstrup, M.; Mahmud, T.; Muller, R. Armeniaspirol Antibiotic Biosynthesis: Chlorination and Oxidative Dechlorination Steps Affording Spiro[4.4]non-8-ene. Chembiochem A Eur. J. Chem. Biol. 2019, 20, 764–769. [Google Scholar] [CrossRef] [PubMed]
- Higo, A.; Hara, H.; Horinouchi, S.; Ohnishi, Y. Genome-wide distribution of AdpA, a global regulator for secondary metabolism and morphological differentiation in Streptomyces, revealed the extent and complexity of the AdpA regulatory network. DNA Res. Int. J. Rapid Publ. Rep. Genes Genomes 2012, 19, 259–273. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Zhang, Q.; Zhu, Y.; Zhang, L.; Zhang, W.; Ma, L.; Zhang, H.; Zhang, C. Proximicins F and G and Diproximicin A: Aminofurans from the Marine-Derived Verrucosispora sp. SCSIO 40062 by Overexpression of PPtase Genes. J. Nat. Prod. 2020, 83, 1152–1156. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Yan, X.; Deng, Z.; Lei, C.; Qu, X. Expanding the Chemical Diversity of Fasamycin Via Genome Mining and Biocatalysis. J. Nat. Prod. 2022, 85, 943–950. [Google Scholar] [CrossRef] [PubMed]
- Blin, K.; Shaw, S.; Kloosterman, A.M.; Charlop-Powers, Z.; van Wezel, G.P.; Medema, M.H.; Weber, T. antiSMASH 6.0: Improving cluster detection and comparison capabilities. Nucleic Acids Res. 2021, 49, W29–W35. [Google Scholar] [CrossRef]
- Ishikawa, J.; Hotta, K. FramePlot: A new implementation of the frame analysis for predicting protein-coding regions in bacterial DNA with a high G + C content. FEMS Microbiol. Lett. 1999, 174, 251–253. [Google Scholar] [CrossRef]
- Anand, S.; Prasad, M.V.; Yadav, G.; Kumar, N.; Shehara, J.; Ansari, M.Z.; Mohanty, D. SBSPKS: Structure based sequence analysis of polyketide synthases. Nucleic Acids Res. 2010, 38, W487–W496. [Google Scholar] [CrossRef]
Strain | Medium | Kanamycin Resistance Levels (μg/mL) | |||||
---|---|---|---|---|---|---|---|
None | ermEp* | hrdBp | SCO5768p | kasOp* | SP44 | ||
S. coelicolor M145 | SFM 1 | 0 | 200 | 400 | 0 | 200 | 800–1000 |
S. lividans TK24 | SFM | 0 | 200 | 200 | 1000 | 400–800 | 1500–2000 |
S. olivaceus CGMCC 4.1369 | SFM | 0–50 | 400 | 400 | 400 | 400 | 1000 |
Streptomyces sp. 219807 | FM 2 | 0 | 200 | 800–1000 | 0 | 800–1000 | 1000–1200 |
Streptomyces sp. 211726 | FM | 0 | 100–200 | 300–400 | 100–200 | 200 | 600 |
S. armeniacus DSM 43125 | FM | 0 | 900 | 900 | 2200 | 2200 | 1800 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, M.; Yang, Z.; Li, X.; Liu, Y.; Zhang, Y.; Zhang, M.; Li, Y.; Wang, X.; Deng, Z.; Hong, K.; et al. Development of Integrated Vectors with Strong Constitutive Promoters for High-Yield Antibiotic Production in Mangrove-Derived Streptomyces. Mar. Drugs 2024, 22, 94. https://doi.org/10.3390/md22020094
Zhao M, Yang Z, Li X, Liu Y, Zhang Y, Zhang M, Li Y, Wang X, Deng Z, Hong K, et al. Development of Integrated Vectors with Strong Constitutive Promoters for High-Yield Antibiotic Production in Mangrove-Derived Streptomyces. Marine Drugs. 2024; 22(2):94. https://doi.org/10.3390/md22020094
Chicago/Turabian StyleZhao, Mingxia, Zhiqiang Yang, Xinyue Li, Yaqi Liu, Yingying Zhang, Mengqian Zhang, Yangli Li, Xincheng Wang, Zixin Deng, Kui Hong, and et al. 2024. "Development of Integrated Vectors with Strong Constitutive Promoters for High-Yield Antibiotic Production in Mangrove-Derived Streptomyces" Marine Drugs 22, no. 2: 94. https://doi.org/10.3390/md22020094
APA StyleZhao, M., Yang, Z., Li, X., Liu, Y., Zhang, Y., Zhang, M., Li, Y., Wang, X., Deng, Z., Hong, K., & Zhu, D. (2024). Development of Integrated Vectors with Strong Constitutive Promoters for High-Yield Antibiotic Production in Mangrove-Derived Streptomyces. Marine Drugs, 22(2), 94. https://doi.org/10.3390/md22020094