Enhanced Expression of p53 and Suppression of PI3K/Akt/mTOR by Three Red Sea Algal Extracts: Insights on Their Composition by LC-MS-Based Metabolic Profiling and Molecular Networking
Abstract
:1. Introduction
2. Results and Discussion
2.1. Untargeted Metabolome Analysis
2.1.1. Glyceroglycolipids
2.1.2. Fatty Acids and Hydroxy Fatty Acids
2.1.3. Sterol Lipids
2.1.4. Fatty Amides
2.1.5. Sphingolipids
2.1.6. Phospholipids
2.1.7. Fatty Esters and Fatty Alcohols
2.1.8. Phenolics
2.1.9. Prostaglandins
2.1.10. Short-Chain Peptides
2.1.11. Alkaloids
2.1.12. Sugar Alcohols and Sugar Amides
2.1.13. Terpenes (Isoprenoids)
2.1.14. Miscellaneous Compounds
2.2. HR-MS/MS-Based Molecular Networking
2.3. Assessment of the Antioxidant Activity Using DPPH and ABTS Assays
2.4. In Vitro Assessment of Cytotoxicity
2.5. Assessment of the Effect of the Algal Extracts on Cancer Cell Morphology
2.6. Cell Cycle Analysis Using Flow Cytometry
2.7. Real-Time Quantitative Reverse Transcription (qRT-PCR) Analysis
2.8. Immunoblotting Assay
3. Materials and Methods
3.1. Sample Collection and Extraction
3.2. Chemicals and Reagents
3.3. HR LC-MS Analysis and Molecular Networking
3.4. Assessment of the Antioxidant Activity In Vitro
3.4.1. DPPH Free Radical Scavenging Assay
3.4.2. ABTS Radical Scavenging Activity
3.5. Assessment of the Cytotoxic Activity In Vitro
3.5.1. Cell Line Maintenance and Treatment
3.5.2. Cell Morphology Alterations
3.5.3. Cell Cycle Analysis
3.5.4. Quantitative Real-Time PCR (qRT-PCR)
3.5.5. Western Blot Assessment
3.5.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Molinski, T.F.; Dalisay, D.S.; Lievens, S.L.; Saludes, J.P. Drug development from marine natural products. Nat. Rev. Drug Discov. 2009, 8, 69–85. [Google Scholar] [CrossRef] [PubMed]
- El-Din, M.I.G.; Youssef, F.S.; Ashour, M.L.; Eldahshan, O.A.; Singab, A.N.B. New γ-pyrone glycoside from Pachira glabra and assessment of its gastroprotective activity using an alcohol-induced gastric ulcer model in rats. Food Funct. 2020, 11, 1958–1965. [Google Scholar] [CrossRef] [PubMed]
- Tammam, M.A.; El-Din, M.I.G.; Abood, A.; El-Demerdash, A. Recent Advances in Discovery, Biosynthesis and Therapeutic Potentialities of Isocoumarins Derived from Fungi: A Comprehensive Update. RSC Adv. 2023, 13, 8049–8089. [Google Scholar] [CrossRef] [PubMed]
- Donia, M.; Hamann, M.T. Marine natural products and their potential applications as anti-infective agents. Lancet Infect. Dis. 2003, 3, 338–348. [Google Scholar] [CrossRef]
- Ścieszka, S.; Klewicka, E. Algae in food: A general review. Crit. Rev. Food Sci. Nutr. 2019, 59, 3538–3547. [Google Scholar] [CrossRef] [PubMed]
- Kharkwal, H.; Joshi, D.; Panthari, P.; Pant, M.K.; Kharkwal, A.C. Algae as future drugs. Asian J. Pharm. Clin. Res 2012, 5, 1–4. [Google Scholar]
- Pradhan, B.; Nayak, R.; Patra, S.; Jit, B.P.; Ragusa, A.; Jena, M. Bioactive metabolites from marine algae as potent pharmacophores against oxidative stress-associated human diseases: A comprehensive review. Molecules 2020, 26, 37. [Google Scholar] [CrossRef]
- Lu, W.-Y.; Li, H.-J.; Wu, Y.-C. Marine Polysaccharides from Algae: Bioactivities and Application in Drug Research. In Marine Biochemistry; CRC Press: Boca Raton, FL, USA, 2023; pp. 85–109. [Google Scholar] [CrossRef]
- Nayak, G.; Bhuyan, R.; Sahu, A. Review on biomedical applications of marine algae-derived biomaterials. Univers. J. Public Health 2022, 10, 15–24. [Google Scholar] [CrossRef]
- Tsvetanova, F.; Yankov, D. Bioactive compounds from red microalgae with therapeutic and nutritional value. Microorganisms 2022, 10, 2290. [Google Scholar] [CrossRef]
- Gonçalves, A.; Fernandes, M.; Lima, M.; Gomes, J.P.; Silva, F.; Castro, S.; Sampaio, F.; Gomes, A.C. Nanotechnology to the Rescue: Therapeutic Strategies Based on Brown Algae for Neurodegenerative Diseases. Appl. Sci. 2023, 13, 1883. [Google Scholar] [CrossRef]
- Kamal, M.; Abdel-Raouf, N.; Alwutayd, K.; AbdElgawad, H.; Abdelhameed, M.S.; Hammouda, O.; Elsayed, K.N. Seasonal Changes in the Biochemical Composition of Dominant Macroalgal Species along the Egyptian Red Sea Shore. Biology 2023, 12, 411. [Google Scholar] [CrossRef]
- Remya, R.; Samrot, A.V.; Kumar, S.S.; Mohanavel, V.; Karthick, A.; Chinnaiyan, V.K.; Umapathy, D.; Muhibbullah, M. Bioactive potential of brown algae. Adsorpt. Sci. Technol. 2022, 2022, 9104835. [Google Scholar] [CrossRef]
- von Meyenfeldt, M. Cancer-associated malnutrition: An introduction. Eur. J. Oncol. Nurs. 2005, 9, S35–S38. [Google Scholar] [CrossRef] [PubMed]
- Thun, M.J.; DeLancey, J.O.; Center, M.M.; Jemal, A.; Ward, E.M. The global burden of cancer: Priorities for prevention. Carcinogenesis 2010, 31, 100–110. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-D.; Yuan, C.-F.; Bu, Y.-Q.; Wu, X.-M.; Wan, J.-Y.; Zhang, L.; Hu, N.; Liu, X.-J.; Zu, Y.; Liu, G.-L. Fangchinoline inhibits cell proliferation via Akt/GSK-3beta/cyclin D1 signaling and induces apoptosis in MDA-MB-231 breast cancer cells. Asian Pac. J. Cancer Prev. 2014, 15, 769–773. [Google Scholar] [CrossRef] [PubMed]
- Ghafouri-Fard, S.; Noie Alamdari, A.; Noee Alamdari, Y.; Abak, A.; Hussen, B.M.; Taheri, M.; Jamali, E. Role of PI3K/AKT pathway in squamous cell carcinoma with an especial focus on head and neck cancers. Cancer Cell Int. 2022, 22, 254. [Google Scholar] [CrossRef] [PubMed]
- Porta, C.; Paglino, C.; Mosca, A. Targeting PI3K/Akt/mTOR signaling in cancer. Front. Oncol 2014, 4, 64. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, S. Assessment of Antimicrobial Activity and Antioxidant Properties of Three Brown Seaweeds, Sargassum polycystum, Turbinaria triquitra and Cystoseria myrica. Egypt. Acad. J. Biol. Sci. 2023, 14, 19–28. [Google Scholar] [CrossRef]
- Moheimanian, N.; Mirkhani, H.; Sohrabipour, J.; Jassbi, A.R. Inhibitory Potential of Six Brown Algae from the Persian Gulf on α-Glucosidase and In Vivo Antidiabetic Effect of Sirophysalis Trinodis. Iran. J. Med. Sci. 2022, 47, 484–493. [Google Scholar] [CrossRef]
- Al-Judaibi, A. Antibacterial effects of extracts of two types of Red Sea Algae. J. Biosci. Med. 2014, 2, 74. [Google Scholar] [CrossRef] [Green Version]
- Omar, H.; Shiekh, H.; Gumgumjee, N.; El-Kazan, M.; El-Gendy, A. Antibacterial activity of extracts of marine algae from the Red Sea of Jeddah, Saudi Arabia. Afr. J. Biotechnol. 2012, 11, 13576–13585. [Google Scholar] [CrossRef]
- Soleimani, S.; Yousefzadi, M.; Nezhad, S.; Pozharitskaya, O.; Shikov, A. Evaluation of fractions extracted from Polycladia myrica: Biological activities, UVR protective effect, and stability of cream formulation based on it. J. Appl. Psychol. 2022, 34, 1763–1777. [Google Scholar] [CrossRef]
- Guo, S.-S.; Wang, Z.-G. Glyceroglycolipids in marine algae: A review of their pharmacological activity. Front. Pharmacol. 2022, 13, 1008797. [Google Scholar] [CrossRef] [PubMed]
- El-Beltagi, H.S.; Mohamed, A.A.; Mohamed, H.I.; Ramadan, K.M.; Barqawi, A.A.; Mansour, A.T. Phytochemical and potential properties of seaweeds and their recent applications: A review. Mar. Drugs 2022, 20, 342. [Google Scholar] [CrossRef] [PubMed]
- Dembitsky, V.M.; Rozentsvet, O.A.; Pechenkina, E.E. Glycolipids, phospholipids and fatty acids of brown algae species. Phytochemistry 1990, 29, 3417–3421. [Google Scholar] [CrossRef]
- Pirian, K.; Jeliani, Z.Z.; Arman, M.; Sohrabipour, J.; Yousefzadi, M. Proximate analysis of selected macroalgal species from the Persian Gulf as a nutritional resource. Trop. Life Sci. Res. 2020, 31, 1. [Google Scholar] [CrossRef]
- Farghl, A.A.; Al-Hasawi, Z.M.; El-Sheekh, M.M. Assessment of Antioxidant Capacity and Phytochemical Composition of Brown and Red Seaweeds Sampled off Red Sea Coast. Appl. Sci. 2021, 11, 11079. [Google Scholar] [CrossRef]
- Etemadian, Y.; Shabanpour, B.; Ramzanpour, Z.; Shaviklo, A.R.; Kordjazi, M. Nutritional and functional properties of two dried brown seaweeds Sirophysalis trinodis and Polycladia myrica. J. Aquat. Food Prod. Technol. 2018, 27, 219–235. [Google Scholar] [CrossRef]
- El Shoubaky, G.A.; Salem, E.A. Terpenes and sterols composition of marine brown algae Padina pavonica (Dictyotales) and Hormophysa triquetra (Fucales). Int. J. Pharmacogn. Phytochem. 2014, 6, 894–900. [Google Scholar]
- Bouzidi, N.; Viano, Y.; Ortalo-Magne, A.; Seridi, H.; Alliche, Z.; Daghbouche, Y.; Culioli, G.; El Hattab, M. Sterols from the brown alga Cystoseira foeniculacea: Degradation of fucosterol into saringosterol epimers. Arab. J. Chem. 2019, 12, 1474–1478. [Google Scholar] [CrossRef] [Green Version]
- Caamal-Fuentes, E.; Moo-Puc, R.; Freile-Pelegrín, Y.; Robledo, D. Cytotoxic and antiproliferative constituents from Dictyota ciliolata, Padina sanctae-crucis and Turbinaria tricostata. Pharm. Biol. 2014, 52, 1244–1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rushdi, M.I.; Abdel-Rahman, I.A.; Saber, H.; Attia, E.Z.; Abdelraheem, W.M.; Madkour, H.A.; Abdelmohsen, U.R. The genus Turbinaria: Chemical and pharmacological diversity. Nat. Prod. Res. 2021, 35, 4560–4578. [Google Scholar] [CrossRef] [PubMed]
- Treignier, C.; Tolosa, I.; Grover, R.; Reynaud, S.; Sa, C.F.-P. Carbon isotope composition of fatty acids and sterols in the scleractinian coral Turbinaria reniformis: Effect of light and feeding. Limnol. Oceanogr. 2009, 54, 1933–1940. [Google Scholar] [CrossRef]
- Sunarwidhi, A.L.; Hernawan, A.; Frediansyah, A.; Widyastuti, S.; Martyasari, N.W.R.; Abidin, A.S.; Padmi, H.; Handayani, E.; Utami, N.W.P.; Maulana, F.A. Multivariate Analysis Revealed Ultrasonic-Assisted Extraction Improves Anti-Melanoma Activity of Non-Flavonoid Compounds in Indonesian Brown Algae Ethanol Extract. Molecules 2022, 27, 7509. [Google Scholar] [CrossRef]
- Li, Y.; Lou, Y.; Mu, T.; Ke, A.; Ran, Z.; Xu, J.; Chen, J.; Zhou, C.; Yan, X.; Xu, Q. Sphingolipids in marine microalgae: Development and application of a mass spectrometric method for global structural characterization of ceramides and glycosphingolipids in three major phyla. Anal. Chim. Acta 2017, 986, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Tilvi, S.; Majik, M.S.; Singh, K.S. Mass spectrometry for determination of bioactive compounds. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2014; Volume 65, pp. 193–218. [Google Scholar]
- Zhao, F.; Xu, J.; Chen, J.; Yan, X.; Zhou, C.; Li, S.; Xu, X.; Ye, F. Structural elucidation of two types of novel glycosphingolipids in three strains of Skeletonema by liquid chromatography coupled with mass spectrometry. Rapid Commun. Mass Spectrom. 2013, 27, 1535–1547. [Google Scholar] [CrossRef] [PubMed]
- Kushnerova, T.; Fomenko, S.; Kushnerova, N.; Sprygin, V.; Lesnikova, L.; Khotimchenko, Y.S.; Kondratieva, E. Antioxidant and membrane-protective properties of an extract from the brown alga Laminaria japonica. Russ. J. Mar. Biol. 2010, 36, 390–395. [Google Scholar] [CrossRef]
- Tabakaeva, O.; Tabakaev, A. Compositions of lipids and fatty acids from various parts of the brown alga Undaria pinnatifida. Chem. Nat. Compd. 2017, 53, 843–848. [Google Scholar] [CrossRef]
- Rashedy, S.H.; Abd El Hafez, M.S.; Dar, M.A.; Cotas, J.; Pereira, L. Evaluation and characterization of alginate extracted from brown seaweed collected in the Red Sea. Appl. Sci. 2021, 11, 6290. [Google Scholar] [CrossRef]
- Di Costanzo, F.; Di Dato, V.; Ianora, A.; Romano, G. Prostaglandins in marine organisms: A review. Mar. Drugs 2019, 17, 428. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, K.; Joseph, D. Antioxidant potential and phenolic compounds of brown seaweeds Turbinaria conoides and Turbinaria ornata (class: Phaeophyceae). J. Aquat. Food Prod. Technol. 2016, 25, 1249–1265. [Google Scholar] [CrossRef]
- Deyab, M.A.; Habbak, L.Z.; Ward, F.M. Antitumor activity of water extract and some fatty acids of Turbinaria ornata (Turner) J. Agardh. Egypt J. Exp. Biol. Bot. 2012, 8, 199–204. [Google Scholar]
- Zhang, H.; Oh, J.; Jang, T.-S.; Min, B.S.; Na, M. Glycolipids from the aerial parts of Orostachys japonicus with fatty acid synthase inhibitory and cytotoxic activities. Food Chem. 2012, 131, 1097–1103. [Google Scholar] [CrossRef]
- Sheu, J.-H.; Wang, G.-H.; Sung, P.-J.; Duh, C.-Y. New cytotoxic oxygenated fucosterols from the brown alga Turbinaria conoides. J. Nat. Prod. 1999, 62, 224–227. [Google Scholar] [CrossRef] [PubMed]
- Sheu, J.-H.; Wang, G.-H.; Sung, P.-J.; Chiu, Y.-H.; Duh, C.-Y. Cytotoxic sterols from the formosan brown alga Turbinaria ornata. Planta Med. 1997, 63, 571–572. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yang, R.; Xu, Q.; Zhou, M.; Feng, J.; Wang, G.; Lin, T.; Tian, W.; Chen, H. Tautomeric phytosterols from Vernonia amygdalina Delile and their anti-cervical cancer activity. Bioorg. Chem. 2022, 128, 106068. [Google Scholar] [CrossRef] [PubMed]
- Nocedo-Mena, D.; Rivas-Galindo, V.M.; Navarro, P.; Garza-González, E.; González-Maya, L.; Ríos, M.Y.; García, A.; Ávalos-Alanís, F.G.; Rodríguez-Rodríguez, J.; del Rayo Camacho-Corona, M. Antibacterial and cytotoxic activities of new sphingolipids and other constituents isolated from Cissus incisa leaves. Heliyon 2020, 6, e04671. [Google Scholar] [CrossRef]
- Hossain, Z.; Hosokawa, M.; Takahashi, K. Growth inhibition and induction of apoptosis of colon cancer cell lines by applying marine phospholipid. Nutr. Cancer 2008, 61, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Mateos, R.; Pérez-Correa, J.R.; Domínguez, H. Bioactive properties of marine phenolics. Mar. Drugs 2020, 18, 501. [Google Scholar] [CrossRef]
- Shin, S.Y.; Yoon, H.; Ahn, S.; Kim, D.-W.; Bae, D.-H.; Koh, D.; Lee, Y.H.; Lim, Y. Structural properties of polyphenols causing cell cycle arrest at G1 phase in HCT116 human colorectal cancer cell lines. Int. J. Mol. Sci. 2013, 14, 16970–16985. [Google Scholar] [CrossRef] [Green Version]
- Anantharaju, P.G.; Gowda, P.C.; Vimalambike, M.G.; Madhunapantula, S.V. An overview on the role of dietary phenolics for the treatment of cancers. Nutr. J. 2016, 15, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jafari, S.; Saeidnia, S.; Abdollahi, M. Role of natural phenolic compounds in cancer chemoprevention via regulation of the cell cycle. Curr. Pharm. Biotechnol. 2014, 15, 409–421. [Google Scholar] [CrossRef] [PubMed]
- Mirza-Aghazadeh-Attari, M.; Ekrami, E.M.; Aghdas, S.A.M.; Mihanfar, A.; Hallaj, S.; Yousefi, B.; Safa, A.; Majidinia, M. Targeting PI3K/Akt/mTOR signaling pathway by polyphenols: Implication for cancer therapy. Life Sci. 2020, 255, 117481. [Google Scholar] [CrossRef]
- Burits, M.; Bucar, F. Antioxidant activity of Nigella sativa essential oil. Phytother. Res. 2000, 14, 323–328. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Dash, S.K.; Ghosh, T.; Roy, S.; Chattopadhyay, S.; Das, D. Zinc sulfide nanoparticles selectively induce cytotoxic and genotoxic effects on leukemic cells: Involvement of reactive oxygen species and tumor necrosis factor alpha. J. Appl. Toxicol. 2014, 34, 1130–1144. [Google Scholar] [CrossRef]
- Noser, A.A.; Shehadi, I.A.; Abdelmonsef, A.H.; Salem, M.M. Newly Synthesized Pyrazolinone Chalcones as Anticancer Agents via Inhibiting the PI3K/Akt/ERK1/2 Signaling Pathway. ACS Omega 2022, 7, 25265–25277. [Google Scholar] [CrossRef]
- Darzynkiewicz, Z.; Halicka, H.D.; Zhao, H. Analysis of cellular DNA content by flow and laser scanning cytometry. Adv. Exp. Med. Biol. 2010, 676, 137–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kvastad, L.; Werne Solnestam, B.; Johansson, E.; Nygren, A.O.; Laddach, N.; Sahlén, P.; Vickovic, S.; Bendigtsen, S.C.; Aaserud, M.; Floer, L.; et al. Single cell analysis of cancer cells using an improved RT-MLPA method has potential for cancer diagnosis and monitoring. Sci. Rep. 2015, 5, 16519. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Mruk, D.D.; Cheng, C.Y. Enhanced chemiluminescence (ECL) for routine immunoblotting: An inexpensive alternative to commercially available kits. Spermatogenesis 2011, 1, 121–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
Peak No. | tR (min) | Annotated Compound | Mono-Isotopic Mass | [M + H]+ | [M − H]− | MS/MS * | Δ ppm | Elemental Composition | Class | Relative Abundance | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T.t | P.m | S.t | ||||||||||
1 | 1.93 | 4-Quinolinecarboxylic acid | 173.0478 | ---------- | 218.0478 [M + HCOO] | 200.3843, 166.8669, 154.9239, 122.9169, 106.9795, 93.9133, 79.9573, 78.9194, 71.0132, 59.0149 | 0.9 | C10H7NO2 | Alkaloids | − | − | + |
2 | 2.02 | Formononetin | 268.0723 | ---------- | 267.0655 | 123, 92, 87, 79, 71, 59 | −0.7 | C16H12O4 | Phenolics | + | ++ | − |
3 | 2.08 | Galactitol | 182.0790 | ---------- | 181.0649 | 135.9147, 96.9595, 79.9576, 71.0141, 60.0176, 59.0145, 55.0191 | 0.0 | C6H14O6 | Sugar alcohol | ++ | + | +++ |
4 | 2.21 | Glu-His-Thr | 385.1598 | ---------- | 384.1456 | 194.0926, 145.0609, 140.0826, 127.0507, 109.0404, 82.0299 | 0.1 | C15H23N5O7 | Peptides/amino acids | + | − | − |
5 | 5.98 | N-(3-Oxododecanoyl)-L-homoserine | 315.2052 | 316.2123 | ---------- | 128.1084, 123.1159, 115.0380, 103.0934, 102.0913 | 2.2 | C16H29NO5 | Fatty amides | + | ++ | + |
6 | 6.89 | Glycine conjugate sterolipid (ST 19:0;O7;G) | 429.2362 | 430.2428 | ---------- | 216.1232, 159.0659, 128.1075, 123.1165, 115.0395, 102.0915, 100.0480 | 0.1 | C21H35NO8 | Sterol lipids | + | + | + |
7 | 7.07 | (iso)Loliolide | 196.11 | 197.1173 | ---------- | 128.0610, 127.0531, 117.0692, 116.0613, 115.0504, 106.0722, 105.0696, 103.0536 | 0.3 | C11H16O3 | Benzofurans | ++ | ++ | + |
8 | 7.07 | 1-(3,4-Dimethoxyphenyl)-1-propene | 178.0994 | 179.1065 | ---------- | 153.0623, 151.0540, 124.9464, 120.0888, 119.0847, 117.0687, 115.0539, 110.9765, 109.0616, 107.0482, 105.0749, 103.0125 | 0.1 | C11H14O2 | Phenolics | +++ | ++ | + |
9 | 8.05 | 3-Methylsuberic acid (azelaic acid) | 188.1049 | ---------- | 187.0922 | 147.5208, 142.9492, 116.0471, 100.9305, 99.9236, 96.2088, 94.6960, 90.0803, 79.9556, 57.0348 | 0.2 | C9H16O4 | Fatty acids | + | − | + |
10 | 8.37 | Trimethylphenyl-but-en-one | 188.1202 | 189.1271 | ---------- | 141.0692, 129.0702, 128.0608, 127.0525, 116.0585, 115.0533, 103.0530 | 0.4 | C13H16O | Phenolics | + | ++ | − |
11 | 8.61 | 9,12,13,TriHODE | 328.2250 | ---------- | 327.2084 | 211.1330, 171.1024, 97.0659, 85.0295, 71.0140, 69.0350, 57.0348, 55.0189 | 0.09 | C18H32O5 | Fatty acids | +++ | + | ++ |
12 | 8.96 | Undecanedioic acid | 216.1362 | ---------- | 215.1232 | 164.8686, 142.9528, 127.8703, 112.9036, 103.9210, 78.9175, 59.9950, 55.0185 | 0.1 | C11H20O4 | Fatty acids | + | + | + |
13 | 9.00 | Hydroxy-PGE1/hydroxy (or keto) PGF2α | 370.2359 | ---------- | 369.2203 | 139.1127, 121.1034, 115.0411, 109.0654, 99.0453, 95.0510, 83.0512, 69.0350, 59.0145, 57.0351 | 0.9 | C20H34O6 | Prostaglandins | +++ | ++ | + |
14 | 9.09 | 11,12,13-TriHOME | 330.2406 | ---------- | 329.2259 | 211.1341, 183.1399, 171.1030, 139.1130, 127.1133, 99.0823, 57.0352 | −0.06 | C18H34O5 | Fatty acids | ++ | + | ++ |
15 | 9.09 | Undecatrienoic acid | 180.1153 | 181.1217 | ---------- | 115.0555, 107.0867, 105.0702, 104.0614, 103.0556 | 1.4 | C11H16O2 | Fatty acids | + | ++ | ++ |
16 | 9.13 | Glucaramide | 208.0703 | ---------- | 207.0630 | 96.9608, 79.9581 | 3.6 | C6H12N2O6 | Sugar amide | − | + | − |
17 | 9.30 | Prostaglandin E2 | 352.2244 | ---------- | 351.2122 | 167.1065, 147.0818, 125.8720, 85.0297, 83.0512, 69.0349, 59.0147, 57.0348, 55.0201 | −1.6 | C20H32O5 | Prostaglandins | + | ++ | +++ |
18 | 9.55 | Dodecanedioic acid | 230.1518 | ---------- | 229.1371 | 166.8675, 138.9444, 109.0867, 99.9254, 79.9582, 71.0151, 59.0145 | −0.04 | C12H22O4 | Fatty acids | − | + | + |
19 | 10.0 | Prostaglandin F2 | 354.2399 | ---------- | 353.2246 | 199.0063, 157.0866, 127.0754, 111.0804, 97.0291, 85.0296, 71.0136, 69.0347, 59.0143, 57.0350, 55.0202 | −2.0 | C20H34O5 | Prostaglandins | + | ++ | +++ |
20 | 10.07 | Carbamoylaminodeoxy hexitol | 224.1015 | ---------- | 223.0944 | 96.9600, 95.9522, 79.9575 | 2.9 | C7H16N2O6 | Sugar amide (Urea derivative) | + | + | + |
21 | 10.23 | Monoacyl glycerol 20:6 | 375.2521 | 376.2594 | ---------- | 275.1773, 260.1482, 245.1257, 219.1122, 209.1305, 125.0708, 118.0770, 105.0702 | 3.8 | C23H35O4 | Glycerolipids | − | + | + |
22 | 10.54 | Hydroxy-dioxo-heptadecenoic acid | 312.1934 | ---------- | 311.1785 | 294.1780, 293.1743, 268.1988, 267.1957, 249.1849 | −0.8 | C17H28O5 | Fatty acids | − | + | + |
23 | 11.03 | Dihydroxyoctadeca trienoic acid | 310.2144 | ---------- | 309.2065 | 289.0528, 265.0388, 239.1797, 206.8232, 188.2704, 133.1011, 125.0129, 114.9469, 110.0361, 107.0501, 102.9777, 99.9258, 78.9592, 55.0192 | −0.03 | C18H30O4 | Fatty acids | + | − | − |
24 | 11.74 | Dihydroxy eicosatetraenoic acid | 336.2301 | ---------- | 335.2147 | 210.0299, 141.0932, 113.0975, 111.0820, 83.0505, 81.0339, 69.0353, 65.0402, 59.0148, 57.0346 | 0.1 | C20H32O4 | Fatty acids | + | ++ | + |
25 | 11.79 | Diacylglyceryl glucuronides (DGGA 21:4;O) | 598.3014 | ---------- | 597.2857 | 297.2419, 225.0059, 164.9862, 148.9902, 80.9651 | 4.1 | C30H46O12 | Glycerolipids | + | − | ++ |
26 | 11.81 | Acrifoline | 261.1725 | ---------- | 260.1589 | 147.8940, 118.0681, 117.0575, 116.0514, 112.9070, 99.9620 | −1.4 | C16H23NO2 | Alkaloids | + | − | − |
27 | 11.81 | N-Stearoyl phenylalanine | 431.3405 | 454.3296 [M + Na]+ | ---------- | 184.0708, 166.0625, 124.9991, 105.1106, 104.1064 | 1.3 | C27H45NO3 | Fatty amides | + | + | + |
28 | 12.23 | Antirhine | 296.1898 | ---------- | 295.1825 | 183.0159, 136.8927, 134.8963, 111.0457, 96.9611 | 3.1 | C19H24N2O | Alkaloids | − | + | − |
29 | 12.42 | Digalactosyl monoacylglycerols (DGMG 18:3) | 676.3670 | ---------- | 721.3588 [M + HCOO]− | 397.1317, 278.2200, 277.2158, 101.0239, 89.0245, 71.0141, 59.0143 | −0.01 | C33H56O14 | Glycerolipids | + | − | + |
30 | 12.60 | Abscisic acid | 264.1362 | ---------- | 263.1232 | 98.9566, 96.9604, 95.9525, 79.9578 | 0.1 | C15H20O4 | Isoprenoids | − | − | + |
31 | 12.72 | Hydroxyoctadecatetra enoic acid | 292.2035 | ---------- | 291.1901 | 205.1147, 117.0854, 164.0810, 132.8977, 96.9607, 79.9561, 71.0500, 68.9946, 59.0140 | −1.1 | C18H28O3 | Fatty acids | + | − | + |
32 | 13.18 | Monoacylglyceryl trimethylhomoserines 20:4 | 521.3718 | 522.3787 | ---------- | 397.1692, 290.1590, 270.3150, 236.1488, 144.1020, 133.1004, 129.0686, 119.0869, 107.0857, 105.0696, 100.1119 | 0.3 | C30H51NO6 | Glycerolipids | ++ | + | − |
33 | 13.21 | N-acyl glycine 28:6 | 499.3278 | ---------- | 498.3098 | 438.2954, 349.2120, 168.0418, 78.9590 | −3.9 | C30H45NO5 | Fatty amides | − | − | + |
34 | 13.52 | Hydroxyoctadecatrienoic acid | 294.2195 | ---------- | 293.2047 | 221.1526, 140.9423, 134.8966, 127.0773, 113.0600, 96.9604, 71.0136, 58.0064 | 0.03 | C18H30O3 | Fatty acids | ++ | + | ++ |
35 | 13.66 | Sphinga-4E,8E,10E-trienine | 295.2513 | 296.2586 | ---------- | 186.8911, 174.0925, 160.9156, 159.0076, 145.1011, 140.9143, 139.0080, 123.8901, 121.1045, 115.0530, 112.9219, 109.9889, 105.0677, 103.0524 | 0.5 | C18H33NO2 | Sphingolipids | − | + | − |
36 | 13.84 | Lysophosphatidylcholines 16:0 | 495.3325 | 496.3392 | 540.3209 [M + HCOO] | 227.7908, 197.0506, 184.0729, 166.0620, 145.0023, 124.9995, 104.1070 | 0.01 | C24H50NO7P | Phospholipids | ++ | − | + |
37 | 14.06 | Sulfoquinovosyl monoacylglycerols (SQMG 14:0) | 528.2598 | ---------- | 527.2430 | 225.0076, 80.9658 | −1.1 | C23H44O11S | Glycerolipids | ++ | + | ++ |
38 | 14.12 | Hydroxyeicosapentaenoic acid | 318.2195 | ---------- | 317.2043 | 173.1326, 121.0665, 91.0544, 71.0158, 59.0152 | 0.03 | C20H30O3 | Fatty acids | ++ | + | ++ |
39 | 14.17 | Dihydroxyhexadecanoic acid | 288.2293 | ---------- | 287.2152 | 211.2046, 183.1742, 181.1582, 85.0284, 84.0208, 71.0502, 57.0344, 55.0190 | −2.6 | C16H32O4 | Fatty acids | + | +++ | ++ |
40 | 14.32 | Sulfoquinovosyl monoacylglycerols (SQMG 18:3) | 578.2760 | ---------- | 577.2617 | 225.0060, 80.9649 | −0.1 | C27H46O11S | Glycerolipids | ++ | + | ++ |
41 | 14.37 | Monoacylglyceryl trimethylhomoserines 16:0 | 473.3719 | 474.3785 | ---------- | 236.1487, 144.1023, 100.1119 | 0.4 | C26H51NO6 | Glycerolipids | ++ | +++ | + |
42 | 14.38 | Eicosapentaenoic acid | 302.2244 | 303.2314 | 301.2101 | 131.0843, 129.0694, 117.0699, 115.0540, 105.0692, 103.0540 | 0.5 | C20H30O2 | Fatty acids | ++ | + | ++ |
43 | 14.39 | Monogalactosylmonoacylglycerols (MGMerolG 18:3) | 514.3143 | ---------- | 549.2762 [M + Cl]− | 301.2133, 249.0603, 113.0236, 99.0083, 85.0297, 75.0086, 59.0139 | 0.2 | C27H46O9 | Glycerolipids | ++ | − | + |
44 | 14.47 | Ether lysophosphatidyl choline (LPC O-16:0) | 481.3533 | 482.3602 | ---------- | 184.0719, 166.0609, 124.9993, 104.1065 | 2.0 | C24H52NO6P | Phospholipids | + | − | ++ |
45 | 14.51 | Sterol–sulfate conjugates (ST 28:2;O3;S) | 510.3040 | ---------- | 509.2859 | 452.3132, 363.2293, 228.2060, 227.2018, 78.9593, 73.0309, 59.0143 | 4.8 | C28H46O6S | Sterol lipids | + | − | − |
46 | 14.56 | Monogalactosylmonoacylglycerols (MGMG 14:0) | 464.2983 | ---------- | 499.2571 [M + Cl]− | 452.3152, 363.2314, 174.9689, 168.0443, 78.9598 | −0.4 | C23H44O9 | Glycerolipids | + | − | − |
47 | 14.65 | Sphingadienine | 297.2667 | 298.2738 | ---------- | 235.0083, 193.1011, 171.0918, 154.0726, 133.1020, 128.0639, 119.0881, 109.0641, 105.0699, 100.9376 | −0.2 | C18H35NO2 | Sphingolipids | + | +++ | ++ |
48 | 14.83 | Monoacylglyceryl trimethylhomoserines 18:1 | 499.3874 | 500.3947 | ---------- | 236.1487, 144.1017, 109.1024, 100.1113 | 0.2 | C28H53NO6 | Glycerolipids | ++ | + | − |
49 | 15.04 | Sulfoquinovosyl monoacylglycerols (SQMG 27:5) | 700.3874 | ---------- | 699.3702 | 397.1343, 256.2359, 255.2323, 101.0245, 89.0245, 71.0141, 59.0145 | 2.5 | C36H60O11S | Glycerolipids | ++ | + | ++ |
50 | 15.06 | Digalactosylmonoacylglycerols (DGMG 16:0) | 654.3822 | ---------- | 689.3412 [M + Cl]− | 397.1337, 256.2352, 255.2324, 113.0244, 101.0246, 89.0243, 59.0143 | −0.7 | C31H58O14 | Glycerolipids | + | + | + |
51 | 15.11 | N-Palmitoyl tryptophan | 442.3182 | ---------- | 477.2764 [M + Cl]− | 321.2049, 255.2308, 160.8407, 78.9589, 73.0297, 59.0139, 57.0351, 55.0195 | −3.0 | C27H42N2O3 | Fatty amides | ++ | + | ++ |
52 | 15.21 | N-(Tridecanoyl)-4E-tetradecasphingenine (C14 Ceramide) | 439.4027 | 440.4093 | ---------- | 284.2660, 283.2626, 103.0938, 102.0910 | 0.3 | C27H53NO3 | Sphingolipids | ++ | ++ | + |
53 | 15.34 | Deoxysphingatetraenine | 277.2405 | 278.2477 | ---------- | 139.0064, 129.0681, 128.0604, 117.0682, 107.0841, 105.0692 | −0.2 | C18H31NO | Sphingolipids | +++ | + | ++ |
54 | 15.39 | Diacylglyceryl glucuronides 16:0 | 660.445 | 683.4334 | ---------- | 598.3259, 597.3243, 435.2182, 419.2218, 287.1465, 266.9982, 243.1199, 207.0322, 155.0679, 147.0655, 126.0652 | 0.2 | C35H64O11 | Glycerolipids | − | + | − |
55 | 15.45 | Monogalactosyldiacylglycerols 24:1 | 616.419 | 639.4068 [M + Na]+ | ---------- | 554.3029, 553.2985, 375.1994, 347.1693, 243.1198, 215.0902, 200.1027, 199.0941, 156.0745, 155.0663, 111.0419 | 0.5 | C33H60O10 | Glycerolipids | + | + | + |
56 | 15.58 | Sterol–hexose conjugates (ST 20:0;O2;Hex) | 468.3084 | ---------- | 503.2746 | 254.2220, 253.2176, 85.0301, 75.0097, 59.0152 | −0.6 | C26H44O7 | Sterol lipids | − | + | − |
57 | 15.58 | Hydroxyeicosatetraenoic acid | 320.2351 | ---------- | 319.2211 | 301.2177, 275.2381, 168.1118, 167.1085, 149.0978, 59.0148 | −0.1 | C20H32O3 | Fatty acids | +++ | + | ++ |
58 | 15.75 | Arg-Lys-Lys tripeptide | 430.3037 | ---------- | 429.2899 | 117.0661, 99.0558, 87.0558, 74.0243, 58.0302 | 4.8 | C18H38N8O4 | Peptides/amino acids | − | + | − |
59 | 15.77 | Sterol 27:0;O7 | 484.3401 | 507.3291 [M + Na]+ | ---------- | 421.2207, 381.1921, 259.1161, 243.1188, 171.0624, 155.0675, 142.0599, 127.0367, 112.0499, 111.0412 | 0.1 | C27H48O7 | Sterol lipids | + | +++ | ++ |
60 | 15.84 | Sterol 25:0;O6 | 440.3138 | 463.3029 [M + Na]+ | ---------- | 377.1955, 337.1600, 215.0877, 199.0948, 127.0357, 111.0419 | 0.02 | C25H44O6 | Sterol lipids | ++ | + | + |
61 | 15.98 | Monoacylglyceryl glucuronides (MGGA 20:4) | 554.3080 | ---------- | 553.2888 | 303.2331, 281.2492, 113.0248, 99.0093, 85.0298, 75.0094, 71.0143, 59.0148 | −1.9 | C29H46O10 | Glycerolipids | − | + | − |
62 | 16.06 | Monogalactosylmonoacylglycerols (MGMG 18:2) | 516.3298 | ---------- | 561.3186 [M + HCOO] | 280.2359, 279.2327, 59.0145 | −0.05 | C27H48O9 | Glycerolipids | ++ | + | + |
63 | 16.07 | Hydroxyoctadecadienoic acid | 296.2351 | ---------- | 295.2200 | 280.2346, 279.2315, 253.0910, 101.0241, 71.0139, 59.0145 | −0.1 | C18H32O3 | Fatty acids | + | ++ | +++ |
64 | 16.08 | Phosphatidylglycerol (PG 20:1) | 552.3057 | ---------- | 551.2901 | 303.2323, 113.0243, 99.0089, 85.0297, 75.0093, 71.0143, 59.0144 | −1.1 | C26H49O10P | Phospholipids | + | − | − |
65 | 16.18 | Dictyone acetate | 286.23 | 287.2361 | ---------- | 143.0854, 142.0777, 131.0845, 130.0758, 119.0850, 117.0692, 115.0533, 105.0696 | 1.15 | C20H30O | Diterpenes | − | + | − |
66 | 16.49 | Hydroxyoctadecenoic acid | 298.2507 | ---------- | 297.2368 | 184.0132, 183.0110, 134.8942, 119.0501 | −0.3 | C18H34O3 | Fatty acids | + | + | ++ |
67 | 16.57 | Monogalactosylmonoacylglycerols (MGMG 16:1) | 490.3133 | ---------- | 489.2947 | 280.2357, 279.2326, 78.9595 | −1.7 | C25H46O9 | Glycerolipids | − | − | ++ |
68 | 16.57 | Acyl carnitines (CAR 11:0) | 329.2563 | ---------- | 328.2410 | 185.0158, 74.0248, 72.0451, 59.0142, 56.0158 | −0.9 | C18H35NO4 | Fatty amides | − | + | − |
69 | 16.58 | Citric acid stearyl ester | 444.3077 | ---------- | 479.2708 [M + Cl]− | 323.2554, 305.2472, 279.2300, 253.2164, 223.1679, 162.8376, 78.9595, 73.0291, 57.0343, 55.0196 | −2.2 | C24H44O7 | Fatty esters | + | − | ++ |
70 | 16.86 | Hydroxynonacosa heptaenoic acid | 440.3297 | 441.3349 | ---------- | 185.1320, 159.1153, 157.1016, 145.1003, 143.0844, 137.0952, 131.0851, 129.0698, 119.0852, 107.0862, 106.0721, 105.0689 | 1.4 | C29H44O3 | Fatty acids | + | − | − |
71 | 16.91 | Sulfoquinovosyl monoacylglycerols (SQMG 15:0) | 542.2748 | ---------- | 541.2592 | 225.0065, 164.9856, 94.9810, 80.9653 | −2.3 | C24H46O11S | Glycerolipids | + | − | + |
72 | 16.99 | 4-Dodecylphenol | 262.2306 | 263.2370 | ---------- | 160.0537, 145.0977, 122.0892, 118.0739, 116.0610, 115.0537, 108.9955, 105.0694, 104.0583, 103.0550 | −3.4 | C18H30O | Phenolics | + | ++ | ++ |
73 | 17.11 | Linoleamide | 279.2569 | 280.2636 | ---------- | 133.1010, 119.0852, 109.1007, 107.0849, 105.0693, 103.0534 | 2.4 | C18H33NO | Fatty amides | ++ | +++ | + |
74 | 17.13 | Hydroxyeicosadienoic acid (FA 20:2;OH) | 324.2657 | ---------- | 323.2511 | 223.1702, 221.1930, 199.1308, 183.0101, 181.1193, 71.0143, 57.0349 | −2.3 | C20H36O3 | Fatty acids | ++ | + | + |
75 | 17.24 | N-(Pentadecanoyl) tetradecasphingenine (Ceramide d18:0/15:0) | 467.4339 | 468.4411 | ---------- | 312.2969, 311.2938, 175.0714, 128.1070, 123.1173, 109.1005, 103.0940, 102.0912 | 0.1 | C29H57NO3 | Sphingolipids | ++ | ++ | + |
76 | 17.38 | Sulfoquinovosyl monoacylglycerols (SQMG 18:2) | 580.2911 | ---------- | 579.2757 | 225.0066, 80.9655 | −1.0 | C27H48O11S | Glycerolipids | ++ | + | ++ |
77 | 17.70 | Palmitoyl-galactosylglycerol | 492.3289 | ---------- | 527.2907 [M + Cl]− | 281.2491, 256.2376, 255.2327, 113.0257, 95.0138, 89.0238, 85.0284, 83.0135, 71.0137, 59.0141 | −1.8 | C25H48O9 | Glycerolipids | ++ | + | ++ |
78 | 17.72 | Lauroylcarnitine | 343.2714 | ---------- | 342.2570 | 75.0289, 74.0252, 72.0447 | −2.5 | C19H37NO4 | Fatty amides | − | + | − |
79 | 17.81 | Sterol–glycine conjugate (22:5;O3;G) | 397.2254 | 398.2326 | ---------- | 266.0807, 252.0648, 240.1019, 224.0705, 164.0699, 150.0259, 149.0229, 121.0278 | 0.2 | C24H31NO4 | Sterol lipids | − | + | − |
80 | 17.83 | Monoacylglyceryl glucuronides (MGGA 16:0) | 506.3077 | ---------- | 505.2927 | 256.2346, 255.2314, 85.0294, 75.0090, 71.0141, 59.0141 | −2.7 | C25H46O10 | Glycerolipids | ++ | + | ++ |
81 | 18.05 | N-Acyl ornithines (20:1) | 454.3389 | ---------- | 453.3264 | 255.2287, 145.0603, 127.0499, 125.0702, 109.0395, 101.0707, 84.0455, 59.0299 | −3.8 | C25H46N2O5 | Fatty amides | − | + | − |
82 | 18.08 | Dihydroxyoctadecenoic acid | 314.2446 | ---------- | 313.2321 | 72.9923, 58.0034, 56.9981 | −3.5 | C18H34O4 | Fatty acids | − | + | - |
83 | 18.17 | Palmitoyl hexitol | 420.3080 | ---------- | 419.2913 | 256.2357, 255.2321, 59.0144, 55.0199 | −1.6 | C22H44O7 | Fatty esters | + | − | + |
84 | 18.19 | Fatty acid ester of hydroxy fatty acids (30:8;O) | 466.3066 | ---------- | 465.2987 | 256.2357, 255.2325, 101.0243, 59.0148 | −3.6 | C30H42O4 | Fatty esters | + | + | ++ |
85 | 18.21 | Sterol (27:3;O6) | 462.2981 | 463.3028 | ---------- | 260.2020, 243.2076, 219.1703, 199.1495, 171.1156, 157.1009, 145.1008, 143.0851, 133.1001, 131.0853, 129.0683, 119.0847, 117.0696, 109.1026, 107.0845, 106.0720, 105.0696 | 0.11 | C27H42O6 | Sterol lipids | + | + | − |
86 | 18.40 | Monoacylglyceryl glucuronides (MGGA 18:1) | 532.3244 | ---------- | 531.3102 | 282.2497, 281.2466, 85.0295, 75.0087, 71.0140, 59.0142 | −0.6 | C27H48O10 | Glycerolipids | + | ++ | + |
87 | 18.42 | Sterol–hexose conjugates (ST 21:3;O;Hex)/Sterols (ST 27:4;O6) | 460.2823 | ---------- | 459.2677 | 416.3226, 415.3227, 387.3238, 157.0501, 127.8685, 73.0308, 59.0147, 55.0204 | −0.4 | C27H40O6 | Sterol lipids | + | + | ++ |
88 | 18.42 | Hexose ceramide 37:4;O4 | 767.5544 | 768.5610 | ---------- | 750.5538, 751.5564, 512.3231, 474.3797, 456.3696, 277.1792, 144.1024, 100.1127 | 0.4 | C43H77NO10 | Sphingolipids | − | + | − |
89 | 18.85 | Sterol–hexose conjugates (ST 19:1;O;Hex)/Sterols (ST 25:2;O6) | 436.2816 | ---------- | 435.2679 | 277.2145, 157.0506, 101.0226, 85.0287, 73.0290, 59.0139, 57.0346, 55.0191 | −2.0 | C25H40O6 | Sterol lipids | + | + | ++ |
90 | 19.00 | Sterols (ST 29:3;O5) | 474.3322 | ---------- | 473.3190 | 430.3405, 429.3366, 411.3264, 371.2575 | −4.8 | C29H46O5 | Sterol lipids | ++ | − | + |
91 | 19.04 | Palmitoylalanine | 327.2768 | ---------- | 326.2624 | 221.1506, 211.1328, 184.0131, 139.9472, 117.0757, 116.0720, 98.9624, 59.0140 | −1.6 | C19H37NO3 | Fatty amides | + | − | + |
92 | 19.17 | Oleamide | 281.2733 | 282.2795 | ---------- | 125.0946, 121.0998, 119.0857, 111.0808, 109.1008, 108.0858, 107.0854, 106.0738, 105.0704, 100.0754 | 5.0 | C18H35NO | Fatty amides | ++ | + | + |
93 | 19.41 | Deoxyerythronolide B | 386.2660 | ---------- | 385.2516 | 227.2004, 116.0720, 68.9967, 57.0352, 55.0197 | −2.1 | C21H38O6 | Macrolides (polyketides) | + | + | + |
94 | 19.50 | Octadecatrienoic acid | 278.2237 | ---------- | 277.2104 | 131.7441, 96.9583, 96.0531, 92.9945, 71.0140, 58.0062 | −3.1 | C18H30O2 | Fatty acids | ++ | − | + |
95 | 19.52 | Oleoyl alanine/Palmitoyl proline | 353.2918 | ---------- | 352.2787 | 126.0928, 117.0754, 116.0715, 68.0507 | −3.3 | C21H39NO3 | Fatty amides | ++ | + | +++ |
96 | 19.62 | Sterols (ST 23:0;O6) | 412.2816 | ---------- | 411.2663 | 254.2205, 253.2173, 101.0241, 73.0302, 57.0354, 55.0197 | −2.1 | C23H40O6 | Sterol lipids | + | + | ++ |
97 | 19.65 | Eicosatetraenoic acid | 304.2400 | ---------- | 303.2259 | 236.7105, 159.2504, 127.0726, 121.0501, 115.4655, 108.3766, 96.9600, 68.9949, 62.5142, 59.0137 | −0.7 | C20H32O2 | Fatty acids | + | + | ++ |
98 | 19.74 | Sterol–hexose conjugate (ST 21:2;O;Hex)/sterols (ST 27:3;O6) | 462.2974 | ---------- | 461.2827 | 304.2349, 303.2319, 175.0609, 157.0503, 73.0300, 55.0197 | −1.6 | C27H42O6 | Sterol lipids | +++ | + | ++ |
99 | 20.11 | Phaeophorbide a | 592.2686 | 593.2758 | ---------- | 534.2569, 533.2543, 505.2226, 462.2338, 461.2309, 460.2219, 447.2172, 433.2351 | 0.04 | C35H36N4O5 | Tetrapyrroles | + | − | − |
100 | 20.23 | Sterols (ST 28:3;O5) | 460.3180 | ---------- | 459.3012 | 398.3094, 397.3075, 379.2977, 369.3125, 305.2464, 123.0445, 95.0503, 57.0345, 55.0189 | −1.8 | C28H44O5 | Sterol lipids | + | + | +++ |
101 | 20.29 | Sterol–hexose conjugate (ST 19:0;O;Hex) | 438.2971 | ---------- | 437.2822 | 280.21356, 279.2320, 73.0302, 57.0352, 55.0199 | −2.3 | C25H42O6 | Sterol lipids | + | + | + |
102 | 20.30 | N-Oleoyl GABA | 367.3076 | ---------- | 366.2920 | 183.0122, 130.0881 | −2.8 | C22H41NO3 | Fatty amides | ++ | + | ++ |
103 | 20.91 | N-Undecyl benzenesulfonic acid | 312.1748 | ---------- | 311.1611 | 184.0163, 183.0115, 123.9703 | −3.5 | C17H28O3S | Benzene sulfonic acids | + | − | − |
104 | 21.01 | Monogalactosylmonoacylglycerols 30:4 | 680.486 | 703.4755 [M + Na]+ | ---------- | 615.3830, 527.2961, 463.2650, 375.1778, 335.2164, 247.1290, 139.0323, 101.0695 | −0.4 | C39H68O9 | Glycerolipids | + | − | − |
105 | 21.02 | DGCC (Diacylglyceryl-3-O-carboxyhydroxy methylcholines) 29:2;O | 697.5119 | 698.5194 | ---------- | 175.1478, 159.1144, 149.1297, 147.1148, 145.1004, 135.1148, 133.1006, 131.0828, 125.0943, 121.0997, 119.0830, 117.0677, 109.0996, 107.0838, 105.0684 | −1.4 | C39H71NO9 | Glycerolipids | + | − | − |
106 | 21.09 | Hydroxynonacosa hexaenoic acid | 442.3438 | 443.3516 | ---------- | 173.1319, 145.0985, 133.0991, 123.0784, 119.0835, 111.0777, 110.0677, 109.0633, 107.0839, 105.0690 | −2.0 | C29H46O3 | Fatty acids | + | − | + |
107 | 21.32 | Octadecanamide | 283.2875 | 567.5816 [2M + H]+ | ---------- | 285.2970, 284.2927, 102.0893 | 0.03 | C18H37NO | Fatty amides | + | ++ | + |
108 | 21.44 | Monoacylglyceryl glucuronides (MGGA 22:3) | 584.3541 | ---------- | 583.3393 | 256.2356, 255.2315, 157.0494, 125.0602, 59.0147 | −3.3 | C31H52O10 | Glycerolipids | + | − | − |
109 | 21.45 | Oxidized phospatidylglycerol (PG 22:4;O3) | 622.2778 | 623.2852 | ---------- | 574.2479, 546.2553, 545.2532, 517.2588, 503.2439, 486.2346, 485.2311, 477.2273, 459.2165, 422.2411, 407.2236 | 3.8 | C28H47O13P | Phospholipids | ++ | + | − |
110 | 21.55 | Sulfoquinovosyl monoacylglycerols (SQMG 16:0) | 556.2893 | ---------- | 555.2737 | 299.0420, 225.0071, 164.9866, 148.9913, 94.9811, 80.9658 | −4.3 | C25H48O11S | Glycerolipids | ++ | + | ++ |
111 | 21.62 | N-Palmitoyl valine | 355.3080 | ---------- | 354.2921 | 308.5868, 159.0427, 126.0897, 117.0752, 116.9299, 116.0729, 114.0935 | −1.8 | C21H41NO3 | Fatty amides | ++ | + | ++ |
112 | 21.98 | Sterol (ST 25:0;O6) | 440.3120 | ---------- | 439.2980 | 282.2491, 281.2454, 73.0292, 57.03418, 55.0193 | −4.0 | C25H44O6 | Sterol lipids | ++ | + | + |
113 | 22.29 | N-Palmitoyl(iso)leucine | 369.3232 | ---------- | 368.3091 | 324.3302, 254.2527, 239.2385, 131.0898, 130.0878, 91.5255, 82.0659 | −2.9 | C22H43NO3 | Fatty amides | + | − | + |
114 | 22.50 | Hydroxyeicosanoic acid | 328.2966 | ---------- | 327.2813 | 185.0134, 139.9439, 68.9964, 61.9895, 59.0150 | −3.5 | C20H40O3 | Fatty acids | ++ | +++ | − |
115 | 22.68 | Sterols (ST 21:6;O5) | 356.1641 | ---------- | 355.1484 | 117.9297, 116.9299, 100.9339, 99.9274, 84.9412 | −4.6 or 4.8 | C18H28O5S or C21H24O5 | Sterol lipids | + | + | − |
116 | 22.77 | Octadecenoic acid (Oleic acid) | 282.2550 | ---------- | 281.2445 | 96.9581, 85.1317, 68.9957, 59.0138 | −3.1 | C18H34O2 | Fatty acids | + | + | − |
117 | 22.80 | Sterols (ST 28:4;O5) | 458.3014 | ---------- | 457.2890 | 369.3116, 367.2897, 353.2803, 325.1785, 139.9720, 110.9835, 95.0505 | −3.9 | C28H42O5 | Sterol lipids | ++ | + | − |
118 | 22.97 | Monoacylglyceryl glucuronides (MGGA 18:5) | 524.2620 | ---------- | 523.2454 | 255.2320, 80.9659, 71.0147 | −0.2 | C27H40O10 | Glycerolipids | − | − | + |
Cell Line | IC50 (µg/mL) | |||
---|---|---|---|---|
S. trinodis | P. myrica | T. triquetra | Tamoxifen | |
MCF-7 | 51.37 ± 1.19 | 63.44 ± 1.13 | 59.70 ± 1.22 | 38.53 ± 1.11 |
MDA-231 | 69.41 ± 1.16 | 130.40 ± 1.13 | 67.22 ± 1.26 | 48.35 ± 1.11 |
CaCo-2 | 100.10 ± 1.14 | 114.60 ± 1.12 | 90.75 ± 1.22 | 42.18 ± 1.12 |
PANC-1 | 105.80 ± 1.16 | 157.80 ± 1.28 | 110 ± 1.22 | 52.19 ± 1.16 |
WISH | 196.30 ± 1.26 | 200 ± 1.15 | 198.60 ± 1.12 | 30.62 ± 1.16 |
Gene | Forward Primer (/5–/3) | Reverse Primer (/5–/3) |
---|---|---|
P53 | TAACAGTTCCTGCATGGGCGGC | AGGACAGGCACAAACACGCACC |
PI3K | GCTCTCTCACTGCATACATTGT | AGTCACAGCTGTATTGGTCG |
GAPDH | TGTGTCCGTCGTGGATCTGA | CCTGCTTCACCACCTTCTTGA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fahmy, N.M.; El-Din, M.I.G.; Salem, M.M.; Rashedy, S.H.; Lee, G.S.; Jang, Y.S.; Kim, K.H.; Kim, C.S.; El-Shazly, M.; Fayez, S. Enhanced Expression of p53 and Suppression of PI3K/Akt/mTOR by Three Red Sea Algal Extracts: Insights on Their Composition by LC-MS-Based Metabolic Profiling and Molecular Networking. Mar. Drugs 2023, 21, 404. https://doi.org/10.3390/md21070404
Fahmy NM, El-Din MIG, Salem MM, Rashedy SH, Lee GS, Jang YS, Kim KH, Kim CS, El-Shazly M, Fayez S. Enhanced Expression of p53 and Suppression of PI3K/Akt/mTOR by Three Red Sea Algal Extracts: Insights on Their Composition by LC-MS-Based Metabolic Profiling and Molecular Networking. Marine Drugs. 2023; 21(7):404. https://doi.org/10.3390/md21070404
Chicago/Turabian StyleFahmy, Nouran M., Mariam I. Gamal El-Din, Maha M. Salem, Sarah H. Rashedy, Gyu Sung Lee, Yoon Seo Jang, Ki Hyun Kim, Chung Sub Kim, Mohamed El-Shazly, and Shaimaa Fayez. 2023. "Enhanced Expression of p53 and Suppression of PI3K/Akt/mTOR by Three Red Sea Algal Extracts: Insights on Their Composition by LC-MS-Based Metabolic Profiling and Molecular Networking" Marine Drugs 21, no. 7: 404. https://doi.org/10.3390/md21070404
APA StyleFahmy, N. M., El-Din, M. I. G., Salem, M. M., Rashedy, S. H., Lee, G. S., Jang, Y. S., Kim, K. H., Kim, C. S., El-Shazly, M., & Fayez, S. (2023). Enhanced Expression of p53 and Suppression of PI3K/Akt/mTOR by Three Red Sea Algal Extracts: Insights on Their Composition by LC-MS-Based Metabolic Profiling and Molecular Networking. Marine Drugs, 21(7), 404. https://doi.org/10.3390/md21070404