Bioassay-Guided Fractionation Leads to the Detection of Cholic Acid Generated by the Rare Thalassomonas sp.
Abstract
:1. Introduction
2. Results
2.1. Extract Screening for Antimicrobial Activity and Cytotoxicity
2.2. Isolation and Identification of Cholic Acid and 3-oxo-cholic Acid
2.3. Antibacterial and Anticancer Activity of Compounds 1 and 2
2.4. Re-Sequencing of the Thalassomonas Genomes and Evaluation of the Genomic Capacity to Produce Cholic Acid Derivates
2.4.1. Investigation of the Genetic Potential to Produce Bile Acids De Novo
2.4.2. Identification of Putative Penicillin Acylases and Potential Bile Salt Hydrolases
3. Discussion
4. Materials and Methods
4.1. Genome Sequecning, Analysis and Mining
4.2. Cultivation and Extraction of Secondary Metabolites from T. actiniarum
4.3. Flash Liquid Chromatography Fractionation of the Extract from T. actiniarum
4.4. Isolation and Purification of Cholic Acids from Thalassomonas sp. Using Thin-Layer Chromatography
4.5. Bioactivity Screening
4.5.1. Growth Inhibition Assay
4.5.2. Cytotoxicity Assay
4.6. Dereplication, Isolation and Structure Elucidation of Compounds 1 and 2 from T. actiniarum
4.6.1. Identification of Cholic Acid Isolated from Thalassomonas Strains Using LC-MS and LC-MS/MS
4.6.2. Structural Elucidation of Compounds 1 and 2 from T. actiniarum
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Dias, D.A.; Urban, S.; Roessner, U. A Historical Overview of Natural Products in Drug Discovery. Metabolites 2012, 2, 303–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patridge, E.; Gareiss, P.; Kinch, M.S.; Hoyer, D. An analysis of FDA-approved drugs: Natural products and their derivatives. Drug Discov. Today 2016, 21, 204–207. [Google Scholar] [CrossRef] [PubMed]
- Lahlou, M. The success of natural products in drug discovery. J. Pharm. Pharmacol. 2013, 4, 17–31. [Google Scholar] [CrossRef] [Green Version]
- Gerwick, W.H.; Fenner, A. Drug discovery from marine microbes. Microb. Ecol. 2013, 65, 800–806. [Google Scholar] [CrossRef] [PubMed]
- Jaspars, M.; De Pascale, D.; Andersen, J.H.; Reyes, F.; Crawford, A.D.; Ianora, A. The marine biodiscovery pipeline and ocean medicines of tomorrow. J. Mar. Biolog. 2016, 96, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Blockley, A.; Elliott, D.R.; Roberts, A.P.; Sweet, M. Symbiotic Microbes from Marine Invertebrates: Driving a New Era of Natural Product Drug Discovery. Diversity 2017, 9, 49. [Google Scholar] [CrossRef] [Green Version]
- Casertano, M.; Avunduk, S.; Kacar, A.; Omuzbuken, B.; Menna, M.; Luciano, P.; Aiello, A.; Imperatore, C. Analysis of Anti-Biofilm Activities of Extracts from Marine Invertebrate Collected from Izmir Bay (Eastern Aegean Sea). Biomed. J. Sci. Technol. 2019, 20, 15023–15028. [Google Scholar]
- Luo, Y.; Cobb, R.E.; Zhao, H. Recent advances in natural product discovery. Curr. Opin. Biotechnol. 2014, 20, 230–237. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Hu, Z.; Li, Q.; Haung, J.; Li, X.; Zhu, H.; Liu, J.; Wang, J.; Xue, Y.; Zhang, Y. Bioassay-Guided Isolation of Antibacterial Metabolites from Emericella sp. TJ29. J. Nat. Prod. 2017, 80, 2399–2405. [Google Scholar] [CrossRef]
- Jassbi, A.R.; Mirzaei, Y.; Firuzi, O.; Chandran, J.N.; Schneider, B. Bioassay guided purification of cytotoxic natural products from a red alga Dichotomaria obtusata. Rev. Bras. Farmacogn. 2016, 26, 705–709. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Zhao, Y.; Huang, C.; Luo, Y. Recent advances in silent gene cluster activation in Streptomyces. Front. Bioeng. Biotechnol. 2021, 9, 632230. [Google Scholar] [CrossRef]
- Louwen, J.J.R.; van der Hooft, J.J.J. Comprehensive large-scale integrative analysis of omics data to accelerate specialized metabolite discovery. ASM J. 2021, 6, e00726-21. [Google Scholar] [CrossRef]
- Machado, H.; Sonnenschein, E.C.; Melchiorsen, J.; Gram, L. Genome mining reveals unlocked bioactive potential of marine Gram-negative bacteria. BMC Genom. 2015, 16, 158. [Google Scholar] [CrossRef] [Green Version]
- Sekurova, O.N.; Schneider, O.; Zotchev, S.B. Novel bioactive natural products from bacteria via bioprospecting, genome mining and metabolic engineering. Microb. Biotechnol. 2019, 12, 828–844. [Google Scholar] [CrossRef] [Green Version]
- Begley, M.; Gahan, C.G.M.; Hill, C. The interaction between bacteria and bile. FEMS Microbiol. Rev. 2005, 29, 625–651. [Google Scholar] [CrossRef] [Green Version]
- Sannasiddappa, T.H.; Lund, P.A.; Clarke, S.R. In vitro antibacterial activity of unconjugated and conjugated bile salts on Staphylococcus aureus. Front. Microbiol. 2017, 8, 1581. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Fujioka, N.; Xing, C. Quantitative profiling of cortisol metabolites in human urine by high-resolution accurate-mass MS. Bioanalysis 2018, 10, 2015–2026. [Google Scholar] [CrossRef]
- Babu, A.F.; Koistinen, V.M.; Turunes, S.; Solano-Aguilar, G.; Urban, J.F.; Zarei, I.; Hanhineva, K. Identification and distribution of sterols, bile acids, and acylcarnitines by LC-MS/MS in humans, mice, and pigs—A qualitative analysis. Metabolites 2022, 12, 49. [Google Scholar] [CrossRef]
- Prinville, V.; Ohlund, L.; Sleno, L. Targeted analysis of 46 bile acids to study the effect of acetaminophen in rat by LC-MS/MS. Metabolites 2020, 10, 26. [Google Scholar] [CrossRef] [Green Version]
- Saba, A.; Frascarelli, S.; Campi, B. The role of tandem mass spectrometry in clinical dentistry: Quantification of steroid hormones and Vitamin D. Compr. Anal. Chem. 2018, 79, 297–328. [Google Scholar]
- Li, H.; Shinde, P.B.; Lee, H.J.; Yoo, E.S.; Lee, C.; Hong, J.; Choi, S.H.; Jung, J.H. Bile acid derivatives from a sponge-associated bacterium Psychrobacter sp. Arch. Pharm. Res. 2009, 32, 857–862. [Google Scholar] [CrossRef] [PubMed]
- Malyarenko, T.V.; Kicha, A.A.; Ivanchina, N.V.; Kalinovsky, A.I.; Dmitrenok, P.S.; Stonik, V.A. Unusual steroid constituents from the tropical starfish Leiaster sp. Nat. Prod. Commun. 2016, 11, 1251–1252. [Google Scholar] [PubMed]
- Olonade, I.; van Zyl, L.J.; Trindade, M. Draft genome sequences of marine isolates Thalassomonas viridans and Thalassomonas actiniarum. Genome Announc. 2015, 3, e00297-15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiCenzo, G.C.; Finan, T.M. The divided bacterial genome: Structure, Function and Evolution. ASM J. 2017, 81, e00019-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosoya, S.; Adachi, K.; Kasai, H. Thalassomonas actiniarum sp. nov. and Thalassomonas haliotis sp. nov.; isolated from marine animals. Int. J. Syst. Evol. 2009, 59, 686–690. [Google Scholar] [CrossRef] [PubMed]
- Macian, M.C.; Ludwig, W.; Schleifer, K.H.; Garay, E.; Pujalte, M.J. Thalassomonas viridans gen. nov.; sp. nov.; a novel marine gamma-proteobacterium. Int. J. Syst. Evol. 2001, 51, 1283–1289. [Google Scholar] [CrossRef] [Green Version]
- Nayfach, S.; Roux, S.; Seshadri, R.; Udwary, D.; Varghese, N.; Schulz, F.; Wu, D.; Paez-Espino, D.; Chen, I.M.; Huntemann, M.; et al. A genomic catalog of Earth’s microbiomes. Nat. Biotechnol. 2021, 39, 499–509. [Google Scholar] [CrossRef]
- Li, T.; Chiang, J.Y.L. Regulation of bile acid and cholesterol metabolism by PPARs. PPAR Res. 2009, 501739. [Google Scholar] [CrossRef] [Green Version]
- Christie, W.W. Sterols: Bile Acid and Alcohols. The Lipid Web. 23 December 2019. Available online: https://www.lipidhome.co.uk/lipids/simple/bileacids/index.htm (accessed on 12 February 2020).
- Dockyu, K.; Lee, J.S.; Kim, J.; Kang, S.; Yoon, J.; Kim, W.G.; Lee, C.H. Biosynthesis of bile acids in a variety of marine bacterial taxa. J. Microbiol. Biotechnol. 2007, 17, 403–407. [Google Scholar]
- Maneerat, S.; Nitoda, T.; Kanzaki, H.; Kawai, F. Bile acids are new products of a marine bacterium, Myroides sp. strain SM1. Appl. Microbiol. Biotechnol. 2005, 67, 679–683. [Google Scholar] [CrossRef]
- Kim, S.H.; Yang, H.O.; Sohn, Y.C.; Kwon, H.C. Aeromicrobium halocynthiae sp. nov.; a taurocholic acid-producing bacterium isolated from the marine ascidian Halocynthia roretzi. Int. J. Syst. Evol. 2010, 60, 2793–2798. [Google Scholar] [CrossRef]
- Kim, S.H.; Shin, Y.K.; Sohn, Y.; Kwon, H.C. Two new cholic acid derivatives from the marine ascidian-associated bacterium Hasllibacter halocynthiae. Molecules 2012, 17, 12357–12364. [Google Scholar] [CrossRef] [Green Version]
- Tueros, F.G.; Ellabaan, M.M.H.; Henricsson, M.; Uribe, R.V.; Bäckhed, F.; Sommer, M.O.A. Challenging the Hypothesis of de novo Biosynthesis of Bile Acids by Marine Bacteria. Kor. J. Microbiol. Biotechnol. 2022, 50, 102–109. [Google Scholar] [CrossRef]
- Dhar, M.K.; Koul, A.; Kaul, S. Farnesyl pyrophosphate synthase: A key enzyme in isoprenoid biosynthetic pathway and potential molecular target for drug development. New Biotechnol. 2013, 30, 114–123. [Google Scholar] [CrossRef]
- Van der Donk, W.A. Bacteria do it differently: An alternative path to squalene. ACS Cent. Sci. 2015, 1, 64–65. [Google Scholar] [CrossRef]
- Pan, J.; Solbiati, J.O.; Ramamoorthy, G.; Hillerich, B.S.; Seidel, R.D.; Cronan, J.E.; Almo, S.C.; Poulter, C.D. Biosynthesis of squalene from farnesyl diphosphate in bacteria: Three steps catalyzed by three enzymes. ACS Cent. Sci. 2015, 1, 77–82. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Poulter, C.D. Cloning, solubilization, and characterization of squalene synthase from Thermosynechococcus elongatus BP-1. J. Bacteriol. 2008, 190, 3808–3816. [Google Scholar] [CrossRef] [Green Version]
- Ohtake, K.; Saito, N.; Shibuya, S.; Kobayashi, W.; Amano, R.; Hirai, T.; Sasaki, S.; Nakano, C.; Hoshino, T. Biochemical characterization of the water-soluble squalene synthase from Methylococcus capsulatus and the functional analyses of its two DXXD(E)D motifs and the highly conserved aromatic amino acid residues. FEBS J. 2014, 281, 5479–5497. [Google Scholar] [CrossRef]
- Song, Y.; Guan, Z.; van Merkerk, R.; Pramastya, H.; Abdallah, I.I.; Setroikromo, R.; Quax, W.J. Production of squalene in Bacillus subtilis by squalene synthase screening and metabolic engineering. J. Agric. Food Chem. 2020, 68, 4447–4455. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.; Lee, B.H. Bile salt hydrolases: Structure and function, substrate preference, and inhibitor development. Protein Sci. 2018, 27, 1742–1754. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.; Zhang, L.; Han, X.; Li, J.Y.; Du, M.; Yi, H.; Feng, Z.; Zhang, Y.C.; Xu, X. Short communication: A sensitive method for qualitative screening of bile salt hydrolase-active lactobacilli based on thin-layer chromatography. Int. J. Dairy Sci. 2011, 94, 1732–1737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guzior, D.V.; Quinn, R.A. Review: Microbial transformations of human bile acids. Microbiome 2021, 9, 140. [Google Scholar] [CrossRef] [PubMed]
- Foley, M.H.; O’Flaherty, S.; Barrangou, R.; Theriot, C.M. Bile salt hydrolases: Gatekeepers of bile acid metabolism and host- microbiome crosstalk in the gastrointestinal tract. PLoS Pathog. 2019, 15, e1007581. [Google Scholar] [CrossRef]
- Daly, J.W.; Keely, S.J.; Gahan, C.G.M. Functional and Phylogenetic Diversity of BSH and PVA Enzymes. Microorganisms 2021, 9, 732. [Google Scholar] [CrossRef] [PubMed]
- Kusada, H.; Arita, M.; Tohno, M.; Tamaki, H. Bile Salt Hydrolase Degrades β-Lactam Antibiotics and Confers Antibiotic Resistance on Lactobacillus paragasseri. Front. Microbiol. 2022, 13, 858263. [Google Scholar] [CrossRef]
- Utari, P.D.; Vogel, J.; Quax, W.J. Deciphering Physiological Functions of AHL Quorum Quenching Acylases. Front. Microbiol. 2017, 8, 1123. [Google Scholar] [CrossRef] [Green Version]
- Velasco-Bucheli, R.; Hormigo, D.; Fernández-Lucas, J.; Torres-Ayuso, P.; Alfaro-Ureña, Y.; Saborido, A.I.; Serrano-Aguirre, L.; García, J.L.; Ramón, F.; Acebal, C.; et al. Penicillin Acylase from Streptomyces lavendulae and Aculeacin A Acylase from Actinoplanes utahensis: Two Versatile Enzymes as Useful Tools for Quorum Quenching Processes. Catalysts 2020, 10, 730. [Google Scholar] [CrossRef]
- Serrano-Aguirre, L.; Velasco-Bucheli, R.; García-Álvarez, B.; Saborido, A.; Arroyo, M.; de la Mata, I. Novel Bifunctional Acylase from Actinoplanes utahensis: A Versatile Enzyme to Synthesize Antimicrobial Compounds and Use in Quorum Quenching Processes. Antibiotics 2021, 10, 922. [Google Scholar] [CrossRef]
- Billot, R.; Plener, L.; Jacquet, P.; Elias, M.; Chabrière, E.; Daudé, D. Engineering acyl-homoserine lactone-interfering enzymes toward bacterial control. J. Biol. Chem. 2020, 295, 12993–13007. [Google Scholar] [CrossRef]
- Rani, R.P.; Anandharaj, M.; Ravindran, A.D. Characterization of Bile Salt Hydrolase from Lactobacillus gasseri FR4 and Demonstration of Its Substrate Specificity and Inhibitory Mechanism Using Molecular Docking Analysis. Front. Microbiol. 2022, 8, 1004. [Google Scholar] [CrossRef] [Green Version]
- Rossocha, M.; Schultz-Heienbrok, R.; Von Moeller, H.; Coleman, J.P.; Saenger, W. Conjugated bile acid hydrolase is a tetrameric N-terminal thiol hydrolase with specific recognition of its cholyl but not of its tauryl product. Biochemie 2005, 44, 5739–5748. [Google Scholar] [CrossRef]
- Philem, P.D.; Yadav, Y.; Vellore Sunder, A.; Ghosh, D.; Prabhune, A.; Ramasamy, S. Structural and enzymatic analysis of a dimeric cholylglycine hydrolase like acylase active on N-acyl homoserine lactones. Biochimie 2020, 177, 108–116. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [Green Version]
- Cuevas, D.A.; Garza, D.; Sanchez, S.E.; Rostron, J.; Henry, C.S.; Vonstein, V.; Overbeek, R.A.; Segall, A.; Rohwer, F.; Dinsdale, E.A.; et al. Elucidating genomic gaps using phylogenetic profiles. F1000research 2016, 3, 210. [Google Scholar] [CrossRef]
- Feng, X.; Hu, Y.; Zheng, Y.; Zhu, W.; Li, K.; Huang, C.-H.; Ko, T.-P.; Ren, F.; Chan, H.-C.; Nega, M.; et al. Structural and functional analysis of Bacillus subtilis Yisp reveal a role of its product in biofilm production. Chem. Biol. 2014, 11, 1557–1563. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Van Wagoner, R.M.; Harper, M.K.; Hooper, J.N.A.; Ireland, C.M. Two ring-A-aromatized bile acids from the marine sponge Sollasella moretonensis. Nat. Prod. Commun. 2010, 5, 1571–1574. [Google Scholar]
- Lievens, S.C.; Hope, H.; Molinski, T.F. New 3-oxo-chol-4-en-24-oic acids from the marine soft coral Eleutherobia sp. J. Nat. Prod. 2004, 67, 2130–2132. [Google Scholar] [CrossRef]
- Cano, L.P.P.; Bartolotta, S.A.; Casanova, N.A.; Siless, G.E.; Portmann, E.; Schejter, L.; Palermo, J.A.; Carballo, M.A. Isolation of acetylated bile acids from the sponge Siphonochalina fortis and DNA damage evaluation by comet assay. Steroids 2013, 78, 982–986. [Google Scholar] [CrossRef]
- Koren, S.; Walenz, B.P.; Berlin, K.; Miller, J.R.; Bergman, N.H.; Phillippy, A.M. Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017, 27, 722–736. [Google Scholar] [CrossRef] [Green Version]
- Github. Medaka. 2020. Available online: https://github.com/nanoporetech/medaka (accessed on 14 October 2022).
- Walker, B.J.; Abeel, T.; Shea, T.; Priest, M.; Abouelliel, A.; Sakthikumar, S.; Cuomo, C.A.; Zeng, Q.; Wortman, J.; Young, S.K.; et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 2014, 9, e112963. [Google Scholar] [CrossRef]
- Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997v2. [Google Scholar]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, D.; Abajian, C.; Green, P. Consed: A graphical tool for sequence finishing. Genome Res. 1998, 8, 195–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medema, M.H.; Blin, K.; Cimermancic, P.; de Jager, V.; Zakrewski, P.; Fischbach, M.A.; Weber, M.; Takano, E.; Breitling, R. antiSMASH: Rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 2011, 39, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef]
Cholic Acid (1) | |||
---|---|---|---|
Position | δC, Type | δH (յ in Hz) | δOH (յ in Hz) |
1 | 35.98, CH2 | 0.90 (d, J = 6.5 Hz, 3H), | |
2 | 30.62, CH2 | 1.32 (ddd, J = 15.9, 9.8, 6.4 Hz, 1H) | |
3 | 72.22, CH | 3.32 (tt, J = 11.2, 4.4 Hz, 1H) | 3.35 |
4 | 39.78, CH2 | 2.05 (td, J = 13.2, 11.6 Hz, 1H) | |
5 | 42.34, CH | 1.88 (ddd, J = 14.6, 5.6, 3.4 Hz, 1H) | |
6 | 35.44, CH2 | 1.43 (dt, J = 14.8, 2.2 Hz, 1H) | |
7 | 68.85, CH | 3.74 (q, J = 3.0 Hz, 1H) | 3.77 |
8 | 40.23, C | ||
9 | 27.26, CH | 2.09 (ddt, J = 35.0, 17.8, 5.6 Hz, 1H) | |
10 | 35.18, C | ||
11 | 28.81, CH2 | 1.52 (tdd, J = 12.4, 10.1, 2.9 Hz, 3H) | |
12 | 73.58, CH | 3.90 (t, J = 3.0 Hz, 1H) | 3.92 |
13 | 47.05, C | ||
14 | 42.48, CH | 1.25 (tdd, J = 14.6, 5.6, 3.4 Hz, 1H) | |
15 | 23.87, CH2 | 1.03 (qd, J = 12.0, 6.1 Hz, 1H) | |
16 | 28.19, CH2 | 1.23 (tdd, J = 12.4, 10.1, 2.9 Hz, 3H) | |
17 | 47.52, CH | 1.72 (q, J = 7.4 Hz) | |
18 | 22.86, CH3 | 0.84 (s, 3H) | |
19 | 12.81, CH3 | 0.63 (s, 3H) | |
20 | 17.56, CH3 | 0.92 (d, J = 6.5 Hz, 3H) | |
21 | 36.17, CH2 | 1.37 (q, J = 7.1 Hz) | |
22 | 31.76, CH2 | 1.31 (tdd, J = 12.4, 9.8, 2.6 Hz, 3H) | |
23 | 31.68, CH2 | 2.31 (ddd, J = 15.5, 10.2, 5.1 Hz, 1H) | |
24 | 177.87, C |
Bacterium/Chromid | Genome/Chromid Size bp | Coverage Illumina | Coverage ONT | G + C% | Number of ORFs | tRNAs | rRNA |
---|---|---|---|---|---|---|---|
T. viridans | 6,726,747 | 129.1 | 107.2 | 49.2 | 5793 | 119 | 25 |
pTvir | 1,218,661 | 47.6 | 937 | - | 3 | ||
T. actiniarum | 6,556,942 | 117.4 | 87.3 | 47.7 | 5592 | 116 | 25 |
pTact | 937,696 | 46.4 | 682 | 2 | 3 | ||
T. haliotis | 6,450,155 | 155.1 | 82.7 | 47.4 | 5418 | 116 | 25 |
Bacterial Strain | Growth Media | Incubation Period (h) | Desired Bacterial Density |
---|---|---|---|
*S. aureus ATCC 25923 | Mueller Hinton | 2.5 | 0.5–3 × 105 CFU/mL |
*E. coli ATCC 25922 | Mueller Hinton | 1.5 | 0.5–3 × 105 CFU/mL |
*E. faecalis ATCC 29122 | Brain Heart Infusion | 1.5 | 0.5–3 × 105 CFU/mL |
*P. aeruginosa ATCC 27853 | Mueller Hinton | 2.5 | 3–7 × 104 CFU/mL |
*Streptococcus a ATCC 12386 | Brain Heart Infusion | 1.5 | 0.5–3 × 105 CFU/mL |
S. epidermidis ATCC 14990 | Lysogeny Broth | 2.5 | 0.5–3 × 105 CFU/mL |
P. putida KT2440 | Lysogeny Broth | 2.5 | 0.5–3 × 105 CFU/mL |
S. aureus ATCC 29213 | Lysogeny Broth | 2.5 | 0.5–3 × 105 CFU/mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pheiffer, F.; Schneider, Y.K.-H.; Hansen, E.H.; Andersen, J.H.; Isaksson, J.; Busche, T.; Rückert, C.; Kalinowski, J.; Zyl, L.v.; Trindade, M. Bioassay-Guided Fractionation Leads to the Detection of Cholic Acid Generated by the Rare Thalassomonas sp. Mar. Drugs 2023, 21, 2. https://doi.org/10.3390/md21010002
Pheiffer F, Schneider YK-H, Hansen EH, Andersen JH, Isaksson J, Busche T, Rückert C, Kalinowski J, Zyl Lv, Trindade M. Bioassay-Guided Fractionation Leads to the Detection of Cholic Acid Generated by the Rare Thalassomonas sp. Marine Drugs. 2023; 21(1):2. https://doi.org/10.3390/md21010002
Chicago/Turabian StylePheiffer, Fazlin, Yannik K.-H. Schneider, Espen Holst Hansen, Jeanette Hammer Andersen, Johan Isaksson, Tobias Busche, Christian Rückert, Jörn Kalinowski, Leonardo van Zyl, and Marla Trindade. 2023. "Bioassay-Guided Fractionation Leads to the Detection of Cholic Acid Generated by the Rare Thalassomonas sp." Marine Drugs 21, no. 1: 2. https://doi.org/10.3390/md21010002
APA StylePheiffer, F., Schneider, Y. K. -H., Hansen, E. H., Andersen, J. H., Isaksson, J., Busche, T., Rückert, C., Kalinowski, J., Zyl, L. v., & Trindade, M. (2023). Bioassay-Guided Fractionation Leads to the Detection of Cholic Acid Generated by the Rare Thalassomonas sp. Marine Drugs, 21(1), 2. https://doi.org/10.3390/md21010002