Next Article in Journal
Abalone Collagen Extracts Potentiate Stem Cell Properties of Human Epidermal Keratinocytes
Next Article in Special Issue
Whole Genome Sequencing of the Giant Grouper (Epinephelus lanceolatus) and High-Throughput Screening of Putative Antimicrobial Peptide Genes
Previous Article in Journal
Pinnatoxins’ Deleterious Effects on Cholinergic Networks: From Experimental Models to Human Health
Previous Article in Special Issue
Whole Genome Sequencing of the Blue Tilapia (Oreochromis aureus) Provides a Valuable Genetic Resource for Biomedical Research on Tilapias
Open AccessArticle

Genome Sequencing of the Japanese Eel (Anguilla japonica) for Comparative Genomic Studies on tbx4 and a tbx4 Gene Cluster in Teleost Fishes

1
BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
2
Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
3
BGI Zhenjiang Institute of Hydrobiology, Zhenjiang 212000, China
4
Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
*
Author to whom correspondence should be addressed.
These authors contributed equally to this project.
Mar. Drugs 2019, 17(7), 426; https://doi.org/10.3390/md17070426
Received: 17 June 2019 / Revised: 17 July 2019 / Accepted: 18 July 2019 / Published: 20 July 2019
(This article belongs to the Special Issue Genetics of Marine Organisms Associated with Human Health)
Limbs originated from paired fish fins are an important innovation in Gnathostomata. Many studies have focused on limb development-related genes, of which the T-box transcription factor 4 gene (tbx4) has been considered as one of the most essential factors in the regulation of the hindlimb development. We previously confirmed pelvic fin loss in tbx4-knockout zebrafish. Here, we report a high-quality genome assembly of the Japanese eel (Anguilla japonica), which is an economically important fish without pelvic fins. The assembled genome is 1.13 Gb in size, with a scaffold N50 of 1.03 Mb. In addition, we collected 24 tbx4 sequences from 22 teleost fishes to explore the correlation between tbx4 and pelvic fin evolution. However, we observed complete exon structures of tbx4 in several pelvic-fin-loss species such as Ocean sunfish (Mola mola) and ricefield eel (Monopterus albus). More interestingly, an inversion of a special tbx4 gene cluster (brip1-tbx4-tbx2b- bcas3) occurred twice independently, which coincides with the presence of fin spines. A nonsynonymous mutation (M82L) was identified in the nuclear localization sequence (NLS) of the Japanese eel tbx4. We also examined variation and loss of hindlimb enhancer B (HLEB), which may account for pelvic fin loss in Tetraodontidae and Diodontidae. In summary, we generated a genome assembly of the Japanese eel, which provides a valuable genomic resource to study the evolution of fish tbx4 and helps elucidate the mechanism of pelvic fin loss in teleost fishes. Our comparative genomic studies, revealed for the first time a potential correlation between the tbx4 gene cluster and the evolutionary development of toxic fin spines. Because fin spines in teleosts are usually venoms, this tbx4 gene cluster may facilitate the genetic engineering of toxin-related marine drugs. View Full-Text
Keywords: Japanese eel (Anguilla japonica); genome sequencing and assembly; tbx4; tbx4 gene cluster; pelvic fin; fin spine; teleost fish Japanese eel (Anguilla japonica); genome sequencing and assembly; tbx4; tbx4 gene cluster; pelvic fin; fin spine; teleost fish
Show Figures

Figure 1

MDPI and ACS Style

Chen, W.; Bian, C.; You, X.; Li, J.; Ye, L.; Wen, Z.; Lv, Y.; Zhang, X.; Xu, J.; Yang, S.; Gu, R.; Lin, X.; Shi, Q. Genome Sequencing of the Japanese Eel (Anguilla japonica) for Comparative Genomic Studies on tbx4 and a tbx4 Gene Cluster in Teleost Fishes. Mar. Drugs 2019, 17, 426.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map

1
Back to TopTop