First Experience of Single Port Robotic Areolar (SPRA) Thyroidectomy and Modified Radical Neck Dissection (MRND)
Abstract
1. Introduction
2. Materials and Methods
Surgical Technique
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SP | Single Port |
BABA | Bilateral Axiilary Breast Approach |
SPRA | Single Port Robotic Areolar |
MRND | Modified Radical Neck Dissection |
SCM | Sternocleidomastoid muscle |
IJV | Internal jugular vein |
CCA | Commom carotid artery |
PTH | Parathyroid hormone |
VAS | Visual analogue scale |
References
- Acosta, G.J.; Singh Ospina, N.; Brito, J.P. Epidemiologic changes in thyroid disease. Curr. Opin. Endocrinol. Diabetes Obes. 2024, 31, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Vaccarella, S.; Franceschi, S.; Bray, F.; Wild, C.P.; Plummer, M.; Dal Maso, L. Worldwide Thyroid-Cancer Epidemic? The Increasing Impact of Overdiagnosis. N. Engl. J. Med. 2016, 375, 614–617. [Google Scholar] [CrossRef] [PubMed]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [PubMed]
- Randolph, G.W. Surgery of the Thyroid and Parathyroid Glands; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Shaha, A.R. Management of lateral neck nodes in common and aggressive variants of thyroid cancer. Curr. Opin. Otolaryngol. Head Neck Surg. 2022, 30, 130–136. [Google Scholar] [CrossRef]
- Uludag, M.; Tanal, M.; Isgor, A. Standards and Definitions in Neck Dissections of Differentiated Thyroid Cancer. Sisli Etfal Hastan. Tip. Bul. 2018, 52, 149–163. [Google Scholar] [CrossRef]
- Arora, A.; Swords, C.; Garas, G.; Chaidas, K.; Prichard, A.; Budge, J.; Davies, D.C.; Tolley, N. The perception of scar cosmesis following thyroid and parathyroid surgery: A prospective cohort study. Int. J. Surg. 2016, 25, 38–43. [Google Scholar] [CrossRef]
- Ruhle, B.C.; Ferguson Bryan, A.; Grogan, R.H. Robot-Assisted Endocrine Surgery: Indications and Drawbacks. J. Laparoendosc. Adv. Surg. Tech. A 2019, 29, 129–135. [Google Scholar] [CrossRef]
- Tae, K.; Ji, Y.B.; Song, C.M.; Ryu, J. Robotic and Endoscopic Thyroid Surgery: Evolution and Advances. Clin. Exp. Otorhinolaryngol. 2019, 12, 1–11. [Google Scholar] [CrossRef]
- Choi, Y.S.; Hong, Y.T.; Yi, J.W. Initial Experience With Robotic Modified Radical Neck Dissection Using the da Vinci Xi System Through the Bilateral Axillo-Breast Approach. Clin. Exp. Otorhinolaryngol. 2021, 14, 137–144. [Google Scholar] [CrossRef]
- Choi, Y.S.; Choi, J.H.; Jeon, M.S.; Yu, M.J.; Lee, H.M.; Shin, A.Y.; Yi, J.W. First Experience of Single-Port Robotic Areolar Approach Thyroidectomy. Clin. Exp. Otorhinolaryngol. 2023, 16, 275–281. [Google Scholar] [CrossRef]
- Lee, S.M.; Hwang, H.; Shin, M.H.; Yi, J.W. One-Year Clinical Experience of Single-Port and Multi-Port Robotic Thyroid Surgery in a Single Institution. J. Clin. Med. 2024, 13, 5486. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Wu, J.; Huang, C.; Li, J.; Zhang, Y.; Ji, Y.; Liu, X.; Duan, H.; Feng, Z.; Liu, Y.; et al. Global landscape of early-onset thyroid cancer: Current burden, temporal trend and future projections on the basis of GLOBOCAN 2022. J. Glob. Health 2025, 15, 04113. [Google Scholar] [CrossRef] [PubMed]
- Krajewska, J.; Kukulska, A.; Oczko-Wojciechowska, M.; Kotecka-Blicharz, A.; Drosik-Rutowicz, K.; Haras-Gil, M.; Jarzab, B.; Handkiewicz-Junak, D. Early Diagnosis of Low-Risk Papillary Thyroid Cancer Results Rather in Overtreatment Than a Better Survival. Front. Endocrinol. 2020, 11, 571421. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, M.; Ito, Y.; Hirokawa, M.; Miya, A.; Shimizu, K.; Miyauchi, A. Prognostic impact of extrathyroid extension and clinical lymph node metastasis in papillary thyroid carcinoma depend on carcinoma size. World J. Surg. 2010, 34, 3007–3014. [Google Scholar] [CrossRef]
- Song, M.; Liu, Q.; Guo, H.; Wang, Z.; Zhang, H. Global trends and hotspots in robotic surgery over the past decade: A bibliometric and visualized analysis. J. Robot. Surg. 2024, 19, 33. [Google Scholar] [CrossRef]
- Ito, Y.; Kudo, T.; Takamura, Y.; Kobayashi, K.; Miya, A.; Miyauchi, A. Lymph node recurrence in patients with N1b papillary thyroid carcinoma who underwent unilateral therapeutic modified radical neck dissection. World J. Surg. 2012, 36, 593–597. [Google Scholar] [CrossRef]
- Lee, K.E.; Koo do, H.; Kim, S.J.; Lee, J.; Park, K.S.; Oh, S.K.; Youn, Y.K. Outcomes of 109 patients with papillary thyroid carcinoma who underwent robotic total thyroidectomy with central node dissection via the bilateral axillo-breast approach. Surgery 2010, 148, 1207–1213. [Google Scholar] [CrossRef]
- Anuwong, A.; Ketwong, K.; Jitpratoom, P.; Sasanakietkul, T.; Duh, Q.Y. Safety and Outcomes of the Transoral Endoscopic Thyroidectomy Vestibular Approach. JAMA Surg. 2018, 153, 21–27. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Zheng, X.; Tae, K. Feasibility and outcomes of remote-access endoscopic and robotic lateral neck dissection for thyroid cancer: A scoping review. Gland. Surg. 2025, 14, 543–562. [Google Scholar] [CrossRef]
- Lee, J.; Chung, W.Y. Current status of robotic thyroidectomy and neck dissection using a gasless transaxillary approach. Curr. Opin. Oncol. 2012, 24, 7–15. [Google Scholar] [CrossRef]
- Choi, J.Y.; Kang, K.H. Robotic modified radical neck dissection with bilateral axillo-breast approach. Gland. Surg. 2017, 6, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.Y.; Chang, Y.W.; Ku, D.; Ko, S.Y.; Lee, H.Y.; Son, G.S. Robotic thyroidectomy using gas-insufflation one-step single-port transaxillary (GOSTA) approach. Surg. Endosc. 2023, 37, 8861–8870. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.; Kim, D.; Lee, J.E.; Kim, J.K.; Lee, C.R.; Kang, S.W.; Jeong, J.J.; Nam, K.H.; Chung, W.Y. Single-Port Transaxillary Robotic Modified Radical Neck Dissection (STAR-RND): Initial Experiences. Laryngoscope 2023, 133, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Song, R.Y.; Sohn, H.J.; Paek, S.H.; Kang, K.H. The First Report of Robotic Bilateral Modified Radical Neck Dissection Through the Bilateral Axillo-breast Approach for Papillary Thyroid Carcinoma with Bilateral Lateral Neck Metastasis. Surg. Laparosc. Endosc. Percutan Tech. 2020, 30, e18–e22. [Google Scholar] [CrossRef]
- Yu, H.W.; Chai, Y.J.; Kim, S.J.; Choi, J.Y.; Lee, K.E. Robotic-assisted modified radical neck dissection using a bilateral axillo-breast approach (robotic BABA MRND) for papillary thyroid carcinoma with lateral lymph node metastasis. Surg. Endosc. 2018, 32, 2322–2327. [Google Scholar] [CrossRef]
Variable | BABA (n = 13) | SPRA (n = 11) | p-Value |
---|---|---|---|
Age (years, mean ± sd) | 39.4 ± 12.0 | 41.7 ± 11.1 | 0.624 |
Gender | |||
Male | 4 | 0 | 0.098 |
Female | 9 | 11 | |
BMI (Body mass index, kg/m2) | 23.5 ± 3.5 | 22.0 ± 3.1 | 0.269 |
Neck dissection side | |||
Left MRND * | 6 | 7 | 0.444 |
Right MRND * | 7 | 4 | |
Operation time for flap (minutes, mean ± sd) | 22.2 ± 6.0 | 17.2 ± 3.9 | 0.024 |
Operation time in console (minutes, mean ± sd) | 148.2 ± 31.6 | 136.8 ± 25.3 | 0.339 |
Total operation time (minutes, mean ± sd) | 213.1 ± 31.5 | 182.1 ± 27.5 | 0.017 |
Hospital admission days after surgery (days, mean ± sd) | 4.3 ± 0.9 | 4.4 ± 1.4 | 0.911 |
Variable | BABA (n = 13) | SPRA (n = 11) | p-Value |
---|---|---|---|
Vocal cord palsy | 1.000 | ||
Transient (<6 months) | 1 | 0 | 0.482 |
Permanent (>6 months) | 1 | 0 | 1.000 |
Hypoparathyroidism | |||
Transient (<6 months) | 3 | 1 | 1.000 |
Permanent (>6 months) | 1 | 0 | |
PTH † (pg/mL) < 2 weeks | 13.0 ± 10.3 | 14.6 ± 9.1 | 0.690 |
PTH † (pg/mL) > 6 months | 28.3 ± 16.2 | 22.1 ± 10.5 | 0.270 |
Calcium < 2 weeks | 8.0 ± 0.8 | 8.7 ± 0.5 | 0.014 |
Calcium > 6 months | 9.2 ± 0.4 | 9.1 ± 0.6 | 0.736 |
Ionized calcium < 2 weeks | 1.0 ± 0.1 | 1.1 ± 0.1 | 0.012 |
Ionized calcium > 6 months | 1.2 ± 0.1 | 1.2 ± 0.1 | 0.293 |
Drain amount for postoperative 1st day (mL) | 146.4 ± 43.2 | 98.1 ± 33.2 | 0.005 |
Drain amount for postoperative 2nd day (mL) | 66.6 ± 37.2 | 62.5 ± 17.6 | 0.724 |
VAS ‡ for postoperative 1st day | 2.9 ± 0.3 | 2.6 ± 0.7 | 0.210 |
VAS ‡ for postoperative 2nd day | 2.5 ± 0.7 | 2.5 ± 0.7 | 0.765 |
Variable | BABA (n = 13) | SPRA (n = 11) | p-Value |
---|---|---|---|
Tumor size (cm) | 1.4 ± 1.1 | 1.5 ± 0.4 | 0.943 |
Extrathyroidal extension * | |||
Absent | 7 | 6 | 1.000 |
Present | 6 | 5 | |
Multiplicity | |||
Single | 6 | 5 | 1.000 |
Multiple | 7 | 6 | |
Tumor margin | |||
Negative | 11 | 10 | 1.000 |
Positive | 2 | 1 | |
Lymphatic invasion | |||
Negative | 3 | 3 | 0.232 |
Indeterminate | 3 | 0 | |
Positive | 7 | 8 | |
Microvascular invasion | |||
Negative | 11 | 11 | 0.397 |
Indeterminate | 1 | 0 | |
Positive | 1 | 0 | |
Numbers of metastatic lymph nodes | 6.5 ± 4.1 | 7.6 ± 5.6 | 0.572 |
Total retrieved lymph nodes | 25.9 ± 10.7 | 25.3 ± 9.3 | 0.875 |
Level 2 lymph nodes | 6.6 ± 3.7 | 6.5 ± 2.9 | 0.951 |
Level 3 lymph nodes | 5.3 ± 3.3 | 5.6 ± 3.4 | 0.811 |
Level 4 lymph nodes | 5.5 ± 3.0 | 4.7 ± 2.8 | 0.452 |
Level 5 lymph nodes | 2.0 ± 3.3 | 2.1 ± 2.0 | 0.935 |
Level 6 lymph nodes | 6.5 ± 5.3 | 6.5 ± 5.4 | 0.970 |
BRAFV600E mutation | |||
Negative | 4 | 2 | 0.649 |
Positive | 9 | 9 |
Variable | BABA (n = 13) | SPRA (n = 11) | p-Value |
---|---|---|---|
Postoperative 3 months Tg * (mean ± SD, ng/mL) | 0.7 ± 1.4 | 0.3 ± 0.2 | 0.312 |
1st RAI † dose (mean ± SD, mCi) | 127.3 ± 26.1 | 125.0 ± 37.8 | 0.886 |
TSH level before RAI (mean ± SD, uIU/mL) | 105.9 ± 21.0 | 137.5 ± 76.2 | 0.286 |
Stimulated Tg level before RAI (mean ± SD, ng/mL) | 3.5 ± 4.3 | 5.6 ± 8.6 | 0.530 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, M.H.; Yin, Y.K.; Hwang, H.; Lee, S.M.; Yi, J.W. First Experience of Single Port Robotic Areolar (SPRA) Thyroidectomy and Modified Radical Neck Dissection (MRND). Medicina 2025, 61, 1150. https://doi.org/10.3390/medicina61071150
Shin MH, Yin YK, Hwang H, Lee SM, Yi JW. First Experience of Single Port Robotic Areolar (SPRA) Thyroidectomy and Modified Radical Neck Dissection (MRND). Medicina. 2025; 61(7):1150. https://doi.org/10.3390/medicina61071150
Chicago/Turabian StyleShin, Myung Ho, Yue Kun Yin, Hilal Hwang, Sun Min Lee, and Jin Wook Yi. 2025. "First Experience of Single Port Robotic Areolar (SPRA) Thyroidectomy and Modified Radical Neck Dissection (MRND)" Medicina 61, no. 7: 1150. https://doi.org/10.3390/medicina61071150
APA StyleShin, M. H., Yin, Y. K., Hwang, H., Lee, S. M., & Yi, J. W. (2025). First Experience of Single Port Robotic Areolar (SPRA) Thyroidectomy and Modified Radical Neck Dissection (MRND). Medicina, 61(7), 1150. https://doi.org/10.3390/medicina61071150