Anterior Cruciate Ligament Reconstruction Using Lateral Extra-Articular Procedures: A Systematic Review
Abstract
1. Introduction
2. Methods
2.1. Eligibility Criteria
2.2. Search Strategy
- P (Problem): ACL reconstruction;
- I (Intervention): LEAP;
- C (Comparison): LET vs. ALL;
- O (Outcomes): PROMs, complications, return to sport, laxity;
- T (Timing): minimum six months of follow-up.
2.3. Data Source
2.4. Outcomes of Interest
2.5. Methodology Quality Assessment
2.6. Statistical Analysis
3. Results
3.1. Search Result
3.2. Methodological Quality Assessment
3.3. Patient Demographics
3.4. Baseline Comparability
3.5. Efficacy of LEAP
3.6. Comparison of ALL Versus LET
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beck, N.A.; Lawrence, J.T.R.; Nordin, J.D.; DeFor, T.A.; Tompkins, M. ACL Tears in School-Aged Children and Adolescents Over 20 Years. Pediatrics 2017, 139, e20161877. [Google Scholar] [CrossRef]
- D’Ambrosi, R.; Meena, A.; Arora, E.S.; Attri, M.; Schafer, L.; Migliorini, F. Reconstruction of the anterior cruciate ligament: A historical view. Ann. Transl. Med. 2023, 11, 364. [Google Scholar] [CrossRef] [PubMed]
- Migliorini, F.; Eschweiler, J.; Mansy, Y.E.; Quack, V.; Tingart, M.; Driessen, A. Quadriceps tendon autograft for primary ACL reconstruction: A Bayesian network meta-analysis. Eur. J. Orthop. Surg. Traumatol. 2020, 30, 1129–1138. [Google Scholar] [CrossRef] [PubMed]
- Migliorini, F.; Cocconi, F.; Schafer, L.; Memminger, M.K.; Giorgino, R.; Maffulli, N. Anterior cruciate ligament reconstruction in skeletally immature patients is effective: A systematic review. Knee Surg. Sports Traumatol. Arthrosc. 2024, 32, 418–431. [Google Scholar] [CrossRef]
- Migliorini, F.; Cocconi, F.; Schafer, L.; Vaishya, R.; Kammer, D.; Maffulli, N. Bone-patellar tendon-bone, hamstring, and quadriceps tendon autografts for anterior cruciate ligament reconstruction in skeletally immature patients: A systematic review. Br. Med. Bull. 2024, 152, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.F.; Liu, P.; Huang, J.W.; He, Y.H. Efficacy and safety of quadriceps tendon autograft versus bone-patellar tendon-bone and hamstring tendon autografts for anterior cruciate ligament reconstruction: A systematic review and meta-analysis. J. Orthop. Traumatol. 2024, 25, 65. [Google Scholar] [CrossRef]
- Dodwell, E.R.; Lamont, L.E.; Green, D.W.; Pan, T.J.; Marx, R.G.; Lyman, S. 20 years of pediatric anterior cruciate ligament reconstruction in New York State. Am. J. Sports Med. 2014, 42, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Kakavas, G.; Malliaropoulos, N.; Blach, W.; Bikos, G.; Migliorini, F.; Maffulli, N. Ball heading and subclinical concussion in soccer as a risk factor for anterior cruciate ligament injury. J. Orthop. Surg. Res. 2021, 16, 566. [Google Scholar] [CrossRef]
- Jensen, H.A.; Nielsen, T.G.; Lind, M. Delaying anterior cruciate ligament reconstruction for more than 3 or 6 months results in lower risk of revision surgery. J. Orthop. Traumatol. 2024, 25, 19. [Google Scholar] [CrossRef] [PubMed]
- Migliorini, F.; Pilone, M.; Memminger, M.K.; Eschweiler, J.; Giorgino, R.; Maffulli, N. All-epiphyseal anterior cruciate ligament reconstruction yields superior sports performances than the trans-epiphyseal technique in skeletally immature patients: A systematic review. J. Orthop. Traumatol. 2024, 25, 7. [Google Scholar] [CrossRef]
- Migliorini, F.; Vecchio, G.; Eschweiler, J.; Schneider, S.M.; Hildebrand, F.; Maffulli, N. Reduced knee laxity and failure rate following anterior cruciate ligament reconstruction compared with repair for acute tears: A meta-analysis. J. Orthop. Traumatol. 2023, 24, 8. [Google Scholar] [CrossRef]
- Jebreen, M.; Maffulli, N.; Migliorini, F.; Arumugam, A. Known-group validity of passive knee joint position sense: A comparison between individuals with unilateral anterior cruciate ligament reconstruction and healthy controls. J. Orthop. Surg. Res. 2023, 18, 525. [Google Scholar] [CrossRef] [PubMed]
- Migliorini, F.; Oliva, F.; Eschweiler, J.; Torsiello, E.; Hildebrand, F.; Maffulli, N. Knee osteoarthritis, joint laxity and PROMs following conservative management versus surgical reconstruction for ACL rupture: A meta-analysis. Br. Med. Bull. 2023, 145, 72–87. [Google Scholar] [CrossRef]
- Zhang, L.; Li, C.; Zhang, J.; Zou, D.; Dimitriou, D.; Xing, X.; Tsai, T.Y.; Li, P. Significant race and gender differences in anterior cruciate ligament tibial footprint location: A 3D-based analysis. J. Orthop. Traumatol. 2023, 24, 33. [Google Scholar] [CrossRef]
- Chambat, P.; Guier, C.; Sonnery-Cottet, B.; Fayard, J.M.; Thaunat, M. The evolution of ACL reconstruction over the last fifty years. Int. Orthop. 2013, 37, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Sood, M.; Kulshrestha, V.; Sachdeva, J.; Ghai, A.; Sud, A.; Singh, S. Poor Functional Outcome in Patients with Voluntary Knee Instability after Anterior Cruciate Ligament Reconstruction. Clin. Orthop. Surg. 2020, 12, 312–317. [Google Scholar] [CrossRef]
- Ristanis, S.; Stergiou, N.; Patras, K.; Vasiliadis, H.S.; Giakas, G.; Georgoulis, A.D. Excessive tibial rotation during high-demand activities is not restored by anterior cruciate ligament reconstruction. Arthroscopy 2005, 21, 1323–1329. [Google Scholar] [CrossRef] [PubMed]
- van Eck, C.F.; Lesniak, B.P.; Schreiber, V.M.; Fu, F.H. Anatomic single- and double-bundle anterior cruciate ligament reconstruction flowchart. Arthroscopy 2010, 26, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Calvisi, V.; Lupparelli, S.; Rinonapoli, G.; Padua, R. Single-bundle versus double-bundle arthroscopic reconstruction of the anterior cruciate ligament: What does the available evidence suggest? J. Orthop. Traumatol. 2007, 8, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Migliorini, F.; Torsiello, E.; Trivellas, A.; Eschweiler, J.; Hildebrand, F.; Maffulli, N. Bone-patellar tendon-bone versus two- and four-strand hamstring tendon autografts for ACL reconstruction in young adults: A Bayesian network meta-analysis. Sci. Rep. 2023, 13, 6883. [Google Scholar] [CrossRef]
- D’Ambrosi, R.; Migliorini, F.; Di Maria, F.; Anghilieri, F.M.; Di Feo, F.; Ursino, N.; Mangiavini, L.; Kambhampati, S.B.S. Italian research on anterior cruciate ligament: A bibliometric analysis. Eur. J. Orthop. Surg. Traumatol. 2024, 34, 2235–2243. [Google Scholar] [CrossRef]
- Delaloye, J.R.; Saithna, A. Editorial Commentary: Lateral Extra-articular Procedures Concomitant to Anterior Cruciate Ligament Reconstruction Must Balance Clinical Efficacy and the Risk of Kinematic Restraint. Arthroscopy 2022, 38, 3172–3174. [Google Scholar] [CrossRef]
- Foissey, C.; Thaunat, M.; Caron, E.; Haidar, I.; Vieira, T.D.; Gomes, L.; Freychet, B.; Sonnery-Cottet, B.; Fayard, J.M. Combining Anterior Cruciate Ligament Reconstruction With Lateral Extra-Articular Procedures in Skeletally Immature Patients Is Safe and Associated With a Low Failure Rate. Arthrosc. Sports Med. Rehabil. 2022, 4, e1941–e1951. [Google Scholar] [CrossRef]
- Geeslin, A.G.; Chahla, J.; LaPrade, R.F. Combined Anterior Cruciate Ligament and Lateral Extra-Articular Reconstruction. Arthroscopy 2022, 38, 2600–2601. [Google Scholar] [CrossRef]
- Guarino, A.; Farinelli, L.; Iacono, V.; Screpis, D.; Piovan, G.; Rizzo, M.; Mariconda, M.; Zorzi, C. Lateral extra-articular tenodesis and anterior cruciate ligament reconstruction in young patients: Clinical results and return to sport. Orthop. Rev. 2022, 14, 33696. [Google Scholar] [CrossRef] [PubMed]
- Lodhia, P.; Nazari, G.; Bryant, D.; Getgood, A.; McCormack, R.; Group, S.; Getgood, A.M.J.; Bryant, D.M.; Litchfield, R.; Willits, K.; et al. Performance of 5-Strand Hamstring Autograft Anterior Cruciate Ligament Reconstruction in the STABILITY Study: A Subgroup Analysis. Am. J. Sports Med. 2022, 50, 3502–3509. [Google Scholar] [CrossRef]
- Perelli, S.; Costa, G.G.; Terron, V.M.; Formagnana, M.; Bait, C.; Espregueira-Mendes, J.; Monllau, J.C. Combined Anterior Cruciate Ligament Reconstruction and Modified Lemaire Lateral Extra-articular Tenodesis Better Restores Knee Stability and Reduces Failure Rates Than Isolated Anterior Cruciate Ligament Reconstruction in Skeletally Immature Patients. Am. J. Sports Med. 2022, 50, 3778–3785. [Google Scholar] [CrossRef] [PubMed]
- Piedade, S.R.; Gorios, C.; Migliorini, F.; Maffulli, N. Combined anterior cruciate and lateral collateral ligaments reconstruction with ipsilateral hamstring autograft: Surgical technique. J. Orthop. Surg. Res. 2022, 17, 466. [Google Scholar] [CrossRef]
- Getgood, A.M.J.; Bryant, D.M.; Litchfield, R.; Heard, M.; McCormack, R.G.; Rezansoff, A.; Peterson, D.; Bardana, D.; MacDonald, P.B.; Verdonk, P.C.M.; et al. Lateral Extra-articular Tenodesis Reduces Failure of Hamstring Tendon Autograft Anterior Cruciate Ligament Reconstruction: 2-Year Outcomes From the STABILITY Study Randomized Clinical Trial. Am. J. Sports Med. 2020, 48, 285–297. [Google Scholar] [CrossRef] [PubMed]
- Rezansoff, A.; Firth, A.D.; Bryant, D.M.; Litchfield, R.; McCormack, R.G.; Heard, M.; MacDonald, P.B.; Spalding, T.; Verdonk, P.C.M.; Peterson, D.; et al. Anterior Cruciate Ligament Reconstruction Plus Lateral Extra-articular Tenodesis Has a Similar Return-to-Sport Rate to Anterior Cruciate Ligament Reconstruction Alone but a Lower Failure Rate. Arthroscopy 2024, 40, 384–396.e1. [Google Scholar] [CrossRef] [PubMed]
- Rhatomy, S.; Ariyanto, M.W.; Fiolin, J.; Dilogo, I.H. Comparison of clinical outcomes between isolated ACL reconstruction and combined ACL with anterolateral ligament reconstruction: A systematic review and meta-analysis. Eur. J. Orthop. Surg. Traumatol. 2023, 33, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Grassi, A.; Zicaro, J.P.; Costa-Paz, M.; Samuelsson, K.; Wilson, A.; Zaffagnini, S.; Condello, V. Good mid-term outcomes and low rates of residual rotatory laxity, complications and failures after revision anterior cruciate ligament reconstruction (ACL) and lateral extra-articular tenodesis (LET). Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 418–431. [Google Scholar] [CrossRef]
- Na, B.R.; Kwak, W.K.; Seo, H.Y.; Seon, J.K. Clinical Outcomes of Anterolateral Ligament Reconstruction or Lateral Extra-articular Tenodesis Combined With Primary ACL Reconstruction: A Systematic Review With Meta-analysis. Orthop. J. Sports Med. 2021, 9, 23259671211023099. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Liu, W. Obesity-associated outcomes after ACL reconstruction: A propensity-score-matched analysis of the US Nationwide Inpatient Sample 2005-2018. J. Orthop. Traumatol. 2024, 25, 36. [Google Scholar] [CrossRef]
- Buhl, L.; Muller, S.; Nuesch, C.; Pagenstert, G.; Mundermann, A.; Egloff, C. Functional leg performance 2 years after ACL surgery: A comparison between InternalBrace-augmented repair versus reconstruction versus healthy controls. J. Orthop. Traumatol. 2023, 24, 52. [Google Scholar] [CrossRef]
- Ahn, J.H.; Patel, N.A.; Lin, C.C.; Lee, T.Q. The anterolateral ligament of the knee joint: A review of the anatomy, biomechanics, and anterolateral ligament surgery. Knee Surg. Relat. Res. 2019, 31, 12. [Google Scholar] [CrossRef]
- Anderson, A.F.; Snyder, R.B.; Lipscomb, A.B., Jr. Anterior cruciate ligament reconstruction. A prospective randomized study of three surgical methods. Am. J. Sports Med. 2001, 29, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Porter, M.; Shadbolt, B. Modified Iliotibial Band Tenodesis Is Indicated to Correct Intraoperative Residual Pivot Shift After Anterior Cruciate Ligament Reconstruction Using an Autologous Hamstring Tendon Graft: A Prospective Randomized Controlled Trial. Am. J. Sports Med. 2020, 48, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
- Castoldi, M.; Magnussen, R.A.; Gunst, S.; Batailler, C.; Neyret, P.; Lustig, S.; Servien, E. A Randomized Controlled Trial of Bone-Patellar Tendon-Bone Anterior Cruciate Ligament Reconstruction With and Without Lateral Extra-articular Tenodesis: 19-Year Clinical and Radiological Follow-up. Am. J. Sports Med. 2020, 48, 1665–1672. [Google Scholar] [CrossRef]
- Helito, C.P.; Sobrado, M.F.; Moreira da Silva, A.G.; Castro de Padua, V.B.; Guimaraes, T.M.; Bonadio, M.B.; Pecora, J.R.; Gobbi, R.G.; Camanho, G.L. The Addition of Either an Anterolateral Ligament Reconstruction or an Iliotibial Band Tenodesis Is Associated With a Lower Failure Rate After Revision Anterior Cruciate Ligament Reconstruction: A Retrospective Comparative Trial. Arthroscopy 2023, 39, 308–319. [Google Scholar] [CrossRef]
- Declercq, J.; Schuurmans, M.; Tack, L.; Verhelst, C.; Truijen, J. Combined lateral extra-articular tenodesis and anterior cruciate ligament reconstruction: Risk of osteoarthritis. Eur. J. Orthop. Surg. Traumatol. 2023, 33, 1075–1082. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.; Torbey, S.; Honeywill, C.; Myers, P. Lateral Extra-Articular Tenodesis Combined With Anterior Cruciate Ligament Reconstruction Is Effective in Knees With Additional Features of Lateral, Hyperextension, or Increased Rotational Laxity: A Matched Cohort Study. Arthroscopy 2022, 38, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Zhang, K.; Li, J.; Fu, W. Supplementary Lateral Extra-articular Tenodesis for Residual Anterolateral Rotatory Instability in Patients Undergoing Single-Bundle Anterior Cruciate Ligament Reconstruction: A Meta-analysis of Randomized Controlled Trials. Orthop. J. Sports Med. 2021, 9, 23259671211002282. [Google Scholar] [CrossRef]
- Kunze, K.N.; Manzi, J.; Richardson, M.; White, A.E.; Coladonato, C.; DePhillipo, N.N.; LaPrade, R.F.; Chahla, J. Combined Anterolateral and Anterior Cruciate Ligament Reconstruction Improves Pivot Shift Compared With Isolated Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Arthroscopy 2021, 37, 2677–2703. [Google Scholar] [CrossRef]
- Sonnery-Cottet, B.; Haidar, I.; Rayes, J.; Fradin, T.; Ngbilo, C.; Vieira, T.D.; Freychet, B.; Ouanezar, H.; Saithna, A. Long-term Graft Rupture Rates After Combined ACL and Anterolateral Ligament Reconstruction Versus Isolated ACL Reconstruction: A Matched-Pair Analysis From the SANTI Study Group. Am. J. Sports Med. 2021, 49, 2889–2897. [Google Scholar] [CrossRef]
- Rosso, F.; Rossi, R.; Faletti, R.; Cantivalli, A.; Blonna, D.; Bonasia, D.E. Transepicondylar distance measured on MRI can predict the length of the graft required for different anterior cruciate ligament reconstruction (ACLR) techniques useful for revision surgery. J. Orthop. Traumatol. 2022, 23, 50. [Google Scholar] [CrossRef]
- Sonnery-Cottet, B.; Daggett, M.; Fayard, J.M.; Ferretti, A.; Helito, C.P.; Lind, M.; Monaco, E.; de Padua, V.B.C.; Thaunat, M.; Wilson, A.; et al. Anterolateral Ligament Expert Group consensus paper on the management of internal rotation and instability of the anterior cruciate ligament—Deficient knee. J. Orthop. Traumatol. 2017, 18, 91–106. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, N.; Monketh, J.; Volpin, A. Clinical and mechanical outcomes in isolated anterior cruciate ligament reconstruction vs additional lateral extra-articular tenodesis or anterolateral ligament reconstruction. World J. Orthop. 2022, 13, 662–675. [Google Scholar] [CrossRef] [PubMed]
- Espejo-Reina, A.; Espejo-Reina, M.J.; Lombardo-Torre, M.; Sevillano-Perez, E.; Llanos-Rodriguez, A.; Espejo-Baena, A. Anterior Cruciate Ligament Revision Surgery Associated to Lateral Collateral and Anterolateral Ligaments Reconstruction With Single Achilles Tendon Allograft and Single Femoral Tunnel. Arthrosc. Tech. 2022, 11, e1769–e1777. [Google Scholar] [CrossRef]
- Mowbray, M.A.S.; Ireland, J. Personal and narrative review of the current management of the injured anterior cruciate ligament of the knee in the UK with reference to surgical treatment versus rehabilitation. BMJ Open Sport. Exerc. Med. 2022, 8, e001410. [Google Scholar] [CrossRef]
- Littlefield, C.P.; Belk, J.W.; Houck, D.A.; Kraeutler, M.J.; LaPrade, R.F.; Chahla, J.; McCarty, E.C. The Anterolateral Ligament of the Knee: An Updated Systematic Review of Anatomy, Biomechanics, and Clinical Outcomes. Arthroscopy 2021, 37, 1654–1666. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Ye, Z.; Han, K.; Xu, C.; Zhao, J.; Dong, S. Anterolateral Structure Reconstructions With Different Tibial Attachment Sites Similarly Improve Tibiofemoral Kinematics and Result in Different Graft Force in Treating Knee Anterolateral Instability. Arthroscopy 2022, 38, 2684–2696. [Google Scholar] [CrossRef]
- Kelly, S.R.; Cutter, B.M.; Huish, E.G., Jr. Biomechanical Effects of Combined Anterior Cruciate Ligament Reconstruction and Anterolateral Ligament Reconstruction: A Systematic Review and Meta-analysis. Orthop. J. Sports Med. 2021, 9, 23259671211009879. [Google Scholar] [CrossRef] [PubMed]
- Kosy, J.D.; Soni, A.; Venkatesh, R.; Mandalia, V.I. The anterolateral ligament of the knee: Unwrapping the enigma. Anatomical study and comparison to previous reports. J. Orthop. Traumatol. 2016, 17, 303–308. [Google Scholar] [CrossRef]
- Spencer, L.; Burkhart, T.A.; Tran, M.N.; Rezansoff, A.J.; Deo, S.; Caterine, S.; Getgood, A.M. Biomechanical analysis of simulated clinical testing and reconstruction of the anterolateral ligament of the knee. Am. J. Sports Med. 2015, 43, 2189–2197. [Google Scholar] [CrossRef]
- Geeslin, A.G.; Chahla, J.; Moatshe, G.; Muckenhirn, K.J.; Kruckeberg, B.M.; Brady, A.W.; Coggins, A.; Dornan, G.J.; Getgood, A.M.; Godin, J.A.; et al. Anterolateral Knee Extra-articular Stabilizers: A Robotic Sectioning Study of the Anterolateral Ligament and Distal Iliotibial Band Kaplan Fibers. Am. J. Sports Med. 2018, 46, 1352–1361. [Google Scholar] [CrossRef] [PubMed]
- Al-Dadah, O.; Shepstone, L.; Donell, S.T. Clinical outcome measures in anterior cruciate ligament reconstruction: Clinician vs patient completed knee scores. Surgeon 2021, 19, e353–e360. [Google Scholar] [CrossRef]
- Briggs, K.K.; Lysholm, J.; Tegner, Y.; Rodkey, W.G.; Kocher, M.S.; Steadman, J.R. The reliability, validity, and responsiveness of the Lysholm score and Tegner activity scale for anterior cruciate ligament injuries of the knee: 25 years later. Am. J. Sports Med. 2009, 37, 890–897. [Google Scholar] [CrossRef] [PubMed]
- Howick, J.; Chalmers, I.; Glasziou, P.; Greenhalgh, T.; Heneghan, C.; Liberati, A.; Moschetti, I.; Phillips, B.; Thornton, H.; Goddard, O.; et al. The 2011 Oxford CEBM Levels of Evidence. Oxford Centre for Evidence-Based Medicine. 2011. Available online: https://www.cebm.net/index.aspx?o=5653 (accessed on 1 January 2025).
- Petersen, W.; Zantop, T. Return to play following ACL reconstruction: Survey among experienced arthroscopic surgeons (AGA instructors). Arch. Orthop. Trauma. Surg. 2013, 133, 969–977. [Google Scholar] [CrossRef]
- Zaffagnini, S.; Grassi, A.; Serra, M.; Marcacci, M. Return to sport after ACL reconstruction: How, when and why? A narrative review of current evidence. Joints 2015, 3, 25–30. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Grevnerts, H.T.; Terwee, C.B.; Kvist, J. The measurement properties of the IKDC-subjective knee form. Knee Surg. Sports Traumatol. Arthrosc. 2015, 23, 3698–3706. [Google Scholar] [CrossRef] [PubMed]
- Kunze, K.N.; Polce, E.M.; Ranawat, A.S.; Randsborg, P.H.; Williams, R.J., 3rd; Allen, A.A.; Nwachukwu, B.U.; Group, H.A.R.; Pearle, A.; Stein, B.S.; et al. Application of Machine Learning Algorithms to Predict Clinically Meaningful Improvement After Arthroscopic Anterior Cruciate Ligament Reconstruction. Orthop. J. Sports Med. 2021, 9, 23259671211046575. [Google Scholar] [CrossRef] [PubMed]
- Nwachukwu, B.U.; Chang, B.; Voleti, P.B.; Berkanish, P.; Cohn, M.R.; Altchek, D.W.; Allen, A.A.; Williams, R.J.R. Preoperative Short Form Health Survey Score Is Predictive of Return to Play and Minimal Clinically Important Difference at a Minimum 2-Year Follow-up After Anterior Cruciate Ligament Reconstruction. Am. J. Sports Med. 2017, 45, 2784–2790. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Zhang, T.; Wu, C.; Qiao, Y.; Su, W.; Chen, J.; Xie, G.; Dong, S.; Xu, J.; Zhao, J. Predicting the Objective and Subjective Clinical Outcomes of Anterior Cruciate Ligament Reconstruction: A Machine Learning Analysis of 432 Patients. Am. J. Sports Med. 2022, 50, 3786–3795. [Google Scholar] [CrossRef] [PubMed]
- Mostafaee, N.; Negahban, H.; Shaterzadeh Yazdi, M.J.; Goharpey, S.; Mehravar, M.; Pirayeh, N. Responsiveness of a Persian version of Knee Injury and Osteoarthritis Outcome Score and Tegner activity scale in athletes with anterior cruciate ligament reconstruction following physiotherapy treatment. Physiother. Theory Pract. 2020, 36, 1019–1026. [Google Scholar] [CrossRef] [PubMed]
- Arneja, S.; Leith, J. Review article: Validity of the KT-1000 knee ligament arthrometer. J. Orthop. Surg. 2009, 17, 77–79. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savovic, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Savović, J.; Page, M.J.; Elbers, R.G.; Sterne, J.A.C. Chapter 8: Assessing risk of bias in a randomized trial. In Cochrane Handbook for Systematic Reviews of Interventions Version 6.3 (Updated February 2022); Higgins, J.P.T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M.J., Welch, V.A., Eds.; Cochrane: London, UK, 2022; Available online: https://training.cochrane.org/handbook/current/chapter-08 (accessed on 3 February 2025).
- Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.; Hernan, M.A.; Reeves, B.C.; Savovic, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [PubMed]
- McGuinness, L.A.; Higgins, J.P.T. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res. Synth. Methods 2020, 12, 55–61. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions Version 6.3 (Updated February 2022); Cochrane: London, UK, 2022; Available online: www.training.cochrane.org/handbook (accessed on 3 February 2025).
- Gonnachon, A.; Labattut, L.; Abdoul Carime, N.; Orta, C.; Baulot, E.; Martz, P. Does combined anterior cruciate ligament and anterolateral ligament reconstruction improve return to sport? Eur. J. Orthop. Surg. Traumatol. 2024, 34, 981–987. [Google Scholar] [CrossRef]
- Coquard, M.; Carrozzo, A.; Saithna, A.; Vigne, G.; Le Guen, M.; Fournier, Y.; Hager, J.P.; Vieira, T.D.; Sonnery-Cottet, B. Anterolateral Ligament Reconstruction Does Not Delay Functional Recovery, Rehabilitation, and Return to Sport After Anterior Cruciate Ligament Reconstruction: A Matched-Pair Analysis From the SANTI (Scientific ACL Network International) Study Group. Arthrosc. Sports Med. Rehabil. 2022, 4, e9–e16. [Google Scholar] [CrossRef] [PubMed]
- El-Azab, H.; Moursy, M.; Mohamed, M.A.; Elsayed, M. A comparison of the outcomes of anterior curciate ligament reconstruction with large-size graft versus reconstruction with average-size graft combined with extraarticular tenodesis. Injury 2023, 54, 976–982. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, A.; Monaco, E.; Giannetti, S.; Caperna, L.; Luzon, D.; Conteduca, F. A medium to long-term follow-up of ACL reconstruction using double gracilis and semitendinosus grafts. Knee Surg. Sports Traumatol. Arthrosc. 2011, 19, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Viglietta, E.; Ponzo, A.; Monaco, E.; Iorio, R.; Drogo, P.; Andreozzi, V.; Conteduca, F.; Ferretti, A. ACL Reconstruction Combined With the Arnold-Coker Modification of the MacIntosh Lateral Extra-articular Tenodesis: Long-term Clinical and Radiological Outcomes. Am. J. Sports Med. 2022, 50, 404–414. [Google Scholar] [CrossRef]
- Guzzini, M.; Mazza, D.; Fabbri, M.; Lanzetti, R.; Redler, A.; Iorio, C.; Monaco, E.; Ferretti, A. Extra-articular tenodesis combined with an anterior cruciate ligament reconstruction in acute anterior cruciate ligament tear in elite female football players. Int. Orthop. 2016, 40, 2091–2096. [Google Scholar] [CrossRef] [PubMed]
- Heard, M.; Marmura, H.; Bryant, D.; Litchfield, R.; McCormack, R.; MacDonald, P.; Spalding, T.; Verdonk, P.; Peterson, D.; Bardana, D.; et al. No increase in adverse events with lateral extra-articular tenodesis augmentation of anterior cruciate ligament reconstruction—Results from the stability randomized trial. J. Isakos 2023, 8, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Helito, C.P.; Sobrado, M.F.; Giglio, P.N.; Bonadio, M.B.; Pécora, J.R.; Gobbi, R.G.; Camanho, G.L. Surgical Timing Does Not Interfere on Clinical Outcomes in Combined Reconstruction of the Anterior Cruciate Ligament and Anterolateral Ligament: A Comparative Study With Minimum 2-Year Follow-Up. Arthroscopy 2021, 37, 1909–1917. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.A.; Shohdy, E.M.; Marwan, Y.; Ramadan, S.A.; Almisfer, A.K.; Mohammad, M.W.; Abdulsattar, W.S.; Khirat, S. Anatomic Reconstruction of the Anterior Cruciate Ligament of the Knee With or Without Reconstruction of the Anterolateral Ligament: A Randomized Clinical Trial. Am. J. Sports Med. 2017, 45, 1558–1566. [Google Scholar] [CrossRef] [PubMed]
- Joseph, L.; Demey, G.; Chamu, T.; Schmidt, A.; Germain, A.; van Rooij, F.; Saffarini, M.; Dejour, D. Adding a modified Lemaire procedure to ACLR in knees with severe rotational knee instability does not compromise isokinetic muscle recovery at the time of return-to-play. J. Exp. Orthop. 2020, 7, 84. [Google Scholar] [CrossRef] [PubMed]
- Laboudie, P.; Douiri, A.; Bouguennec, N.; Biset, A.; Graveleau, N. Combined ACL and ALL reconstruction reduces the rate of reoperation for graft failure or secondary meniscal lesions in young athletes. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 3488–3498. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.W.; Lee, D.H.; Cho, S.I.; Yang, S.J.; Kim, W.J.; Lee, J.K.; Kim, J.G. Comparison of ACL and Anterolateral Ligament Reconstruction With Isolated ACL Reconstruction Using Hamstring Autograft: Outcomes in Young Female Patients With High-Grade Pivot Shift. Orthop. J. Sports Med. 2023, 11, 23259671231178048. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, G.B.; Chung, W.; Han, S.B.; Jang, K.M. Addition of anterolateral ligament reconstruction to primary anterior cruciate ligament reconstruction could benefit recovery of functional outcomes. Sci. Rep. 2024, 14, 11440. [Google Scholar] [CrossRef]
- Legnani, C.; Borgo, E.; Macchi, V.; Ventura, A. Restoring rotational stability following anterior cruciate ligament surgery: Single-bundle reconstruction combined with lateral extra-articular tenodesis versus double-bundle reconstruction. J. Comp. Eff. Res. 2022, 11, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Marcacci, M.; Zaffagnini, S.; Giordano, G.; Iacono, F.; Presti, M.L. Anterior cruciate ligament reconstruction associated with extra-articular tenodesis: A prospective clinical and radiographic evaluation with 10- to 13-year follow-up. Am. J. Sports Med. 2009, 37, 707–714. [Google Scholar] [CrossRef]
- Meynard, P.; Pelet, H.; Angelliaume, A.; Legallois, Y.; Lavignac, P.; De Bartolo, R.; Fabre, T.; Costes, S. ACL reconstruction with lateral extra-articular tenodesis using a continuous graft: 10-year outcomes of 50 cases. Orthop. Traumatol. Surg. Res. 2020, 106, 929–935. [Google Scholar] [CrossRef]
- Monaco, E.; Carrozzo, A.; Saithna, A.; Conteduca, F.; Annibaldi, A.; Marzilli, F.; Minucci, M.; Sonnery-Cottet, B.; Ferretti, A. Isolated ACL Reconstruction Versus ACL Reconstruction Combined With Lateral Extra-articular Tenodesis: A Comparative Study of Clinical Outcomes in Adolescent Patients. Am. J. Sports Med. 2022, 50, 3244–3255. [Google Scholar] [CrossRef]
- Pioger, C.; Gousopoulos, L.; Hopper, G.P.; Vieira, T.D.; Campos, J.P.; El Helou, A.; Philippe, C.; Saithna, A.; Sonnery-Cottet, B. Clinical Outcomes After Combined ACL and Anterolateral Ligament Reconstruction Versus Isolated ACL Reconstruction With Bone-Patellar Tendon-Bone Grafts: A Matched-Pair Analysis of 2018 Patients From the SANTI Study Group. Am. J. Sports Med. 2022, 50, 3493–3501. [Google Scholar] [CrossRef] [PubMed]
- Porter, M.; Shadbolt, B. Modified iliotibial band tenodesis versus lateral extracapsular tenodesis, to augment anterior cruciate ligament reconstruction: A 2-year randomized controlled trial. ANZ J. Surg. 2022, 92, 2247–2253. [Google Scholar] [CrossRef]
- Saragaglia, D.; Pison, A.; Refaie, R. Lateral tenodesis combined with anterior cruciate ligament reconstruction using a unique semitendinosus and gracilis transplant. Int. Orthop. 2013, 37, 1575–1581. [Google Scholar] [CrossRef] [PubMed]
- Sonnery-Cottet, B.; Thaunat, M.; Freychet, B.; Pupim, B.H.; Murphy, C.G.; Claes, S. Outcome of a Combined Anterior Cruciate Ligament and Anterolateral Ligament Reconstruction Technique With a Minimum 2-Year Follow-up. Am. J. Sports Med. 2015, 43, 1598–1605. [Google Scholar] [CrossRef] [PubMed]
- Sonnery-Cottet, B.; Saithna, A.; Cavalier, M.; Kajetanek, C.; Temponi, E.F.; Daggett, M.; Helito, C.P.; Thaunat, M. Anterolateral Ligament Reconstruction Is Associated With Significantly Reduced ACL Graft Rupture Rates at a Minimum Follow-up of 2 Years: A Prospective Comparative Study of 502 Patients From the SANTI Study Group. Am. J. Sports Med. 2017, 45, 1547–1557. [Google Scholar] [CrossRef] [PubMed]
- Thaunat, M.; Clowez, G.; Saithna, A.; Cavalier, M.; Choudja, E.; Vieira, T.D.; Fayard, J.M.; Sonnery-Cottet, B. Reoperation Rates After Combined Anterior Cruciate Ligament and Anterolateral Ligament Reconstruction: A Series of 548 Patients From the SANTI Study Group With a Minimum Follow-up of 2 Years. Am. J. Sports Med. 2017, 45, 2569–2577. [Google Scholar] [CrossRef] [PubMed]
- Vadalà, A.P.; Iorio, R.; De Carli, A.; Bonifazi, A.; Iorio, C.; Gatti, A.; Rossi, C.; Ferretti, A. An extra-articular procedure improves the clinical outcome in anterior cruciate ligament reconstruction with hamstrings in female athletes. Int. Orthop. 2013, 37, 187–192. [Google Scholar] [CrossRef]
- Yang, H.Y.; Cheon, J.H.; Choi, J.H.; Song, E.K.; Seon, J.K. Combined Anterior Cruciate Ligament and Anterolateral Ligament Reconstruction Decreases Passive Anterior Tibial Subluxation Compared with Isolated Anterior Cruciate Ligament Reconstruction Despite Similar Rotational Stability and Clinical Outcomes. Arthroscopy 2023, 39, 2513–2524.e2. [Google Scholar] [CrossRef]
- Zaffagnini, S.; Marcacci, M.; Lo Presti, M.; Giordano, G.; Iacono, F.; Neri, M.P. Prospective and randomized evaluation of ACL reconstruction with three techniques: A clinical and radiographic evaluation at 5 years follow-up. Knee Surg. Sports Traumatol. Arthrosc. 2006, 14, 1060–1069. [Google Scholar] [CrossRef] [PubMed]
- Zaffagnini, S.; Bruni, D.; Russo, A.; Takazawa, Y.; Lo Presti, M.; Giordano, G.; Marcacci, M. ST/G ACL reconstruction: Double strand plus extra-articular sling vs double bundle, randomized study at 3-year follow-up. Scand. J. Med. Sci. Sports 2008, 18, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.; Feldman, M.D. Editorial Commentary: Anterior Cruciate Ligament Primary Repair Has Limited Indications and Outcomes Inferior to Anterior Cruciate Ligament Reconstruction. Arthroscopy, 2024; ahead of print. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, J.; Luo, Y.; Guo, L.; Wang, S. Anatomic femoral tunnel and satisfactory clinical outcomes achieved with the modified transtibial technique in anterior cruciate ligament reconstruction: A systematic review and meta-analysis. Heliyon 2024, 10, e35824. [Google Scholar] [CrossRef] [PubMed]
- Pettinari, F.; Carrozzo, A.; Saithna, A.; Ali, A.A.; Alayane, A.; Barosso, M.; Vieira, T.D.; Sonnery-Cottet, B. Effect of Lateral Extra-Articular Procedures Combined With ACL Reconstruction on the Rate of Graft Rupture in Patients Aged Older Than 30 Years: A Matched-Pair Analysis of 1102 Patients From the SANTI Study Group. Am. J. Sports Med. 2024, 52, 1765–1772. [Google Scholar] [CrossRef]
- Moussa, M.K.; Lefèvre, N.; Valentin, E.; Coughlan, A.; Zgolli, A.; Gerometta, A.; Meyer, A.; Hardy, A. Impact of Lateral Extra-Articular Procedure Augmentation on Rerupture Risk and Tegner Activity Scale Outcomes in Adolescent Anterior Cruciate Ligament: A Matched Comparative Study With a Minimum 2-Year Follow-up. Am. J. Sports Med. 2024, 52, 892–901. [Google Scholar] [CrossRef]
- Saithna, A.; Daggett, M.; Helito, C.P.; Monaco, E.; Franck, F.; Vieira, T.D.; Pioger, C.; Kim, J.G.; Sonnery-Cottet, B. Clinical Results of Combined ACL and Anterolateral Ligament Reconstruction: A Narrative Review from the SANTI Study Group. J. Knee Surg. 2021, 34, 962–970. [Google Scholar] [CrossRef] [PubMed]
- Mathew, M.; Dhollander, A.; Getgood, A. Anterolateral Ligament Reconstruction or Extra-Articular Tenodesis: Why and When? Clin. Sports Med. 2018, 37, 75–86. [Google Scholar] [CrossRef]
- Gillet, B.; Blache, Y.; Rogowski, I.; Vigne, G.; Capel, O.; Sonnery-Cottet, B.; Fayard, J.M.; Thaunat, M. Isokinetic Strength After ACL Reconstruction: Influence of Concomitant Anterolateral Ligament Reconstruction. Sports Health 2022, 14, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Getgood, A.; Brown, C.; Lording, T.; Amis, A.; Claes, S.; Geeslin, A.; Musahl, V. The anterolateral complex of the knee: Results from the International ALC Consensus Group Meeting. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Firth, A.D.; Bryant, D.M.; Litchfield, R.; McCormack, R.G.; Heard, M.; MacDonald, P.B.; Spalding, T.; Verdonk, P.C.M.; Peterson, D.; Bardana, D.; et al. Predictors of Graft Failure in Young Active Patients Undergoing Hamstring Autograft Anterior Cruciate Ligament Reconstruction With or Without a Lateral Extra-articular Tenodesis: The Stability Experience. Am. J. Sports Med. 2022, 50, 384–395. [Google Scholar] [CrossRef] [PubMed]
- Kemler, B.; Coladonato, C.; Sonnier, J.H.; Campbell, M.P.; Darius, D.; Erickson, B.J.; Tjoumakaris, F.P.; Freedman, K.B. Evaluation of Failed ACL Reconstruction: An Updated Review. Open Access J. Sports Med. 2024, 15, 29–39. [Google Scholar] [CrossRef]
- Boksh, K.; Sheikh, N.; Chong, H.H.; Ghosh, A.; Aujla, R. The Role of Anterolateral Ligament Reconstruction or Lateral Extra-articular Tenodesis for Revision Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-analysis of Comparative Clinical Studies. Am. J. Sports Med. 2024, 52, 269–285. [Google Scholar] [CrossRef]
- Ra, H.J.; Kim, J.H.; Lee, D.H. Comparative clinical outcomes of anterolateral ligament reconstruction versus lateral extra-articular tenodesis in combination with anterior cruciate ligament reconstruction: Systematic review and meta-analysis. Arch. Orthop. Trauma Surg. 2020, 140, 923–931. [Google Scholar] [CrossRef]
- Jonsson, H.; Riklund-Ahlstrom, K.; Lind, J. Positive pivot shift after ACL reconstruction predicts later osteoarthrosis: 63 patients followed 5-9 years after surgery. Acta Orthop. Scand. 2004, 75, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Sokal, P.A.; Norris, R.; Maddox, T.W.; Oldershaw, R.A. The diagnostic accuracy of clinical tests for anterior cruciate ligament tears are comparable but the Lachman test has been previously overestimated: A systematic review and meta-analysis. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 3287–3303. [Google Scholar] [CrossRef]
- Xu, J.; Qiao, Y.; Han, K.; Xu, C.; Dong, S.; Zhao, J. Modified Lemaire Lateral Extra-articular Tenodesis With the Iliotibial Band Strip Fixed on the Femoral Cortical Surface Reduces Laxity and Causes Less Overconstraint in the Anterolateral Lesioned Knee: A Biomechanical Study. Arthroscopy 2022, 38, 3162–3171. [Google Scholar] [CrossRef]
- Sigloch, M.; Coppola, C.; Hoermann, R.; Alt, P.; Schmoelz, W.; Mayr, R. Overconstraint Associated With a Modified Lemaire Lateral Extra-Articular Tenodesis Is Decreased by Using an Anterior Femoral Insertion Point in a Cadaveric Model. Arthroscopy, 2024; ahead of print. [Google Scholar] [CrossRef]
- Xu, J.; Han, K.; Lee, T.Q.; Xu, C.; Su, W.; Chen, J.; Yu, J.; Dong, S.; Zhao, J. Anterolateral Structure Reconstruction Similarly Improves the Stability and Causes Less Overconstraint in Anterior Cruciate Ligament-Reconstructed Knees Compared With Modified Lemaire Lateral Extra-articular Tenodesis: A Biomechanical Study. Arthroscopy 2022, 38, 911–924. [Google Scholar] [CrossRef]
- Jacquet, C.; Pioger, C.; Seil, R.; Khakha, R.; Parratte, S.; Steltzlen, C.; Argenson, J.N.; Pujol, N.; Ollivier, M. Incidence and Risk Factors for Residual High-Grade Pivot Shift After ACL Reconstruction With or Without a Lateral Extra-articular Tenodesis. Orthop. J. Sports Med. 2021, 9, 23259671211003590. [Google Scholar] [CrossRef] [PubMed]
- Marshall, D.C.; Silva, F.D.; Goldenberg, B.T.; Quintero, D.; Baraga, M.G.; Jose, J. Imaging Findings of Complications After Lateral Extra-Articular Tenodesis of the Knee: A Current Concepts Review. Orthop. J. Sports Med. 2022, 10, 23259671221114820. [Google Scholar] [CrossRef]
- Weber, A.E.; Zuke, W.; Mayer, E.N.; Forsythe, B.; Getgood, A.; Verma, N.N.; Bach, B.R.; Bedi, A.; Cole, B.J. Lateral Augmentation Procedures in Anterior Cruciate Ligament Reconstruction: Anatomic, Biomechanical, Imaging, and Clinical Evidence. Am. J. Sports Med. 2019, 47, 740–752. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Liang, G.H.; Pan, J.K.; Zeng, L.F.; Luo, M.H.; Huang, H.T.; Han, Y.H.; Lin, F.Z.; Xu, N.J.; Yang, W.Y.; et al. Risk factors for postoperative surgical site infections after anterior cruciate ligament reconstruction: A systematic review and meta-analysis. Br. J. Sports Med. 2023, 57, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Duthon, V.B.; Magnussen, R.A.; Servien, E.; Neyret, P. ACL reconstruction and extra-articular tenodesis. Clin. Sports Med. 2013, 32, 141–153. [Google Scholar] [CrossRef]
- Lutz, C.; Casin, C.; Pioger, C.; Jacquot, X.; Jaeger, J.H.; Van Hille, W. Combined ACLR and lateral extra-articular tenodesis with a continuous iliotibial band autograft is a viable option in a population of athletes who participate in pivoting sports. Knee Surg. Sports Traumatol. Arthrosc. 2024, 33, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Giusto, J.D.; Cohen, D.; Dadoo, S.; Grandberg, C.; Lott, A.; Hughes, J.D.; Ayeni, O.R.; Musahl, V. Lateral extra-articular tenodesis may be more cost-effective than independent anterolateral ligament reconstruction: A systematic review and economic analysis. J. ISAKOS 2024, 9, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Sonnery-Cottet, B.; Lutz, C.; Daggett, M.; Dalmay, F.; Freychet, B.; Niglis, L.; Imbert, P. The Involvement of the Anterolateral Ligament in Rotational Control of the Knee. Am. J. Sports Med. 2016, 44, 1209–1214. [Google Scholar] [CrossRef]
- Wilson, T.C.; Kantaras, A.; Atay, A.; Johnson, D.L. Tunnel enlargement after anterior cruciate ligament surgery. Am. J. Sports Med. 2004, 32, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Jette, C.; Gutierrez, D.; Sastre, S.; Llusa, M.; Combalia, A. Biomechanical comparison of anterolateral ligament anatomical reconstruction with a semi-anatomical lateral extra-articular tenodesis. A cadaveric study. Knee 2019, 26, 1003–1009. [Google Scholar] [CrossRef] [PubMed]
Author and Year | Journal | Procedure | Follow-Up (Months) | Patients (n) | Women (n) | Mean Age (Years) | Mean BMI |
---|---|---|---|---|---|---|---|
Arnaud Gonnachon et al., 2024 [75] | Eur. J. Orthop. Surg. Traumatol. | ALL | 54 | 41 | 8 | 24.0 | |
Coquard et al., 2022 [76] | Arthrosc. Sports Med. Rehabil. | ALL | 6 | 111 | 47 | 37.7 | 24.6 |
El-Azab H et al., 2023 [77] | Injury | LET | 24 | 50 | 8 | 28.0 | |
Ferretti et al., 2009 [78] | Knee Surg. Sports Traumatol. Arthrosc. | LET | 72 | 100 | 23 | 35.0 | |
Ferretti et al., 2022 [79] | Am. J. Sports Med. | LET | 188 | 79 | 14 | 26.1 | |
Guzzini et al., 2016 [80] | Int. Orthop. | LET | 73 | 18 | 16 | 24.9 | |
Heard et al., 2023 [81] | J. Isakos | LET | 24 | 306 | 155 | 19.1 | 24.0 |
Helito CP et al., 2023 [82] | Arthroscopy | ALL | 29 | 34 | 27.2 | ||
ALL | 29 | 96 | 29.6 | ||||
Ibrahim et al., 2017 [83] | Am. J. Sports Med. | ALL | 27 | 56 | 0 | 26.0 | |
Joseph et al., 2020 [84] | J. Exp. Orthop. | LET | 96 | 35 | 7 | 23.0 | 23.5 |
Laboudie et al., 2022 [85] | Knee Surg. Sports Traumatol. Arthrosc. | ALL | 36 | 102 | 40 | 16.3 | 22.1 |
Lee et al., 2023 [86] | Orthop. J. Sports Med. | ALL | 29 | 39 | 30.4 | 19.7 | |
Lee et al., 2024 [87] | Sci. Rep. | LET | 12 | 24 | 11 | 29.4 | 25.8 |
Legnani et al., 2022 [88] | J. Comp. Eff. Res. | LET | 74 | 16 | 5 | 26.8 | 22.9 |
Marcacci et al., 2009 [89] | Am. J. Sports Med. | LET | 132 | 54 | 12 | ||
Meynard et al., 2020 [90] | Orthop. Traumatol. Surg. Res. | LET | 120 | 50 | 17 | 28.5 | 25.4 |
Monaco et al., 2022 [91] | Am. J. Sports Med. | LET | 44 | 71 | 27 | 16.1 | |
Pioger et al., 2022 [92] | Am. J. Sports Med. | ALL | 101 | 1009 | 25.8 | ||
Porter et al., 2022 [93] | ANZ J. Surg. | LET | 24 | 80 | 42 | 23.0 | 21.3 |
Saragaglia et al., 2013 [94] | Int. Orthop. | LET | 76 | 68 | 22 | 29.7 | |
Sonnery-Cottet et al., 2015 [95] | Am. J. Sports Med. | ALL | 32 | 92 | 24 | 24.0 | |
Sonnery-Cottet et al., 2017 [96] | Am. J. Sports Med. | ALL | 35 | 221 | 69 | 21.8 | |
Thaunat et al., 2017 [97] | Am. J. Sports Med. | ALL | 36 | 548 | 163 | 24.3 | |
Vadalà et al., 2013 [98] | Int. Orthop. | LET | 45 | 28 | 28 | 26.0 | |
Yang et al., 2023 [99] | Arthroscopy | ALL | 48 | 35 | 7 | 25.0 | 26.6 |
Zaffagnini et al., 2006 [100] | Knee Surg. Sports Traumatol. Arthrosc. | ALL | 60 | 25 | 7 | 26.7 | |
Zaffagnini et al., 2008 [101] | Scand. J. Med. Sci. Sports | ALL | 46 | 35 | 15 | 26.0 | 25.1 |
Endpoint | ALL (N = 2444) | LET (N = 979) | p |
---|---|---|---|
Women | 31.4% (380 of 1210) | 39.5% (387 of 979) | 0.6 |
Mean follow-up (weeks) | 61.5 ± 34.2 | 62.7 ± 50.4 | 0.1 |
Mean age | 25.4 ± 3.6 | 24.2 ± 5.6 | 0.4 |
Mean BMI | 23.5 ± 2.0 | 23.7 ± 1.2 | 0.9 |
Lysholm | 62.2 ± 15.1 | 58.7 ± 12.0 | 0.5 |
IKDC | 58.0 ± 18.2 | 58.5 ± 12.4 | 0.7 |
PROMs | At Baseline | At Last FU | MD | p |
---|---|---|---|---|
Lysholm | 60.3 ± 13.6 | 91.8 ± 10.7 | 31.4 | <0.01 |
IKDC | 58.2 ± 16.3 | 87.2 ± 10.5 | 29.1 | <0.01 |
Endpoint | At Last Follow-Up |
---|---|
Tegner | 6.8 ± 2.0 |
KT 1000 (mm) | 1.5 ± 1.8 |
Pivot shift | 15.8% (105 of 666) |
Lachman test | 13.0% (87 of 668) |
Return to sport | 72.3% (623 of 862) |
Time to return to sport (months) | 6.3 ± 4.4 |
Endpoint | ALL | LET | Measure | Effect Size | p |
---|---|---|---|---|---|
Lysholm | 90.8 ± 11.3 | 93.5 ± 9.0 | MD | 2.7 | 0.6 |
IKDC | 84.1 ± 12.3 | 89.8 ± 8.0 | MD | 5.6 | 0.04 |
Tegner | 7.2 ± 1.9 | 5.3 ± 1.9 | MD | −1.9 | 0.2 |
Arthrometer (mm) | 1.1 ± 1.5 | 2.0 ± 2.1 | MD | 0.9 | 0.2 |
Pivot shift | 13.0% (32 of 247) | 17.4% (73 of 419) | OR | 0.7 | 0.1 |
Lachman test | 20.3% (50 of 246) | 8.8% (37 of 422) | OR | 3.1 | <0.01 |
Endpoint | ALL | LET | Measure | Effect Size | p |
---|---|---|---|---|---|
Return to sport | 67.6% (375 of 555) | 80.8% (248 of 307) | OR | 0.5 | <0.01 |
Time to return to sport (months) | 6.4 ± 4.4 | 6.1 ± 0.2 | MD | −0.3 | 0.3 |
Endpoint | ALL (N = 2444) | LET (N = 979) | OR | p |
---|---|---|---|---|
Failure | 3.0% (69 of 2333) | 3.2% (27 of 838) | 0.9 | 0.7 |
Reoperations | 9.6% (183 of 1906) | 13.8% (54 of 392) | 0.7 | 0.01 |
Feature | LET Advantages | LET Disadvantages | ALL Advantages | ALL Disadvantages |
---|---|---|---|---|
Clinical Outcomes | Higher IKDC score at last follow-up | Higher reoperations rate | Good rotational stability and lower graft failure rates | Lower IKDC score |
Return to sport | Greater percentage of return to pre-injury levels | No significant difference in time to return to sport | Comparable time to return to sport | Lower percentage of return to pre-injury sport level |
Laxity and Stability | Lower positive rate on Lachman test (better anterior knee stability) | Slightly higher laxity noted in arthrometer and Pivot shift tests | Superior in reducing anterior translation and residual rotational instability | Higher positive rate on Lachman test (worse anterior knee stability) |
Complications | Effective for rotational stability | May cause overconstraint and stiffness. Increased risk of surgical site complications (e.g., infections and fibrosis) | Fewer complications and better anterior knee stability | Some residual anterior knee laxity observed |
Reoperation Rates | Higher rates | Lower rates | Risks of surgical failure in chronic conditions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Migliorini, F.; Lucenti, L.; Mok, Y.R.; Bardazzi, T.; D’Ambrosi, R.; De Carli, A.; Paolicelli, D.; Maffulli, N. Anterior Cruciate Ligament Reconstruction Using Lateral Extra-Articular Procedures: A Systematic Review. Medicina 2025, 61, 294. https://doi.org/10.3390/medicina61020294
Migliorini F, Lucenti L, Mok YR, Bardazzi T, D’Ambrosi R, De Carli A, Paolicelli D, Maffulli N. Anterior Cruciate Ligament Reconstruction Using Lateral Extra-Articular Procedures: A Systematic Review. Medicina. 2025; 61(2):294. https://doi.org/10.3390/medicina61020294
Chicago/Turabian StyleMigliorini, Filippo, Ludovico Lucenti, Ying Ren Mok, Tommaso Bardazzi, Riccardo D’Ambrosi, Angelo De Carli, Domenico Paolicelli, and Nicola Maffulli. 2025. "Anterior Cruciate Ligament Reconstruction Using Lateral Extra-Articular Procedures: A Systematic Review" Medicina 61, no. 2: 294. https://doi.org/10.3390/medicina61020294
APA StyleMigliorini, F., Lucenti, L., Mok, Y. R., Bardazzi, T., D’Ambrosi, R., De Carli, A., Paolicelli, D., & Maffulli, N. (2025). Anterior Cruciate Ligament Reconstruction Using Lateral Extra-Articular Procedures: A Systematic Review. Medicina, 61(2), 294. https://doi.org/10.3390/medicina61020294