Using Femtosecond Laser Light-Activated Materials: The Biomimetic Dentin Remineralization Was Monitored by Laser-Induced Breakdown Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methodology
2.2.1. Sample Preparations
2.2.2. Activation of Teeth with Femtosecond Laser Light
2.2.3. Elemental Analysis Using LIBS
3. Results and Discussion
4. Further Investigations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Loguercio, A.D.; Moura, S.K.; Pellizzaro, A.; Dal-Bianco, K.; Patzlaff, R.T.; Grande, R.H.; Reis, A. Durability of enamel bonding using two-step self-etch systems on ground and unground enamel. Oper. Dent. 2008, 33, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Niu, L.N.; Zhang, W.; Pashley, D.H.; Breschi, L.; Mao, J.; Chen, J.-H.; Tay, F.R. Biomimetic remineralization of dentin. Dent. Mater. 2014, 30, 77–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, D.J. The application of in vitro models to research on demineralization and remineralization of the teeth. Adv. Dent. Res. 1995, 9, 175–193. [Google Scholar] [CrossRef] [PubMed]
- Blum, I.R.; Özcan, M. Reparative dentistry: Possibilities and limitations. Curr. Oral Health Rep. 2018, 5, 264–269. [Google Scholar] [CrossRef] [Green Version]
- Fernando, D.; Attik, N.; Pradelle-Plasse, N.; Jackson, P.; Grosgogeat, B.; Colon, P. Bioactive glass for dentin remineralization: A systematic review. Mater. Sci. Eng. C 2017, 76, 1369–1377. [Google Scholar] [CrossRef]
- Cakir, F.Y.; Korkmaz, Y.; Firat, E.; Oztas, S.S.; Gurgan, S. Chemical analysis of enamel and dentin following the application of three different at-home bleaching systems. Oper. Dent. 2011, 36, 529–536. [Google Scholar] [CrossRef]
- Matsuura, Y. Detection of early caries by laser-induced breakdown spectroscopy. In Interface Oral Health Science 2016: Innovative Research on Biosis–Abiosis Intelligent Interface; Springer: Berlin/Heidelberg, Germany, 2016; pp. 173–180. [Google Scholar]
- Lubatschowski, H.; Heisterkamp, A.; Will, F.; Singh, A.I.; Serbin, J.; Ostendorf, A.; Kermani, O.; Heermann, R.; Welling, H.; Ertmer, W. Medical applications for ultrafast laser pulses. Riken Rev. 2003, 50, 113–118. [Google Scholar]
- El-Gendy, A.O.; Samir, A.; Ahmed, E.; Enwemeka, C.S.; Mohamed, T. The antimicrobial effect of 400 Nm femtosecond laser and silver nanoparticles on gram-positive and gram-negative bacteria. J. Photochem. Photobiol. B Biol. 2021, 223, 112300. [Google Scholar]
- Alsaraf, K.M.; Abd, S.T.; Husain, N.S. An antimicrobial activity of moringa oleifera extract in comparison to chlorhexidene gluconate: In vitro study. J. Baghdad Coll. Dent. 2016, 28, 183–187. [Google Scholar] [CrossRef] [Green Version]
- Muteeb, G.; Aatif, M.; Farhan, M.; Alsultan, A.; Alshoaibi, A.; Alam, M.W. Leaves of moringa oleifera are potential source of bioactive compound β-carotene: Evidence from in silico and quantitative gene expression analysis. Molecules 2023, 28, 1578. [Google Scholar] [CrossRef]
- Peñalver, R.; Martínez-Zamora, L.; Lorenzo, J.M.; Ros, G.; Nieto, G. Nutritional and antioxidant properties of moringa oleifera leaves in functional foods. Foods 2022, 11, 1107. [Google Scholar] [CrossRef]
- Trigo, C.; Castelló, M.L.; Ortolá, M.D.; García-Mares, F.J.; Desamparados Soriano, M. Moringa oleifera: An unknown crop in developed countries with great potential for industry and adapted to climate change. Foods 2020, 10, 31. [Google Scholar] [CrossRef]
- Alam, M.W.; Pandey, P.; Khan, F.; Souayeh, B.; Farhan, M. Study to investigate the potential of combined extract of leaves and seeds of moringa oleifera in groundwater purification. Int. J. Environ. Res. Public Health 2020, 17, 7468. [Google Scholar] [CrossRef]
- Aldughaylibi, F.S.; Raza, M.A.; Naeem, S.; Rafi, H.; Alam, M.W.; Souayeh, B.; Farhan, M.; Aamir, M.; Zaidi, N.; Mir, T.A. Extraction of bioactive compounds for antioxidant, antimicrobial, and antidiabetic applications. Molecules 2022, 27, 5935. [Google Scholar] [CrossRef]
- Skallevold, H.E.; Rokaya, D.; Khurshid, Z.; Zafar, M.S. Bioactive glass applications in dentistry. Int. J. Mol. Sci. 2019, 20, 5960. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Mei, M.; Li, Q.-L.; Lo, E.; Chu, C. Methods for biomimetic remineralization of human dentine: A systematic review. Int. J. Mol. Sci. 2015, 16, 4615–4627. [Google Scholar] [CrossRef]
- Elasser, D.M.; Niazy, M.A.; Elsharkawy, D.A.E.; Mansour, M.S. The remineralizing potential of nano bioactive glass versus nanohydroxyapatite on dentine as affected by Ph cycling. Al-Azhar Dent. J. Girls 2018, 5, 327–334. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, E.; El-Gendy, A.O.; Moniem Radi, N.A.; Mohamed, T. The bactericidal efficacy of femtosecond laser-based therapy on the most common infectious bacterial pathogens in chronic wounds: An in vitro study. Lasers Med. Sci. 2020, 36, 641–647. [Google Scholar] [CrossRef]
- Toscano, D.D.; de Souza, H.P.; Alves, L.P.; Munin, E.; Pacheco, M.T.T. Study of Human Dentary Tissues by Laser-Induced Breakdown Spectroscopy. In X Latin American Meeting of Scientific Initiation and VI Latin American Meeting of Post-Graduation-Universidade Do Vale Do Paraíba. 2021, pp. 2455–2458. Available online: https://www.inicepg.univap.br/cd/INIC_2006/epg/07/EPG00000222%20OK.pdf (accessed on 12 February 2023).
- Rohde, M.; Mehari, F.; Klämpfl, F.; Adler, W.; Neukam, F.-W.; Schmidt, M.; Stelzle, F. The differentiation of oral soft- and hard tissues using laser induced breakdown spectroscopy—A prospect for tissue specific laser surgery. J. Biophotonics 2016, 10, 1250–1261. [Google Scholar] [CrossRef]
- Ahmed, E.; El-Gendy, A.O.; Hamblin, M.R.; Mohamed, T. The effect of femtosecond laser irradiation on the growth kinetics of Staphylococcus Aureus: An in vitro study. J. Photochem. Photobiol. B Biol. 2021, 221, 112240. [Google Scholar] [CrossRef]
- Dutra-Correa, M.; Nicolodelli, G.; Rodrigues, J.R.; Kurachi, C.; Bagnato, V.S. Femtosecond laser ablation on dental hard tissues—Analysis of ablated profile near an interface using local effective intensity. Laser Phys. 2011, 21, 965–971. [Google Scholar] [CrossRef]
- Sadat, M.E.; Haider, A.F.M.Y.; Abedin, K.M.; Wahadoszamen, M. Semiquantitative determination of chromium content of river bed soil of Buriganga River at different locations. J. Bangladesh Acad. Sci. 2010, 34, 123–131. [Google Scholar] [CrossRef]
- Yu, R.; Kramida, A.E.; Reader, J.; Martin, W.C.; Musgrove, A.; Saloman, E.B.; Sansonetti, C.J.; Curry, J.J. NIST Atomic Spectra Database. 2006. Available online: http://physics.nist.gov/PhysRefData.ASD/index.html (accessed on 12 February 2023).
- Xue, V.W.; Yin, I.X.; Niu, J.Y.; Lo, E.C.; Chu, C.H.; Zhao, I.S. Effects of a 445 Nm diode laser and silver diamine fluoride in preventing enamel demineralisation and inhibiting cariogenic bacteria. J. Dent. 2022, 126, 104309. [Google Scholar] [CrossRef] [PubMed]
- Al-Maliky, M.A.; Frentzen, M.; Meister, J. Combined effects of a topical fluoride treatment and 445 Nm laser irradiation of enamel against a demineralization challenge: A light and electron microscopic ex vivo study. PLoS ONE 2020, 15, e0237195. [Google Scholar] [CrossRef] [PubMed]
- Lusche, I.; Dirk, C.; Frentzen, M.; Meister, J. Cavity disinfection with a 445 Nm diode laser within the scope of restorative therapy—A pilot study. J. Lasers Med. Sci. 2020, 11, 417–426. [Google Scholar] [CrossRef]
- Zhou, Z.; Ge, X.; Bian, M.; Xu, T.; Li, N.; Lu, J.; Yu, J. Remineralization of dentin slices using casein phosphopeptide–Amorphous calcium phosphate combined with sodium tripolyphosphate. BioMed. Eng. OnLine 2020, 19, 18. [Google Scholar] [CrossRef] [Green Version]
- Burdușel, A.-C.; Gherasim, O.; Andronescu, E.; Grumezescu, A.M.; Ficai, A. Inorganic nanoparticles in bone healing applications. Pharmaceutics 2022, 14, 770. [Google Scholar] [CrossRef]
- Choi, Y.-J.; Bae, M.-K.; Kim, Y.-I.; Park, J.-K.; Son, S.-A. Effects of microsurface structure of bioactive nanoparticles on dentinal tubules as a dentin desensitizer. PLoS ONE 2020, 15, e0237726. [Google Scholar] [CrossRef]
- Djulaeha, E.; Hendrijantini, N.; Pudijanto, A. The effect of combined Moringa oleifera and demineralized freeze-dried bovine bone xenograft on the amount of osteoblast and osteoclast in the healing of tooth extraction socket of Cavia cobaya. Dent. J. 2016, 49, 37–42. [Google Scholar]
- Foster, B.L.; Tompkins, K.A.; Rutherford, R.B.; Zhang, H.; Chu, E.Y.; Fong, H.; Somerman, M.J. Phosphate: Known and potential roles during development and regeneration of teeth and supporting structures. Birth Defects Res. Part C Embryo Today Rev. 2008, 84, 281–314. [Google Scholar] [CrossRef] [Green Version]
Material | Manufacturer | Texture |
---|---|---|
Moringa oleifera | Egyptian Scientific Society of Moringa, National Research Centre, Giza, Egypt | Moringa leaf extracts |
Bioactive glass (Batch #: NT-BG45S5) | NanoTech Egypt, Giza, Egypt | White, powder, average size 50 ± 20 nm, spherical-like shape |
Temporary filling | BMS DENTAL, Italy | White, paste |
Group | Antimicrobial Agent | Sample Size | Activation Wavelength (nm) | Subgroup Abbreviation |
---|---|---|---|---|
A | Moringa oleifera | 3 | 390 | Aλ1 |
3 | 445 | Aλ2 | ||
3 | 780 | Aλ3 | ||
B | Bioactive glass nanoparticles | 3 | 390 | Bλ1 |
3 | 445 | Bλ2 | ||
3 | 780 | Bλ3 | ||
C | None | 3 | 390 | Cλ1 |
3 | 445 | Cλ2 | ||
3 | 780 | Cλ3 |
Relative Change in Subgroups, Measured in % | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Element | λ (nm) | Aλ1 | Bλ1 | Cλ1 | Aλ2 | Bλ2 | Cλ2 | Aλ3 | Bλ3 | Cλ3 |
Ca I | 422 | 120 | 28 | 37 | 49 | 10 | 24 | 40 | 4 | −1 |
Ca II | 393 | 47 | 1 | 24 | 48 | 1 | −1 | 12 | 12 | −1 |
Ca II | 396 | 52 | 1 | 25 | 67 | 1 | −1 | 13 | 10 | 0 |
P | 213 | 112 | 93 | −6 | 119 | 149 | −21 | 47 | 130 | 35 |
P | 253 | 123 | 86 | −14 | 103 | 114 | −19 | 50 | 122 | 33 |
O | 394 | 99 | 5 | 46 | 171 | 6 | 14 | 56 | 39 | 11 |
O | 436 | 160 | 62 | 60 | 225 | 47 | 14 | 40 | 126 | 40 |
O | 496 | 178 | 85 | 53 | 286 | 79 | 7 | 49 | 154 | 38 |
O | 533 | 1 | 1 | −1 | 1 | 1 | −1 | 1 | 1 | −1 |
C | 247 | 117 | 107 | −11 | 115 | 132 | −27 | 58 | 135 | 33 |
Mg I | 285 | 117 | 45 | 12 | 189 | 51 | −14 | 48 | 117 | 22 |
Mg II | 280 | 94 | 11 | 0 | 136 | 25 | −20 | 17 | 89 | 19 |
Na | 590 | 50 | 26 | 49 | 45 | 27 | 35 | −3 | 31 | 51 |
F II | 385 | 163 | 38 | 68 | 271 | 30 | 24 | 47 | 111 | 30 |
F II | 402 | 197 | 58 | 68 | 328 | 51 | 18 | 53 | 150 | 35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kandil, H.; Ahmed, E.; Fouad, N.; Ali Dabbous, O.; Niazy, M.; Mohamed, T. Using Femtosecond Laser Light-Activated Materials: The Biomimetic Dentin Remineralization Was Monitored by Laser-Induced Breakdown Spectroscopy. Medicina 2023, 59, 591. https://doi.org/10.3390/medicina59030591
Kandil H, Ahmed E, Fouad N, Ali Dabbous O, Niazy M, Mohamed T. Using Femtosecond Laser Light-Activated Materials: The Biomimetic Dentin Remineralization Was Monitored by Laser-Induced Breakdown Spectroscopy. Medicina. 2023; 59(3):591. https://doi.org/10.3390/medicina59030591
Chicago/Turabian StyleKandil, Howida, Esraa Ahmed, Nada Fouad, Ola Ali Dabbous, Maha Niazy, and Tarek Mohamed. 2023. "Using Femtosecond Laser Light-Activated Materials: The Biomimetic Dentin Remineralization Was Monitored by Laser-Induced Breakdown Spectroscopy" Medicina 59, no. 3: 591. https://doi.org/10.3390/medicina59030591
APA StyleKandil, H., Ahmed, E., Fouad, N., Ali Dabbous, O., Niazy, M., & Mohamed, T. (2023). Using Femtosecond Laser Light-Activated Materials: The Biomimetic Dentin Remineralization Was Monitored by Laser-Induced Breakdown Spectroscopy. Medicina, 59(3), 591. https://doi.org/10.3390/medicina59030591