Effect of the Duration of NSAID Use on COVID-19
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Study Population
2.3. Study Group Classification
2.4. Outcomes
2.5. Statistis
3. Results
3.1. Study Subjects
3.2. Baseline Characteristics
3.3. Propensity Score-Matching
3.4. Clinical Outcome
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Coronavirus Disease (COVID-19) Situation Report—51. Available online: https://apps.who.int/iris/bitstream/handle/10665/331475/nCoVsitrep11Mar2020-eng.pdf?sequence=1&isAllowed=y (accessed on 10 August 2022).
- World Health Organization. Coronavirus (COVID-19) Dashboard Online. Available online: https://covid19.who.int/?adgroupsurvey={adgroupsurvey}&gclid=EAIaIQobChMIzY_xsoC7-QIV2sKWCh0b9g9iEAAYASABEgIo2PD_BwE (accessed on 10 August 2022).
- Korea Disease Control and Prevention Agency. Coronavirus (COVID-19), Republic of Korea, Occurrence Status Online. Available online: http://ncov.mohw.go.kr (accessed on 10 August 2022).
- Micallef, J.; Soeiro, T.; Jonville-Bera, A.P. French Society of Pharmacology Team. Non-steroidal anti-inflammatory drugs, pharmacology, and COVID-19 infection. Therapie 2020, 75, 355–362. [Google Scholar] [CrossRef]
- Moore, N.; Carleton, B.; Blin, P.; Bosco-Levy, P.; Droz, C. Does Ibuprofen Worsen COVID-19? Drug Saf. 2020, 43, 611–614. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.; Yoon, S.; Kim, M.; Lee, H.; Park, S.; Kim, W.; Lee, S. Aspirin is related to worse clinical outcomes of COVID-19. Medicina 2021, 57, 931. [Google Scholar] [CrossRef] [PubMed]
- Moore, N.; Bosco-Levy, P.; Thurin, N.; Blin, P.; Droz-Perroteau, C. NSAIDs and COVID-19: A Systematic Review and Meta-analysis. Drug Saf. 2021, 44, 929–938. [Google Scholar] [CrossRef]
- Chandan, J.S.; Zemedikun, D.T.; Thayakaran, R.; Byne, N.; Dhalla, S.; Acosta-Mena, D.; Gokhale, K.M.; Thomas, T.; Sainsbury, C.; Subramanian, A.; et al. Nonsteroidal Antiinflammatory Drugs and Susceptibility to COVID-19. Arthritis Rheumatol. 2021, 73, 731–739. [Google Scholar] [CrossRef]
- Reese, J.T.; Coleman, B.; Chan, L.; Blau, H.; Callahan, T.J.; Cappelletti, L.; Fontana, T.; Bradwell, K.R.; Harris, N.L.; Casiraghi, E.; et al. NSAID use and clinical outcomes in COVID-19 patients: A 38-center retrospective cohort study. Virol. J. 2022, 19, 84. [Google Scholar] [CrossRef]
- Lund, L.C.; Kristensen, K.B.; Reilev, M.; Blau, H.; Callahan, T.J.; Cappelletti, L.; Fontana, T.; Bradwell, K.R.; Harris, N.L.; Casiraghi, E.; et al. Adverse outcomes and mortality in users of non-steroidal anti-inflammatory drugs who tested positive for SARS-CoV-2: A Danish nationwide cohort study. PLoS Med. 2020, 17, e1003308. [Google Scholar] [CrossRef]
- Wong, A.Y.; MacKenna, B.; Morton, C.E.; Christensen, S.; Thomsen, R.W.; Christiansen, C.F.; Stovring, H.; Johansen, N.B.; Brun, N.; Hallas, J.; et al. Use of non-steroidal anti-inflammatory drugs and risk of death from COVID-19: An OpenSAFELY cohort analysis based on two cohorts. Ann. Rheum. Dis. 2021, 80, 943–951. [Google Scholar] [CrossRef]
- Kim, J.S.; Shin, D.H.; Kim, H.W. Analysis of Major COVID-19 Issues Using Unstructured Big Data. Knowl. Manag. Res. 2021, 22, 145–165. [Google Scholar] [CrossRef]
- Jung, S.Y.; Choi, J.C.; You, S.H.; Kim, W.Y. Association of Renin-angiotensin-aldosterone System Inhibitors With Coronavirus Disease 2019 (COVID-19)- Related Outcomes in Korea: A Nationwide Population-based Cohort Study. Clin. Infect. Dis. 2020, 71, 2121–2128. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Kim, H.J.; Lonjon, G.; Zhu, Y.; on behalf of AME Big-Data Clinical Trial Collaborative Group. Balance diagnostics after propensity score matching. Ann. Transl. Med. 2019, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- Bindu, S.; Mazumder, S.; Bandyopadhyay, U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem. Pharmacol. 2020, 180, 114147. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.Y.; Gwee, K.A.; Cheng, Y.K.; Yoon, K.H.; Hee, H.T.; Omar, A.R. Nonsteroidal anti-inflammatory drugs in chronic pain: Implications of new data for clinical practice. J. Pain Res. 2018, 11, 1937–1948. [Google Scholar] [CrossRef]
- Dwivedi, A.K.; Gurjar, V.; Kumar, S.; Singh, N. Molecular basis for nonspecificity of nonsteroidal anti-inflammatory drugs (NSAIDs). Drug Discov. Today. 2015, 20, 863–873. [Google Scholar] [CrossRef]
- Park, J.S.; Kim, H.Y. Current trend of NSAIDs use. Korean J. Med. 2000, 59, 491–504. [Google Scholar]
- White, A.A.; Stevenson, D.D. Aspirin-Exacerbated Respiratory Disease. N. Engl. J. Med. 2018, 379, 1060–1070. [Google Scholar] [CrossRef]
- European Medicines Agency. EMA Gives Advice on the Use of Non-Steroidal Anti-Infammatories for COVID-19. Available online: https://www.ema.europa.eu/en/news/ema-gives-advice-use-non-steroidal-anti-inflammatories-covid-19 (accessed on 10 August 2022).
- AFP. Updated: WHO Now Doesn’t Recommend Avoiding Ibuprofen For COVID-19 Symptoms. Science Alert. Available online: https://www.sciencealert.com/whorecommends-to-avoid-taking-ibuprofen-for-covid-19-symptoms (accessed on 10 August 2022).
- Torjesen, I. Covid-19: Ibuprofen Can Be Used for Symptoms, Says UK Agency, but Reasons for Change in Advice Are Unclear. BMJ 2020, 369, m1555. [Google Scholar] [CrossRef]
- Korea Disease Control and Prevention Agency. Information about Adverse Events Following Vaccination and What to Expect. Available online: https://ncv.kdca.go.kr/board.es?mid=a20400000000&bid=0038#content (accessed on 10 August 2022).
- Chen, J.S.; Alfajaro, M.M.; Wei, J.; Chow, R.D.; Filler, R.B.; Eisenbarth, S.C.; Wilen, C.B. Cyclooxgenase-2 is induced by SARS-CoV-2 infection but does not affect viral entry or replication. bioRxiv 2020. Preprint. [Google Scholar] [CrossRef]
- Fang, L.; Karakiulakis, G.; Roth, M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir. Med. 2020, 8, e21. [Google Scholar] [CrossRef]
- Jeong, H.E.; Lee, H.; Shin, H.J.; Choe, Y.J.; Filion, K.B.; Shin, J.Y. Association Between Nonsteroidal Antiinflammatory Drug Use and Adverse Clinical Outcomes Among Adults Hospitalized With Coronavirus 2019 in South Korea: A Nationwide Study. Clin. Infect. Dis. 2021, 73, e4179–e4188. [Google Scholar] [CrossRef] [PubMed]
- Drake, T.M.; Fairfield, C.J.; Pius, R.; Knight, S.R.; Norman, L.; Girvan, M.; Hardwick, H.E.; Docherty, A.B.; Thwaites, R.S.; Openshaw, P.J.M.; et al. Non-steroidal anti-inflammatory drug use and outcomes of COVID-19 in the ISARIC Clinical Characterisation Protocol UK cohort: A matched, prospective cohort study. Lancet Rheumatol. 2021, 3, e498–e506. [Google Scholar] [CrossRef] [PubMed]
- Castro, V.M.; Ross, R.A.; Cbrode, S.; Perlis, R.H. Brief Report: Identifying common pharmacotherapies associated with reduced COVID-19 morbidity using electronic health records. medRxiv 2020, 20061994. [Google Scholar] [CrossRef]
| Characteristic | Entire Cohort N = 580 | Short-Term N = 534 | Long-Term N = 46 | p-Value |
|---|---|---|---|---|
| Sex, n (%) | 0.123 | |||
| Male | 271 (46.7) | 244 (45.7) | 27 (58.7) | |
| Female | 309 (53.3) | 290 (54.3) | 19 (41.3) | |
| Age, n (%) | 0.009 | |||
| 20–29 | 79 (13.6) | 78 (14.6) | 1 (2.2) | |
| 30–39 | 76 (13.1) | 73 (13.7) | 3 (6.5) | |
| 40–49 | 80 (13.8) | 76 (14.2) | 4 (8.7) | |
| 50–59 | 118 (20.3) | 109 (20.4) | 9 (19.6) | |
| 60–69 | 101 (17.4) | 91 (17.0) | 10 (21.7) | |
| 70–79 | 71 (12.2) | 61 (11.4) | 10 (21.7) | |
| 80+ | 55 (9.5) | 46 (8.6) | 9 (19.6) | |
| Region, n (%) | 0.171 | |||
| Seoul | 79 (13.6) | 75 (14.0) | 4 (8.7) | |
| Gyeonggi | 69 (11.9) | 67 (12.5) | 2 (4.3) | |
| Daegu | 163 (28.1) | 144 (27.0) | 19 (41.3) | |
| Gyeongbuk | 54 (9.3) | 50 (9.4) | 4 (8.7) | |
| Other | 215 (37.1) | 198 (37.1) | 17 (37.0) | |
| Comorbidity, n (%) | ||||
| Asthma | 102 (17.6) | 95 (17.8) | 7 (15.7) | 0.812 |
| CVA | 68 (11.7) | 58 (10.9) | 10 (21.7) | 0.05 |
| CKD | 32 (5.5) | 28 (5.2) | 4 (8.7) | 0.517 |
| COPD | 40 (6.9) | 33 (6.2) | 7 (15.2) | 0.044 |
| DM | 134 (23.1) | 113 (21.2) | 21 (45.7) | <0.001 |
| HTN | 184 (31.7) | 159 (29.8) | 25 (54.3) | 0.001 |
| Charlson Comorbidity Index, n (%) | 0.032 | |||
| 0 | 217 (37.4) | 207 (38.8) | 10 (21.7) | |
| 1 | 89 (15.3) | 83 (15.5) | 6 (13.0) | |
| 2 or more | 274 (47.2) | 244 (45.7) | 30 (65.2) | |
| Current use of medication, n (%) | ||||
| Steroid | 118 (20.3) | 103 (19.3) | 15 (32.6) | 0.05 |
| Characteristic | Short-Term N = 46 | Long-Term N = 46 | SMD |
|---|---|---|---|
| Sex, n (%) | 0.044 | ||
| Male | 26 (56.5) | 27 (58.7) | |
| Female | 20 (43.5) | 19 (41.3) | |
| Age, n (%) | 0.068 | ||
| 20–29 | 2 (4.3) | 1 (2.2) | |
| 30–39 | 3 (6.5) | 3 (6.5) | |
| 40–49 | 3 (6.5) | 4 (8.7) | |
| 50–59 | 11 (23.9) | 9 (19.6) | |
| 60–69 | 8 (17.4) | 10 (21.7) | |
| 70–79 | 11 (23.9) | 10 (21.7) | |
| 80+ | 8 (17.4) | 9 (19.6) | |
| Region, n (%) | 0.213 | ||
| Seoul | 10 (21.7) | 4 (8.7) | |
| Gyeonggi | 18 (39.1) | 2 (4.3) | |
| Daegu | 1 (2.2) | 19 (41.3) | |
| Gyeongbuk | 3 (6.5) | 4 (8.7) | |
| Other | 14 (30.4) | 17 (37.0) | |
| Comorbidity, n (%) | |||
| Asthma | 6 (13.0) | 7 (15.7) | 0.060 |
| CVA | 10 (21.7) | 10 (21.7) | 0.000 |
| CKD | 1 (2.2) | 4 (8.7) | 0.230 |
| COPD | 6 (13.0) | 7 (15.2) | 0.060 |
| DM | 20 (43.5) | 21 (45.7) | 0.043 |
| HTN | 20 (43.5) | 25 (54.3) | 0.216 |
| Charlson Comorbidity Index, n (%) | 0.104 | ||
| 0 | 8 (17.4) | 10 (21.7) | |
| 1 | 6 (13.0) | 6 (13.0) | |
| 2 or more | 32 (69.6) | 30 (65.2) | |
| Current use of medication, n (%) | |||
| Steroid | 18 (39.1) | 15 (32.6) | 0.138 |
| COVID-19, n (%) | |||
| Minimally adjusted OR * | 1.00 (reference) | 1.5 (0.57–4.05) | |
| Fully adjusted OR # | 1.00 (reference) | 2.24 (0.56–9.57) |
| Variables | Short-Term N = 13 | Long-Term N = 17 | p-Value * |
|---|---|---|---|
| Composite endpoint1, n (%) | 0.119 | ||
| No | 11 (84.6) | 9 (52.9) | |
| Yes | 2 (15.4) | 8 (47.1) | |
| Composite endpoint2, n (%) | 0.355 | ||
| No | 12 (92.3) | 13 (76.5) | |
| Yes | 1 (7.7) | 4 (23.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.; Yoon, S.; Choi, J.; Lee, S. Effect of the Duration of NSAID Use on COVID-19. Medicina 2022, 58, 1713. https://doi.org/10.3390/medicina58121713
Kim K, Yoon S, Choi J, Lee S. Effect of the Duration of NSAID Use on COVID-19. Medicina. 2022; 58(12):1713. https://doi.org/10.3390/medicina58121713
Chicago/Turabian StyleKim, Kyeongmi, Siyeoung Yoon, Junwon Choi, and Soonchul Lee. 2022. "Effect of the Duration of NSAID Use on COVID-19" Medicina 58, no. 12: 1713. https://doi.org/10.3390/medicina58121713
APA StyleKim, K., Yoon, S., Choi, J., & Lee, S. (2022). Effect of the Duration of NSAID Use on COVID-19. Medicina, 58(12), 1713. https://doi.org/10.3390/medicina58121713

