Mechanistic Insights into Vorinostat as a Repositioned Modulator of TACE-Mediated TNF-α Signaling via MAPK and NFκB Pathways
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Cell Culture
2.2. ELISA Assay for TNF-α
2.3. ELISA Assay for TACE Activity
2.4. Western Blot Analysis
2.5. Molecular Docking
2.6. Statistical Analysis
3. Results
3.1. Vorinostat Modestly Inhibited TACE (ADAM17) Enzymatic Activity
3.2. Vorinostat Inhibited LPS-Induced TNF-α Release
3.3. Vorinostat Attenuated LPS-Induced IκB Phosphorylation
3.4. Vorinostat Suppressed LPS-Induced NFκB Phosphorylation
3.5. Vorinostat Significantly Suppressed LPS-Induced MAPKs
3.6. Molecular Docking
3.7. Molecular Docking Interactions
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parvathaneni, V.; Kulkarni, N.S.; Muth, A.; Gupta, V. Drug repurposing: A promising tool to accelerate the drug discovery process. Drug Discov. Today 2019, 24, 2076–2085. [Google Scholar] [CrossRef]
- Low, Z.Y.; Farouk, I.A.; Lal, S.K. Drug Repositioning: New Approaches and Future Prospects for Life-Debilitating Diseases and the COVID-19 Pandemic Outbreak. Viruses 2020, 12, 1058. [Google Scholar] [CrossRef] [PubMed]
- Kumbhar, P.; Kole, K.; Yadav, T.; Bhavar, A.; Waghmare, P.; Bhokare, R.; Manjappa, A.; Jha, N.K.; Chellappan, D.K.; Shinde, S.; et al. Drug repurposing: An emerging strategy in alleviating skin cancer. Eur. J. Pharmacol. 2022, 926, 175031. [Google Scholar] [CrossRef] [PubMed]
- Azad, I.; Khan, T.; Ahmad, N.; Khan, A.R.; Akhter, Y. Updates on drug designing approach through computational strategies: A review. Future Sci. OA 2023, 9, FSO862. [Google Scholar] [CrossRef] [PubMed]
- Shah, F.A.; Qadir, H.; Khan, J.Z.; Faheem, M. A review: From old drugs to new solutions: The role of repositioning in alzheimer’s disease treatment. Neuroscience 2025, 576, 167–181. [Google Scholar] [CrossRef]
- Nosengo, N. Can you teach old drugs new tricks? Nature 2016, 534, 314–316. [Google Scholar] [CrossRef]
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019, 18, 41–58. [Google Scholar] [CrossRef]
- Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 2004, 3, 673–683. [Google Scholar] [CrossRef]
- Black, R.A.; White, J.M. ADAMs: Focus on the protease domain. Curr. Opin. Cell Biol. 1998, 10, 654–659. [Google Scholar] [CrossRef]
- Scheller, J.; Chalaris, A.; Garbers, C.; Rose-John, S. ADAM17: A molecular switch to control inflammation and tissue regeneration. Trends Immunol. 2011, 32, 380–387. [Google Scholar] [CrossRef]
- Zunke, F.; Rose-John, S. The shedding protease ADAM17: Physiology and pathophysiology. Biochim. Biophys. Acta Mol. Cell Res. 2017, 1864, 2059–2070. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Hampel, H.; Blennow, K.; Lista, S.; Levey, A.; Tang, B.; Li, R.; Shen, Y. Increased plasma TACE activity in subjects with mild cognitive impairment and patients with Alzheimer’s disease. J. Alzheimers Dis. 2014, 41, 877–886. [Google Scholar] [CrossRef] [PubMed]
- Bahia, M.S.; Silakari, O. Tumor necrosis factor alpha converting enzyme: An encouraging target for various inflammatory disorders. Chem. Biol. Drug Des. 2010, 75, 415–443. [Google Scholar] [CrossRef]
- Moss, M.L.; Lambert, M.H. Shedding of membrane proteins by ADAM family proteases. Essays Biochem. 2002, 38, 141–153. [Google Scholar] [CrossRef]
- Inam Illahi, M.; Amjad, S.; Alam, S.M.; Ahmed, S.T.; Fatima, M.; Shahid, M.A. Serum Tumor Necrosis Factor-Alpha as a Competent Biomarker for Evaluation of Disease Activity in Early Rheumatoid Arthritis. Cureus 2021, 13, e15314. [Google Scholar] [CrossRef]
- Farrugia, M.; Baron, B. The role of TNF-alpha in rheumatoid arthritis: A focus on regulatory T cells. J. Clin. Transl. Res. 2016, 2, 84–90. [Google Scholar] [CrossRef]
- Li, N.G.; Shi, Z.H.; Tang, Y.P.; Wei, L.; Lian, Y.; Duan, J.A. Discovery of selective small molecular TACE inhibitors for the treatment of rheumatoid arthritis. Curr. Med. Chem. 2012, 19, 2924–2956. [Google Scholar] [CrossRef] [PubMed]
- Murumkar, P.R.; DasGupta, S.; Chandani, S.R.; Giridhar, R.; Yadav, M.R. Novel TACE inhibitors in drug discovery: A review of patented compounds. Expert. Opin. Ther. Pat. 2010, 20, 31–57. [Google Scholar] [CrossRef]
- Dusterhoft, S.; Lokau, J.; Garbers, C. The metalloprotease ADAM17 in inflammation and cancer. Pathol. Res. Pr. 2019, 215, 152410. [Google Scholar] [CrossRef]
- Moss, M.L.; Minond, D. Recent Advances in ADAM17 Research: A Promising Target for Cancer and Inflammation. Mediat. Inflamm. 2017, 2017, 9673537. [Google Scholar] [CrossRef] [PubMed]
- Murumkar, P.R.; Giridhar, R.; Yadav, M.R. Novel methods and strategies in the discovery of TACE inhibitors. Expert. Opin. Drug Discov. 2013, 8, 157–181. [Google Scholar] [CrossRef]
- Yasir, M.; Park, J.; Han, E.T.; Han, J.H.; Park, W.S.; Hassan, M.; Kloczkowski, A.; Chun, W. Discovery of novel TACE inhibitors using graph convolutional network, molecular docking, molecular dynamics simulation, and Biological evaluation. PLoS ONE 2024, 19, e0315245. [Google Scholar] [CrossRef]
- Duvic, M.; Vu, J. Vorinostat: A new oral histone deacetylase inhibitor approved for cutaneous T-cell lymphoma. Expert. Opin. Investig. Drugs 2007, 16, 1111–1120. [Google Scholar] [CrossRef]
- Pili, R.; Liu, G.; Chintala, S.; Verheul, H.; Rehman, S.; Attwood, K.; Lodge, M.A.; Wahl, R.; Martin, J.I.; Miles, K.M.; et al. Combination of the histone deacetylase inhibitor vorinostat with bevacizumab in patients with clear-cell renal cell carcinoma: A multicentre, single-arm phase I/II clinical trial. Br. J. Cancer 2017, 116, 874–883. [Google Scholar] [CrossRef]
- Marks, P.A. HDAC inhibitors: Much to learn about effective therapy. Oncology 2010, 24, 185. [Google Scholar] [PubMed]
- Lee, J.; R, S.H. Cancer Epigenetics: Mechanisms and Crosstalk of a HDAC Inhibitor, Vorinostat. Chemotherapy 2013, 2, 14934. [Google Scholar] [PubMed]
- Richon, V.M. Targeting histone deacetylases: Development of vorinostat for the treatment of cancer. Epigenomics 2010, 2, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Bolden, J.E.; Peart, M.J.; Johnstone, R.W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov. 2006, 5, 769–784. [Google Scholar] [CrossRef]
- Scott, A.J.; O’Dea, K.P.; O’Callaghan, D.; Williams, L.; Dokpesi, J.O.; Tatton, L.; Handy, J.M.; Hogg, P.J.; Takata, M. Reactive oxygen species and p38 mitogen-activated protein kinase mediate tumor necrosis factor alpha-converting enzyme (TACE/ADAM-17) activation in primary human monocytes. J. Biol. Chem. 2011, 286, 35466–35476. [Google Scholar] [CrossRef]
- Xu, P.; Derynck, R. Direct activation of TACE-mediated ectodomain shedding by p38 MAP kinase regulates EGF receptor-dependent cell proliferation. Mol. Cell 2010, 37, 551–566. [Google Scholar] [CrossRef]
- Leoni, F.; Fossati, G.; Lewis, E.C.; Lee, J.K.; Porro, G.; Pagani, P.; Modena, D.; Moras, M.L.; Pozzi, P.; Reznikov, L.L.; et al. The histone deacetylase inhibitor ITF2357 reduces production of pro-inflammatory cytokines in vitro and systemic inflammation in vivo. Mol. Med. 2005, 11, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Meng, X.; Zhang, Z.; Wang, Y.; Liu, Y.; You, C.; Yan, H. Vorinostat Modulates the Imbalance of T Cell Subsets, Suppresses Macrophage Activity, and Ameliorates Experimental Autoimmune Uveoretinitis. Neuromolecular Med. 2016, 18, 134–145. [Google Scholar] [CrossRef]
- Adcock, I.M. HDAC inhibitors as anti-inflammatory agents. Br. J. Pharmacol. 2007, 150, 829–831. [Google Scholar] [CrossRef]
- Halili, M.A.; Andrews, M.R.; Sweet, M.J.; Fairlie, D.P. Histone deacetylase inhibitors in inflammatory disease. Curr. Top. Med. Chem. 2009, 9, 309–319. [Google Scholar] [CrossRef]
- McNutt, A.T.; Francoeur, P.; Aggarwal, R.; Masuda, T.; Meli, R.; Ragoza, M.; Sunseri, J.; Koes, D.R. GNINA 1.0: Molecular docking with deep learning. J. Cheminform 2021, 13, 43. [Google Scholar] [CrossRef]
- Sunseri, J.; Koes, D.R. Virtual Screening with Gnina 1.0. Molecules 2021, 26, 7369. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.L.; Yang, K.C.; Peng, J.Y.; Hong, C.L.; Li, P.C.; Chye, S.M.; Lu, F.J.; Shih, C.W.; Chen, C.H. Parecoxib Enhances Resveratrol against Human Colorectal Cancer Cells through Akt and TXNDC5 Inhibition and MAPK Regulation. Nutrients 2024, 16, 3020. [Google Scholar] [CrossRef] [PubMed]
Binding Energy (kcal/mol) | |||
---|---|---|---|
Target protein (PDB ID) | ERK (4QTA) | ERK (6SLG) | |
Inhibitors | |||
SCH772984 | −12.16 | −9.17 | |
Ulixertinib (BVD-523) | −9.91 | −9.04 | |
Tizaterkib (AZD0364) | −10.75 | −9.72 | |
Temuterkib (LY3214996) | −9.83 | −8.99 | |
vorinostat | −7.71 | −6.44 |
Compounds | Interacting Residues | Binding Distances |
---|---|---|
SCH772984 | Asp106 | 1.85 Å |
Lys114 | 2.25 Å | |
Tizaterkib | Glu33 | 2.32 Å |
Vorinostat | Thr68 | 2.24 Å |
Lys54 | 1.85 Å | |
Tyr36 | 1.96 Å | |
Ser57 | 2.70 Å |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Yasir, M.; Choe, J.; Han, J.-H.; Han, E.-T.; Park, W.S.; Chun, W. Mechanistic Insights into Vorinostat as a Repositioned Modulator of TACE-Mediated TNF-α Signaling via MAPK and NFκB Pathways. Curr. Issues Mol. Biol. 2025, 47, 720. https://doi.org/10.3390/cimb47090720
Park J, Yasir M, Choe J, Han J-H, Han E-T, Park WS, Chun W. Mechanistic Insights into Vorinostat as a Repositioned Modulator of TACE-Mediated TNF-α Signaling via MAPK and NFκB Pathways. Current Issues in Molecular Biology. 2025; 47(9):720. https://doi.org/10.3390/cimb47090720
Chicago/Turabian StylePark, Jinyoung, Muhammad Yasir, Jongseon Choe, Jin-Hee Han, Eun-Taek Han, Won Sun Park, and Wanjoo Chun. 2025. "Mechanistic Insights into Vorinostat as a Repositioned Modulator of TACE-Mediated TNF-α Signaling via MAPK and NFκB Pathways" Current Issues in Molecular Biology 47, no. 9: 720. https://doi.org/10.3390/cimb47090720
APA StylePark, J., Yasir, M., Choe, J., Han, J.-H., Han, E.-T., Park, W. S., & Chun, W. (2025). Mechanistic Insights into Vorinostat as a Repositioned Modulator of TACE-Mediated TNF-α Signaling via MAPK and NFκB Pathways. Current Issues in Molecular Biology, 47(9), 720. https://doi.org/10.3390/cimb47090720