Neuroprotective Potential of Phytocompounds in the Treatment of Dementia: The State of Knowledge from the Scopolamine-Induced Animal Model of Alzheimer’s Disease
Abstract
1. Introduction
1.1. Dementia—Characteristics, Incidence
1.2. Alzheimer’s Disease as a Type of Dementia—Pathophysiology
1.3. Treatment Methods for AD
2. Materials and Methods
3. Scopolamine-Induced Animal Model of AD
4. Phytocompounds in AD Treatment: Findings from the SCO-Induced Model of AD
4.1. Polyphenols
4.2. Alkaloids
4.3. Terpenoids
Animals Sex | Size of the Studied Population | Substances | Dose and Treatment Schedule | Main Outcomes | References |
---|---|---|---|---|---|
C57BL/6J Male | Control mice = 15 Treated mice = 60 | Resveratrol | 150 and 600 mg/kg for 4 weeks orally (p.o.), SCO (1.5 mg/kg; single injection; intraperitoneally (i.p.) | (1) Improved cognitive function (2) Increase in AChE, ChAT, ACh, SOD, CAT, and GSH and decrease in IL-1β, IL-6, and TNF-α | [65] |
ICR mice Male | Control mice = 10 Treated mice = 40 | Apigenin | 10 and 20 mg/kg for 14 days (p.o.), SCO (1.5 mg/kg for 7 days; i.p.) | (1) Improved memory in the T-maze, NOR, and MWM tests (2) Lipid peroxidation in brains and reduced expression of apoptosis factors: Bax/Bcl-2, capase-3, and PARP | [66] |
Swiss albino mice Male | Control mice = 7 Treated mice = 42 | Quercetin | 12.5 and 25 mg/kg for 7 days (p.o.), SCO (3 mg/kg for 7 days; i.p.) | (1) Improved cognitive function (2) Elevated levels of TNF-α and IL-6 reduced by quercetin (3) Attenuation of cell degeneration and death in hippocampal subregions and prefrontal cortex | [67] |
Wistar rats Male | Control rats = 7 Treated rats = 49 | Quercetin | 25 mg/kg for 30 days (p.o.), SCO (1 mg/kg for 9 days; i.p.) | (1) Improved memory in the NOR and EPM test (2) Prevention of quercetin from cleaving APP to generate Aβ | [68] |
Sprague–Dawley rats Male | Control rats = 6 Treated rats = 18 | Epigallocatechin gallate | 5 mg/kg (i.p.) for 19 days, SCO (1 mg/kg for 9 days; i.p.) | (1) Decreased AChE activity and MDA level, increased SOD activity (2) Improved cognitive functions in Y-maze, PA, and MWM tests | [69] |
CF1 mice male | Control mice = 14 Treated mice = 335 | caffeine | 10 mg/kg for 4 days (i.p.), SCO (2 mg/kg; single injection; i.p.) | improved cognitive functions in NOR test | [76] |
Swiss albino mice Male | Control mice = 12 Treated mice = 108 | Nicotine, cotinine, and anatabine | Nicotine (0.125, 0.25, 0.5 mg/kg; i.p.), cotinine (0.25, 0.5, 1 mg/kg; i.p.), anatabine (0.25, 0.5, 1 mg/kg; i.p., SCO (0.5 mg/kg, single injection; s.c.) | Inhibition of the memory deficit in the Y-maze | [77] |
Wistar rats Male | Control rats = 8 Treated rats = 64 | Nicotine, cotinine, and anatabine | Nicotine (0.03, 0.1, 0.3 mg/kg; i.p.), cotinine (30, 100 mg/kg; i.p.), anatabine (0.3, 1, 3 mg/kg; i.p.), SCO (0.2 mg/kg, single injection; i.p.) | Nicotine reversed the memory deficits in the NOR test | [77] |
Wistar rats Male | Control rats = 11 Treated rats = 33 | Apocynin (APO), galantamine (GAL) | APO 16 mg/kg for 3 weeks (p.o.), GAL 1 mg/kg for 3 weeks (i.p.), SCO (2 mg/kg for 6 weeks; i.p.) | (1) Improved cognitive functions in PA test (2) Reduced Aβ1-42 level | [78] |
CD1 mice Male | Control mice = 10 Treated mice = 70 | Galantamine (GAL), memantine (MEM) | GAL (0.1 mg/kg; s.c.), MEM (0.5 mg/kg; i.p.), SCO (1 mg/kg; i.p.) | (1) Improvement of memory in NOR and T-maze tests (2) Reduced oxidative stress (3) Increased level of neurotransmitters | [79] |
Swiss mice Male | Control mice = 10 Treated mice = 60 | Total alkaloids (TA) and huperzine A (HupA) | TA 10 and 20 mg/kg, HupA 10 and 20 mg/kg for 22 days (p.o,), SCO (1 or 3 mg/kg, single injection, i.p.) | (1) Neuroprotective effect and decreased AChE activity and MDA levels, increased antioxidant enzyme activity in hippocampus and cerebral cortex for TA (2) Improved cognitive functions in Y-maze and MWM for TA | [80] |
C57BL/6J Male | Control mice = 6 Treated mice = 30 | Astaxanthin (AST), galantamine (GAL) | AST 100 mg/kg for 14 days (i.p.), GAL 3 mg/kg for 14 days (p.o.), SCO (2 mg/kg for 10 days; i.p.) | (1) Significantly reduced AChE activity (2) Significantly prevented the loss of neurons in the hippocampus (3) Significantly reduced the number of astrocytes (4) Reduced the level of biomarkers of oxidative stress (5) inhibited the development of pro-inflammatory mediators (TNF-α and IL-6) | [88] |
ICR mice Male | Control mice = 12 Treated mice = 48 | Ginsenoside Rh2 | 12.5 and 25 mg/kg for 25 days (i.p.) SCO (0.75 mg/kg, single injection; i.p.) | (1) Improved cognitive functions in NOR and MWM tests (2) Increased the phosphorylation of the extracellular signal-regulated kinase (ERK) (3) Suppressed oxidative stress in hippocampus | [89] |
ICR mice Male | Control mice = 10 Treated mice = 30 | Ginsenoside | 75 and 150 mg/kg for 14 days, SCO (3 mg/kg for 7 days) | (1) Alleviated memory impairment (by improving the cholinergic function of AChE and reducing oxidative stress) (2) Increased the expression of BDNF and TrkB | [90] |
ICR mice male | Cntrol mice = 10 Treated mice = 30 | ginsenoside Re | 10 and 20 mg/kg for 14 days (p.o.), SCO (3 mg/kg for 7 days; i.p.) | (1) Improved learning and memory in MWM test (2) Ginsenoside Re treatment alleviated neuronal damage (3) Increased the expression of antiapoptotic proteins Bcl-xL and Bcl-2 while decreasing the level of proapoptotic proteins Bax, Bad, cytochrome c, and Bak (4) Compound could activate the PI3K/AKT signaling pathway, further inhibiting oxidative stress and apoptosis | [91] |
Swiss mice Male | Control mice = 12 Treated mice = 84 | Cannabidiol | CBD 1mg/kg (i.p.), combination CBD (1 mg/kg; i.p.) + RG (0.5 mg/kg; i.p.), SCO (1 mg/kg, single injection; i.p.) | (1) Administration of CBD and RG alleviated cognitive impairment in PA test (2) The combined therapy gave even better effects | [92] |
ICR mice Male | Control mice = 9 Treated mice = 45 | N-Palmitoyl-5-hydroxytryptamine | 0.5 and 1 mg/kg for 3 days (p.o.), SCO (1 or 2 mg/kg, single injection; i.p.) | (1) Improved cognitive functions in PA and MWM tests (2) Inhibited the increase in AChE activity and the decrease in ChAT activity (3) Suppressed oxidative stress and restored p-CREB and BDNF expression in the hippocampus | [93] |
5. Limitations and Challenges of SCO-Induced Model in AD Research
6. Future Directions for the SCO-Induced Model in AD Research
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACh | acetylcholine | |
AChE | acetylcholinesterase | |
AD | Alzheimer’s disease | |
APO | apocynin | |
APP | amyloid precursor protein | |
AST | astaxanthin | |
BBB | Blood–brain barrier | |
BDNF | brain-derived neurotrophic factor | |
CAT | catalase | |
CBD | cannabidiol | |
CDK5 | cyclin-dependent kinase 5 | |
ChAT | choline acetyltransferase | |
CNS | central nervous system | |
CREB | cAMP response element binding protein | |
EGCG | epigallocatechin gallate | |
EPM | elevated plus maze | |
ERK | extracellular signal-regulated kinase | |
GABA | gamma-aminobutyric acid | |
GAL | galantamine | |
GSH | glutathione | |
GSK3β | glycogen synthase kinase 3β | |
HupA | huperzine A | |
IL-1β | interleukin-1β | |
IL-4 | interleukin-4 | |
IL-6 | interleukin-6 | |
i.p. | intraperitoneally | |
MAO | monoamine oxidase | |
MDA | malondialdehyde | |
MEM | memantine | |
MPO | myeloperoxidase | |
MWM | Morris water maze | |
ND | neurodegenerative disease | |
NGF | nerve growth factor | |
NO | nitric oxide | |
NOR | novel object recognition | |
PA | passive avoidance | |
PGE2 | prostaglandin E2 | |
p.o. | orally | |
ROS | reactive oxygen species | |
SCO | scopolamine | |
SOD | superoxide dismutase | |
TA | total alkaloids | |
TNF-α | tumor necrosis factor alpha | |
TrkB | tropomyosin receptor kinase B |
References
- Weller, J.; Budson, A. Current understanding of Alzheimer’s disease diagnosis and and treatment. F1000Research 2018, 7, 1161. [Google Scholar] [CrossRef]
- GBD 2019 Dementia Forecasting Collaborators, 2022. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study. Lancet Public Health 2022, 7, e105–e125. [Google Scholar] [CrossRef]
- Vijayakumar, A.; Vijayakumar, A. Comparison of hippocampal volume in dementia subtypes. ISRN Radiol. 2012, 2013, 174524. [Google Scholar] [CrossRef]
- Gale, S.A.; Acar, D.; Daffner, K.R. Dementia. Am. J. Med. 2018, 131, 1161–1169. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, M.; Alam, M.R.; Haider, M.K.; Malik, M.Z.; Kim, D.K. Alzheimer’s Disease: An Overview of Major Hypotheses and Therapeutic Options in Nanotechnology. Nanomaterials 2020, 11, 59. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.R.; Huang, J.B.; Yang, S.L.; Hong, F.F. Role of Cholinergic Signaling in Alzheimer’s Disease. Molecules 2022, 27, 1816. [Google Scholar] [CrossRef] [PubMed]
- Dominguez-Gortaire, J.; Ruiz, A.; Porto-Pazos, A.B.; Rodriguez-Yanez, S.; Cedron, F. Alzheimer’s Disease: Exploring Pathophysiological Hypotheses and the Role of Machine Learning in Drug Discovery. Int. J. Mol. Sci. 2025, 26, 1004. [Google Scholar] [CrossRef] [PubMed]
- Scheltens, P.; Blennow, K.; Breteler, M.M.B.; de Strooper, B.; Frisoni, G.B.; Salloway, S.; Van der Flier, W.M. Alzheimer’s Disease. Lancet 2016, 388, 505–517. [Google Scholar] [CrossRef]
- Fish, P.V.; Steadman, D.; Bayle, E.D.; Whiting, P. New Approaches for the Treatment of Alzheimer’s Disease. Bioorganic Med. Chem. Lett. 2019, 29, 125–133. [Google Scholar] [CrossRef]
- Cummings, J.; Ritter, A.; Zhong, K. Clinical Trials for Disease-Modifying Therapies in Alzheimer’s Disease: A Primer, Lessons Learned, and a Blueprint for the Future. J. Alzheimer’s Dis. 2018, 64, S3–S22. [Google Scholar] [CrossRef]
- Cummings, J.L.; Tong, G.; Ballard, C. Treatment Combinations for Alzheimer’s Disease: Current and Future Pharmacotherapy Options. J. Alzheimer’s Dis. 2019, 67, 779–794. [Google Scholar] [CrossRef]
- Geldmacher, D.S. Treatment of Alzheimer Disease. Continuum 2024, 30, 1823–1844. [Google Scholar] [CrossRef]
- Tiwari, S.; Atluri, V.; Kaushik, A.; Yndart, A.; Nair, M. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. Int. J. Nanomed. 2019, 14, 5541–5554. [Google Scholar] [CrossRef]
- Briggs, R.; Kennelly, S.P.; O’Neill, D. Drug treatments in Alzheimer’s disease. Clin. Med. 2016, 16, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Sanfeliu, C.; Bartra, C.; Suñol, C.; Rodríguez-Farré, E. New insights in animal models of neurotoxicity-induced neurodegeneration. Front. Neurosci. 2024, 17, 1248727. [Google Scholar] [CrossRef]
- Dhapola, R.; Kumari, S.; Sharma, P.; HariKrishnaReddy, D. Insight into the emerging and common experimental in-vivo models of Alzheimer’s disease. Lab. Anim. Res. 2023, 39, 33. [Google Scholar] [CrossRef]
- Poceviciute, I.; Brazaityte, A.; Buisas, R.; Vengeliene, V. Scopolamine animal model of memory impairment. Behav. Brain Res. 2025, 479, 115344. [Google Scholar] [CrossRef] [PubMed]
- Shoaib, S.; Ansari, M.A.; Fatease, A.A.; Safhi, A.Y.; Hani, U.; Jahan, R.; Alomary, M.N.; Ansari, M.N.; Ahmed, N.; Wahab, S.; et al. Plant-Derived Bioactive Compounds in the Management of Neurodegenerative Disorders: Challenges, Future Directions and Molecular Mechanisms Involved in Neuroprotection. Pharmaceutics 2023, 15, 749. [Google Scholar] [CrossRef]
- Ghosh, S.; Singha, P.S.; Ghosh, D. Neuroprotective compounds from three common medicinal plants of West Bengal, India: A mini review. Explor. Neurosci. 2023, 2, 307–317. [Google Scholar] [CrossRef]
- Akhtar, A.; Gupta, S.M.; Dwivedi, S.; Kumar, D.; Shaikh, M.F.; Negi, A. Preclinical Models for Alzheimer’s Disease: Past, Present, and Future Approaches. ACS Omega 2022, 7, 47504–47517. [Google Scholar] [CrossRef] [PubMed]
- Lochner, M.; Thompson, A.J. The muscarinic antagonists scopolamine and atropine are competitive antagonists at 5-HT3 receptors. Neuropharmacology 2016, 108, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Bajo, R.; Pusil, S.; López, M.E.; Canuet, L.; Pereda, E.; Osipova, D.; Maestú, F.; Pekkonen, E. Scopolamine effects on functional brain connectivity: A pharmacological model of Alzheimer’s disease. Sci. Rep. 2015, 5, 9748. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.N.; Yeong, K.Y. Scopolamine, a toxin-induced experimental model, used for research in Alzheimer’s disease. CNS Neurol. Disord. Drug Targets 2020, 19, 85–93. [Google Scholar] [CrossRef]
- Winger, G.; Jutkiewicz, E.M.; Woods, J.H. Comparison of the muscarinic antagonist effects of scopolamine and L-687,306. Behav. Pharmacol. 2020, 31, 359–367. [Google Scholar] [CrossRef]
- SiddaRama, R. A case report on atropine induced CNS side effects and tachycardia. Int. J. Allied Med. Sci. Clin. Res. 2020, 3, 79–81. [Google Scholar] [CrossRef]
- Safar, M.M.; Arab, H.H.; Rizk, S.M.; El-Maraghy, S.A. Bone marrow-derived endothelial progenitor cells protect against scopolamine-induced Alzheimer-like pathological aberrations. Mol. Neurobiol. 2016, 53, 1403–1418. [Google Scholar] [CrossRef]
- Mostafa, D.K.; Ismail, C.A.; Ghareeb, D.A. Differential metformin dose-dependent effects on cognition in rats: Role of Akt, Psychopharmacology 2016, 233, 2513–2524. [CrossRef]
- Llorens-Martin, M.; Jurado, J.; Hernandez, F.; Avila, J. GSK-3beta, a pivotal kinase in Alzheimer disease. Front. Mol. Neurosci. 2014, 7, 46. [Google Scholar] [CrossRef]
- Yu, R.; Yang, Y.; Cui, Z.; Zheng, L.; Zeng, Z.; Zhang, H. Novel peptide VIP-TAT with higher affinity for PAC1 inhibited scopolamine induced amnesia. Peptides 2014, 60, 41–50. [Google Scholar] [CrossRef]
- Chen, W.; Cheng, X.; Chen, J.; Yi, X.; Nie, D.; Sun, X.; Qin, J.; Tian, M.; Jin, G.; Zhang, X. Lyciumbarbarum polysaccharides prevent memory and neurogenesis impairments in scopolamine-treated rats. PLoS ONE 2014, 9, e88076. [Google Scholar] [CrossRef]
- Xu, Q.Q.; Xu, Y.J.; Yang, C.; Tang, Y.; Li, L.; Cai, H.B.; Hou, B.N.; Chen, H.F.; Wang, Q.; Shi, X.G.; et al. Sodium Tanshinone IIA Sulfonate Attenuates Scopolamine-Induced Cognitive Dysfunctions via Improving Cholinergic System. BioMed Res. Int. 2016, 2016, 9852536. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Zheng, L.; Cui, Y.; Zhang, H.; Ye, H. Doxycycline exerted neuroprotective activity by enhancing the activation of neuropeptide GPCR PAC1. Neuropharmacology 2016, 103, 1–15. [Google Scholar] [CrossRef]
- Maurer, S.V.; Williams, C.L. The Cholinergic System Modulates Memory and Hippocampal Plasticity via Its Interactions with Non-Neuronal Cells. Front. Immunol. 2017, 8, 1489. [Google Scholar] [CrossRef] [PubMed]
- Puangmalai, N.; Thangnipon, W.; Soi-Ampornkul, R.; Suwanna, N.; Tuchinda, P.; Nobsathian, S. Neuroprotection of N-benzylcinnamide on scopolamine-induced cholinergic dysfunction in human SH-SY5Y neuroblastoma cells. Neural Regen. Res. 2017, 12, 1492–1498. [Google Scholar] [CrossRef] [PubMed]
- Eun, C.S.; Lim, J.S.; Lee, J.; Lee, S.P.; Yang, S.A. The protective effect of fermented Curcuma longa L. on memory dysfunction in oxidative stress-induced C6 gliomal cells, proinflammatory-activated BV2 microglial cells, and scopolamine-induced amnesia model in mice. BMC Complement. Altern. Med. 2017, 17, 367. [Google Scholar] [CrossRef]
- Giridharan, V.V.; Thandavarayan, R.A.; Sato, S.; Ko, K.M.; Konishi, T. Prevention of scopolamine-induced memory deficits by schisandrin B, an antioxidant lignan from Schisandra chinensis in mice. Free. Radic. Res. 2011, 45, 950–958. [Google Scholar] [CrossRef]
- Hou, X.Q.; Wu, D.W.; Zhang, C.X.; Yan, R.; Yang, C.; Rong, C.P.; Zhang, L.; Chang, X.; Su, R.Y.; Zhang, S.J.; et al. Bushen Yizhi formula ameliorates cognition deficits and attenuates oxidative stress related neuronal apoptosis in scopolamine induced senescence in mice. Int. J. Mol. Med. 2014, 34, 429–439. [Google Scholar] [CrossRef]
- Fan, Y.; Hu, J.; Li, J.; Yang, Z.; Xin, X.; Wang, J.; Ding, J.; Geng, M. Effect of acidic oligosaccharide sugar chain on scopolamine-induced memory impairment in rats and its related mechanisms. Neurosci Lett. 2005, 374, 222–226. [Google Scholar] [CrossRef]
- Qu, Z.; Zhang, J.; Yang, H.; Gao, J.; Chen, H.; Liu, C.; Gao, W. Prunella vulgaris L., an Edible and Medicinal Plant, Attenuates Scopolamine-Induced Memory Impairment in Rats. J. Agric. Food Chem. 2017, 65, 291–300. [Google Scholar] [CrossRef]
- Kuhn, H.G.; Biebl, M.; Wilhelm, D.; Li, M.; Friedlander, R.M.; Winkler, J. Increased generation of granule cells in adult Bcl-2-overexpressing mice: A role for cell death during continued hippocampal neurogenesis. Eur. J. Neurosci. 2005, 22, 1907–1915. [Google Scholar] [CrossRef]
- Jahanshahi, M.; Nickmahzar, E.G.; Babakordi, F. Effect of Gingko biloba extract on scopolamine-induced apoptosis in the hippocampus of rats. Anat. Sci. Int. 2013, 88, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Demirci, K.; Naziroglu, M.; Ovey, I.S.; Balaban, H. Selenium attenuates apoptosis, inflammation and oxidative stress in the blood and brain of aged rats with scopolamine-induced dementia. Metab. Brain Dis. 2017, 32, 321–329. [Google Scholar] [CrossRef]
- Cho, N.; Lee, K.Y.; Huh, J.; Choi, J.H.; Yang, H.; Jeong, E.J.; Kim, H.P.; Sung, S.H. Cognitive-enhancing effects of Rhus verniciflua bark extract and its active flavonoids with neuroprotective and anti-inflammatory activities. Food Chem. Toxicol. 2013, 58, 355–361. [Google Scholar] [CrossRef]
- Leal, G.; Bramham, C.R.; Duarte, C.B. BDNF and Hippocampal Synaptic Plasticity. Vitam. Horm. 2017, 104, 153–195. [Google Scholar] [CrossRef]
- Klinkenberg, I.; Blokland, A. The validity of scopolamine as a pharmacological model for cognitive impairment: A review of animal behavioral studies. Neurosci. Biobehav. Rev. 2010, 34, 1307–1350. [Google Scholar] [CrossRef] [PubMed]
- de Lima, E.P.; Laurindo, L.F.; Catharin, V.C.S.; Direito, R.; Tanaka, M.; Jasmin Santos German, I.; Lamas, C.B.; Guiguer, E.L.; Araújo, A.C.; Fiorini, A.M.R.; et al. Polyphenols, Alkaloids, and Terpenoids Against Neurodegeneration: Evaluating the Neuroprotective Effects of Phytocompounds Through a Comprehensive Review of the Current Evidence. Metabolites 2025, 15, 124. [Google Scholar] [CrossRef] [PubMed]
- Colizzi, C. The protective effects of polyphenols on Alzheimer’s disease: A systematic review. Alzheimers Dement 2018, 5, 184–196. [Google Scholar] [CrossRef]
- Kwiatkowska, E.; Bawa, S. The role of compounds regarded as antinutrients in prevention of non-communicable diseases. Med. Rodz. 2007, 43, 36–40. [Google Scholar]
- Del Rio, D.; Costa, L.G.; Lean, M.E.; Crozier, A. Polyphenols and health: What compounds are involved? Nutr. Metab. Cardiovasc. Dis. 2010, 20, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.Y.; Kritchevsky, J.; Hargett, K.; Feller, K.; Klobusnik, R.; Song, B.J.; Cooper, B.; Jouni, Z.; Ferruzzi, M.G.; Janle, E.M. Plasma bioavailability and regional brain distribution of polyphenols from apple/grape seed and bilberry extracts in a young swine model. Mol. Nutr. Food Res. 2015, 59, 2432–2447. [Google Scholar] [CrossRef] [PubMed]
- Karuppagounder, S.S.; Madathil, S.K.; Pandey, M.; Haobam, R.; Rajamma, U.; Mohanakumar, K.P. Quercetin up-regulates mitochondrial complex-I activity to protect against programmed cell death in rotenone model of Parkinson’s disease in rats. Neuroscience 2013, 236, 136–148. [Google Scholar] [CrossRef]
- Sabogal-Guáqueta, A.M.; Muñoz-Manco, J.I.; Ramírez-Pineda, J.R.; Lamprea-Rodriguez, M.; Osorio, E.; Cardona-Gómez, G.P. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology 2015, 93, 134–145. [Google Scholar] [CrossRef]
- Grabska-Kobyłecka, I.; Szpakowski, P.; Król, A.; Książek-Winiarek, D.; Kobyłecki, A.; Głąbiński, A.; Nowak, D. Polyphenols and Their Impact on the Prevention of Neurodegenerative Diseases and Development. Nutrients 2023, 15, 3454. [Google Scholar] [CrossRef]
- Socała, K.; Żmudzka, E.; Lustyk, K.; Zagaja, M.; Brighenti, V.; Costa, A.M.; Andres-Mach, M.; Pytka, K.; Martinelli, I.; Mandrioli, J.; et al. Therapeutic potential of stilbenes in neuropsychiatric and neurological disorders: A comprehensive review of preclinical and clinical evidence. Phytother. Res. 2024, 38, 1400–1461. [Google Scholar] [CrossRef] [PubMed]
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights Into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Front. Pharmacol. 2022, 3, 806470. [Google Scholar] [CrossRef]
- Zeng, P.; Fang, M.; Zhao, H.; Guo, J. A network pharmacology approach to uncover the key ingredients in Ginkgo Folium and their anti-Alzheimer’s disease mechanisms. Aging 2021, 13, 18993–19012. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, Y.; Li, J.; Fu, C.; Zhang, X. The Neuroprotective Effect of Tea Polyphenols on the Regulation of Intestinal Flora. Molecules 2021, 26, 3692. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, W.; Zhang, L.; Wang, M.; Chang, W. The Interaction of Polyphenols and the Gut Microbiota in Neurodegenerative Diseases. Nutrients 2022, 14, 5373. [Google Scholar] [CrossRef]
- Bathina, S.; Das, U.N. Brain-derived neurotrophic factor and its clinical implications. Arch. Med. Sci. 2015, 11, 1164–1178. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Xue, R.; Hu, R. The neuroprotective effect and action mechanism of polyphenols in diabetes mellitus-related cognitive dysfunction. Eur. J. Nutr. 2020, 59, 1295–1311. [Google Scholar] [CrossRef]
- Rojas-García, A.; Fernández-Ochoa, Á.; Cádiz-Gurrea, M.L.; Arráez-Román, D.; Segura-Carretero, A. Neuroprotective Effects of Agri-Food By-Products Rich in Phenolic Compounds. Nutrients 2023, 15, 449. [Google Scholar] [CrossRef]
- Caruso, G.; Godos, J.; Privitera, A.; Lanza, G.; Castellano, S.; Chillemi, A.; Bruni, O.; Ferri, R.; Caraci, F.; Grosso, G. Phenolic Acids and Prevention of Cognitive Decline: Polyphenols with a Neuroprotective Role in Cognitive Disorders and Alzheimer’s Disease. Nutrients 2022, 14, 819. [Google Scholar] [CrossRef]
- Rendeiro, C.; Rhodes, J.S.; Spencer, J.P. The mechanisms of action of flavonoids in the brain: Direct versus indirect effects. Neurochem. Int. 2015, 89, 126–139. [Google Scholar] [CrossRef] [PubMed]
- Di Meo, F.; Valentino, A.; Petillo, O.; Peluso, G.; Filosa, S.; Crispi, S. Bioactive Polyphenols and Neuromodulation: Molecular Mechanisms in Neurodegeneration. Int. J. Mol. Sci. 2020, 21, 2564. [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.; Yi, F.; Liu, Q.; Chen, N.; He, X.; He, C.; Xiao, P. Resveratrol oligomers from Paeonia suffruticosa protect mice against cognitive dysfunction by regulating cholinergic, antioxidant and anti-inflammatory pathways. J. Ethnopharmacol. 2020, 260, 112983. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kim, J.; He, M.; Lee, A.; Cho, E. Apigenin Ameliorates Scopolamine-Induced Cognitive Dysfunction and Neuronal Damage in Mice. Molecules 2021, 26, 5192. [Google Scholar] [CrossRef]
- Olayinka, J.; Eduviere, A.; Adeoluwa, O.; Fafure, A.; Adebanjo, A.; Ozolua, R. Quercetin mitigates memory deficits in scopolamine mice model via protection against neuroinflammation and neurodegeneration. Life Sci. 2022, 292, 120326. [Google Scholar] [CrossRef]
- Safarzadeh, E.; Ataei, S.; Akbari, M.; Abolhasani, R.; Baziar, M.; Asghariazar, V.; Dadkhah, M. Quercetin ameliorates cognitive deficit, expression of amyloid precursor gene, and pro-inflammatory cytokines in an experimental models of Alzheimer’s disease in Wistar rats. Exp. Gerontol. 2024, 193, 112466. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Hwang, E.S.; Kim, K.J.; Maeng, S.; Heo, H.J.; Park, J.H.; Kim, D.O. Anti-Amnesic Effects of Epigallocatechin Gallate on Scopolamine-Induced Learning and Memory Dysfunction in Sprague-Dawley Rats. Antioxidants 2021, 11, 1. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Grijalva, E.P.; López-Martínez, L.X.; Contreras-Angulo, L.A.; Elizalde-Romero, C.A.; Heredia, J.B. Plant Alkaloids: Structures and Bioactive Properties. In Plant-Derived Bioactives; Swamy, M., Ed.; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Matławska, I. Farmakognozja; Wydawnictwo UM: Poznań, Poland, 2008. [Google Scholar]
- Zhao, W.; Ma, L.; Cai, C.; Gong, X. Caffeine Inhibits NLRP3 Inflammasome Activation by Suppressing MAPK/NF-κB and A2aR Signaling in LPS-Induced THP-1 Macrophages. Int. J. Biol. Sci. 2019, 15, 1571–1581. [Google Scholar] [CrossRef]
- Yu, H.; Liu, Y.; Wang, M.; Restrepo, R.J.; Wang, D.; Kalogeris, T.J.; Neumann, W.L.; Ford, D.A.; Korthuis, R.J. Myeloperoxidase instigates proinflammatory responses in a cecal ligation and puncture rat model of sepsis. Am. J. Physiol. Heart Circ. Physiol. 2020, 319, H705–H721. [Google Scholar] [CrossRef]
- Nguyen, V.; Taine, E.G.; Meng, D.; Cui, T.; Tan, W. Pharmacological Activities, Therapeutic Effects, and Mechanistic Actions of Trigonelline. Int. J. Mol. Sci. 2024, 25, 3385. [Google Scholar] [CrossRef]
- Chowdhury, A.A.; Gawali, N.B.; Munshi, R.; Juvekar, A.R. Trigonelline insulates against oxidative stress, proinflammatory cytokines and restores BDNF levels in lipopolysaccharide induced cognitive impairment in adult mice. Metab. Brain Dis. 2018, 33, 681–691. [Google Scholar] [CrossRef]
- Botton, P.H.; Costa, M.S.; Ardais, A.P.; Mioranzza, S.; Souza, D.O.; da Rocha, J.B.; Porciúncula, L.O. Caffeine prevents disruption of memory consolidation in the inhibitory avoidance and novel object recognition tasks by scopolamine in adult mice. Behav. Brain Res. 2010, 214, 254–259. [Google Scholar] [CrossRef]
- Callahan, P.M.; Terry, A.V.; Peitsch, M.C.; Hoeng, J.; Koshibu, K. Differential effects of alkaloids on memory in rodents. Sci. Rep. 2021, 11, 9843. [Google Scholar] [CrossRef] [PubMed]
- Joseph, E.; Villalobos-Acosta, D.M.Á.; Torres-Ramos, M.A.; Farfán-García, E.D.; Gómez-López, M.; Miliar-García, Á.; Fragoso-Vázquez, M.J.; García-Marín, I.D.; Correa-Basurto, J.; Rosales-Hernández, M.C. Neuroprotective Effects of Apocynin and Galantamine During the Chronic Administration of Scopolamine in an Alzheimer’s Disease Model. J. Mol. Neurosci. 2020, 70, 180–193. [Google Scholar] [CrossRef] [PubMed]
- Busquet, P.; Capurro, V.; Cavalli, A.; Piomelli, D.; Reggiani, A.; Bertorelli, R. Synergistic effects of galantamine and memantine in attenuating scopolamine-induced amnesia in mice. J. Pharmacol. Sci. 2012, 120, 305–309. [Google Scholar] [CrossRef]
- Dang, T.K.; Hong, S.M.; Dao, V.T.; Nguyen, D.T.; Nguyen, K.V.; Nguyen, H.T.; Ullah, S.; Tran, H.T.; Kim, S.Y. Neuroprotective effects of total alkaloids fraction of Huperzia serrata on scopolamine-induced neurodegenerative animals. Phytother. Res. 2023, 37, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Jahangeer, M.; Fatima, R.; Ashiq, M.; Basharat, A.; Qamar, S.A.; Bilal, M.; Iqbal, H. Therapeutic and Biomedical Potentialities of Terpenoids—A Review. J. Pure Appl. Microbiol. 2021, 15, 471–483. [Google Scholar] [CrossRef]
- Adedokun, K.A.; Imodoye, S.O.; Bello, I.O.; Lanihun, A.A.; Bello, I.O. Chapter 18—Therapeutic potentials of medicinal plants and significance of computational tools in anti-cancer drug discovery. In Phytochemistry, Computational Tools and Databases in Drug Discovery; Elsevier: Amsterdam, The Netherlands, 2023; pp. 393–455. ISBN 9780323905930. [Google Scholar] [CrossRef]
- Mony, T.J.; Elahi, F.; Choi, J.W.; Park, S.J. Neuropharmacological Effects of Terpenoids on Preclinical Animal Models of Psychiatric Disorders: A Review. Antioxidants 2022, 11, 1834. [Google Scholar] [CrossRef]
- Kessler, A.; Sahin-Nadeem, H.; Lummis, S.C.; Weigel, I.; Pischetsrieder, M.; Buettner, A.; Villmann, C. GABAA receptor modulation by terpenoids from Sideritis extracts. Mol. Nutr. Food Res. 2014, 58, 851–862. [Google Scholar] [CrossRef]
- Seeman, P. Cannabidiol is a partial agonist at dopamine D2High receptors, predicting its antipsychotic clinical dose. Transl. Psychiatry 2016, 6, e920. [Google Scholar] [CrossRef]
- Song, Y.; Seo, S.; Lamichhane, S.; Seo, J.; Hong, J.T.; Cha, H.J.; Yun, J. Limonene has anti-anxiety activity via adenosine A2A receptor-mediated regulation of dopaminergic and GABAergic neuronal function in the striatum. Phytomedicine 2021, 83, 153474. [Google Scholar] [CrossRef]
- Kim, T.; Song, B.; Cho, K.S.; Lee, I.S. Therapeutic Potential of Volatile Terpenes and Terpenoids from Forests for Inflammatory Diseases. Int. J. Mol. Sci. 2020, 21, 2187. [Google Scholar] [CrossRef]
- Magadmi, R.; Nassibi, S.; Kamel, F.; Al-Rafiah, A.R.; Bakhshwin, D.; Jamal, M.; Alsieni, M.; Burzangi, A.S.; Zaher, M.A.F.; Bendary, M. The protective effect of Astaxanthin on scopolamine—Induced Alzheimer’s model in mice. Neurosciences 2024, 29, 103–112. [Google Scholar] [CrossRef]
- Lv, J.; Lu, C.; Jiang, N.; Wang, H.; Huang, H.; Chen, Y.; Li, Y.; Liu, X. Protective effect of ginsenoside Rh2 on scopolamine-induced memory deficits through regulation of cholinergic transmission, oxidative stress and the ERK-CREB-BDNF signaling pathway. Phytother. Res. 2021, 35, 337–345. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.J.; Hou, J.G.; Li, X.; Liu, W.; Zhang, J.T.; Zheng, S.W.; Su, F.Y.; Li, W. Protective Effect of Ginsenosides from Stems and Leaves of Panax ginseng against Scopolamine-Induced Memory Damage via Multiple Molecular Mechanisms. Am. J. Chin. Med. 2022, 50, 1113–1131. [Google Scholar] [CrossRef]
- Li, X.; Zheng, K.; Chen, H.; Li, W. Ginsenoside Re Regulates Oxidative Stress through the PI3K/Akt/Nrf2 Signaling Pathway in Mice with Scopolamine-Induced Memory Impairments. Curr. Issues Mol. Biol. 2024, 46, 11359–11374. [Google Scholar] [CrossRef]
- Kruk-Słomka, M.; Slomka, T.; Biala, G. The Influence of an Acute Administration of Cannabidiol or Rivastigmine, Alone and in Combination, on Scopolamine-Provoked Memory Impairment in the Passive Avoidance Test in Mice. Pharmaceuticals 2024, 17, 809. [Google Scholar] [CrossRef] [PubMed]
- Min, A.Y.; Doo, C.N.; Son, E.J.; Sung, N.Y.; Lee, K.J.; Sok, D.E.; Kim, M.R. N-palmitoyl serotonin alleviates scopolamine-induced memory impairment via regulation of cholinergic and antioxidant systems, and expression of BDNF and p-CREB in mice. Chem. Biol. Interact. 2015, 242, 153–162. [Google Scholar] [CrossRef] [PubMed]
- More, S.V.; Kumar, H.; Cho, D.Y.; Yun, Y.S.; Choi, D.K. Toxin-Induced Experimental Models of Learning and Memory Impairment. Int J Mol Sci. 2016, 17, 1447. [Google Scholar] [CrossRef] [PubMed]
- Sahraeian, S.; Rashidinejad, A.; Golmakani, M.T. Recent advances in the conjugation approaches for enhancing the bioavailability of polyphenols. Food Hydrocoll. 2024, 146, 109221. [Google Scholar] [CrossRef]
- Quesada-Vázquez, S.; Eseberri, I.; Les, F.; Pérez-Matute, P.; Herranz-López, M.; Atgié, C.; Lopez-Yus, M.; Aranaz, P.; Oteo, J.A.; Escoté, X.; et al. Polyphenols and metabolism: From present knowledge to future challenges. J. Physiol. Biochem. 2024, 80, 603–625. [Google Scholar] [CrossRef] [PubMed]
Advantages | Disadvantages |
---|---|
Quick and easy to use | Does not reflect neurodegeneration |
Reversible effect | Short-term effect |
Well-controlled dose | Low pharmacological specificity |
Well-established in the literature | No progression of disorders |
Useful in behavioral tests | Possibility of side effects |
Partial similarity to AD | High variability of individual response |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szala-Rycaj, J.; Zagaja, M.; Szewczyk, A.; Polak, J.; Andres-Mach, M. Neuroprotective Potential of Phytocompounds in the Treatment of Dementia: The State of Knowledge from the Scopolamine-Induced Animal Model of Alzheimer’s Disease. Curr. Issues Mol. Biol. 2025, 47, 635. https://doi.org/10.3390/cimb47080635
Szala-Rycaj J, Zagaja M, Szewczyk A, Polak J, Andres-Mach M. Neuroprotective Potential of Phytocompounds in the Treatment of Dementia: The State of Knowledge from the Scopolamine-Induced Animal Model of Alzheimer’s Disease. Current Issues in Molecular Biology. 2025; 47(8):635. https://doi.org/10.3390/cimb47080635
Chicago/Turabian StyleSzala-Rycaj, Joanna, Mirosław Zagaja, Aleksandra Szewczyk, Jolanta Polak, and Marta Andres-Mach. 2025. "Neuroprotective Potential of Phytocompounds in the Treatment of Dementia: The State of Knowledge from the Scopolamine-Induced Animal Model of Alzheimer’s Disease" Current Issues in Molecular Biology 47, no. 8: 635. https://doi.org/10.3390/cimb47080635
APA StyleSzala-Rycaj, J., Zagaja, M., Szewczyk, A., Polak, J., & Andres-Mach, M. (2025). Neuroprotective Potential of Phytocompounds in the Treatment of Dementia: The State of Knowledge from the Scopolamine-Induced Animal Model of Alzheimer’s Disease. Current Issues in Molecular Biology, 47(8), 635. https://doi.org/10.3390/cimb47080635