FCGR2A-131R Is Associated with Lupus Nephritis Rather than Non-Lupus Nephritis SLE in an Indigenous African Caribbean Population
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Study Subjects
2.3. Genotyping of FCGR2A, FCGR2B and FCGR3A
2.4. NA1 and NA2 Allotyping of FCGR3B
2.5. Haplotype Tagging and Fragment Analysis of CD72
2.6. Statistical Analysis
3. Results
3.1. Patients and Controls
3.2. FCGR3A-158F and FCGR3B-NA2 Are Associated with Systemic Lupus Erythematosus in African Caribbeans
3.3. FCGR2AH-131R Is Associated with Lupus Nephritis
3.4. Linkage Disequilibrium at the FCGR Locus and Association with High-Risk Haplotypes
3.5. CD72-Hap2 Is Not Significantly Enhanced in FCGR2B-232T Controls
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Control (n = 120) | SLE (n = 126) | LN (n = 58) | LWN (n = 48) | ||
---|---|---|---|---|---|
Genotype Frequency n (%) | |||||
FCGR2A-131 | RR | 35 (29) | 44 (35) | 29 (50) | 11 (23) |
HR | 60 (50) | 52 (41) | 20 (34) | 25 (52) | |
HH | 25 (21) | 30 (24) | 9 (16) | 12 (25) | |
FCGR2B-232 | II | 74 (62) | 70 (56) | 31 (53) | 27 (56) |
IT | 24 (20) | 35 (28) | 17 (29) | 13 (27) | |
TT | 22 (18) | 21 (17) | 10 (17) | 8 (17) | |
FCGR3A-158 | FF | 38 (32) | 57 (45) | 21 (36) | 27 (56) |
FV | 35 (29) | 29 (23) | 14 (24) | 10 (21) | |
VV | 47 (39) | 40 (32) | 23 (40) | 11 (23) | |
FCGR3B- | NA1/NA1 | 17 (14) | 40 (32) | 21 (36) | 12 (25) |
NA1/NA2 | 87 (73) | 81 (64) | 36 (62) | 33 (69) | |
NA2/NA2 | 14 (12) | 3 (2) | 1 (2) | 1 (2) | |
Null | 2 (2) | 2 (2) | 0 (0) | 2 (4) | |
Allele Frequency n (%) | |||||
FCGR2A-131 | R | 130 (54) | 140 (56) | 78 (67) | 47 (49) |
H | 110 (46) | 112 (44) | 38 (33) | 49 (51) | |
FCGR2B-232 | I | 172 (72) | 175 (69) | 79 (68) | 67 (70) |
T | 68 (28) | 77 (31) | 37 (32) | 29 (30) | |
FCGR3A-158 | F | 111 (46) | 143 (57) | 56 (48) | 64 (67) |
V | 129 (54) | 109 (43) | 60 (52) | 32 (33) | |
FCGR3B- | NA1 | 121 (50) | 161 (64) | 78 (67) | 57 (59) |
NA2 | 115 (48) | 87 (35) | 38 (33) | 35 (36) | |
Null | 4 (2) | 4 (2) | 0 (0) | 4 (4) | |
Allele Carrier Frequency n (%) | |||||
FCGR2A-131 | R | 95 (53) | 96 (54) | 49 (63) | 36 (49) |
H | 85 (47) | 82 (46) | 29 (37) | 37 (51) | |
FCGR2B-232 | I | 98 (68) | 105 (65) | 48 (64) | 40 (66) |
T | 46 (32) | 56 (35) | 27 (36) | 21 (34) | |
FCGR3A-158 | F | 73 (47) | 86 (55) | 35 (49) | 37 (64) |
V | 82 (53) | 69 (45) | 37 (51) | 21 (36) | |
FCGR3B- | NA1 | 104 (50) | 121 (58) | 57 (31) | 45 (56) |
NA2 | 101 (49) | 84 (41) | 37 (39) | 34 (42) | |
Null | 2 (1) | 2 (1) | 0 (0) | 2 (2) |
Control (n = 120) | SLE (n = 126) | LN (n = 58) | LWN (n = 48) | |
---|---|---|---|---|
FCGR2A-3A Haplotypes n (%) | ||||
H-F | 44 (19) | 51 (24) | 13 (13) | 27 (32) |
H-V | 63 (28) | 49 (23) | 24 (24) | 16 (19) |
R-F | 60 (26) | 69 (32) | 31 (32) | 28 (33) |
R-V | 61 (27) | 48 (22) | 30 (31) | 14 (16) |
p-value | 0.2 | 0.05 | 0.019 | |
p1-value | 0.008 | |||
FCGR2A-3B Haplotypes n (%) | ||||
H-NA1 | 75 (24) | 79 (27) | 28 (22) | 36 (30) |
H-NA2 | 69 (22) | 57 (20) | 19 (15) | 27 (23) |
R-NA1 | 80 (26) | 94 (32) | 49 (39) | 34 (28) |
R-NA2 | 83 (27) | 60 (21) | 31 (24) | 23 (19) |
p-value | 0.13 | 0.05 | 0.34 | |
p1-value | 0.10 | |||
FCGR3A-3B Haplotypes n (%) | ||||
F-NA1 | 62 (24) | 81 (32) | 35 (30) | 33 (35) |
F-NA2 | 60 (24) | 52 (21) | 20 (17) | 23 (25) |
R-NA1 | 73 (29) | 67 (27) | 36 (31) | 20 (22) |
R-NA2 | 60 (24) | 50 (20) | 26 (22) | 17 (18) |
p-value | 0.23 | 0.44 | 0.15 | |
p1-value | 0.25 |
Controls (n = 120) | SLE (n = 126) | LN (n = 58) | LWN (n = 48) | |
---|---|---|---|---|
Genotype Frequency n (%) | ||||
Hap1/Hap1 | 22 (18.3) | 11 (9.2) | 6 (10.7) | 3 (6.5) |
Hap1/Hap2 | 51 (42.5) | 67 (52.6) | 30 (53.6) | 24 (52.2) |
Hap2/Hap2 | 47 (39.2) | 48 (38.2) | 20 (35.7) | 19 (41.3) |
p-Value | 0.057 | 0.282 | 0.149 | |
p1-Value | 0.69 | |||
Allele Frequency n (%) | ||||
Hap1 | 95 (39.6) | 89 (35.5) | 42 (37.5) | 30 (32.6) |
Hap2 | 145 (60.4) | 163 (64.5) | 70 (62.5) | 62 (67.4) |
p-Value | 0.32 | 0.7 | 0.2 | |
p1-value | 0.46 | |||
Allele Carrier Frequency n (%) | ||||
Hap 1 | 73 (60.8) | 78 (61.8) | 36 (64.3) | 27 (58.7) |
Hap 2 | 98 (81.6) | 115 (91) | 50 (89.3) | 43 (93.4) |
p-value | 0.6 | 0.89 | 0.55 | |
p1-value | 0.67 |
References
- Siegel, C.H.; Sammaritano, L.R. Systemic Lupus Erythematosus: A Review. JAMA 2024, 331, 1480–1491. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, D.; Yao, X.; Huang, Y.; Lu, Q. Global Epidemiology of Systemic Lupus Erythematosus: A Comprehensive Systematic Analysis and Modelling Study. Ann. Rheum. Dis. 2023, 82, 351–356. [Google Scholar] [CrossRef]
- Petri, M. Epidemiology of Systemic Lupus Erythematosus. Best. Pract. Res. Clin. Rheumatol. 2002, 16, 847–858. [Google Scholar] [CrossRef]
- Lau, C.S.; Yin, G.; Mok, M.Y. Ethnic and Geographical Differences in Systemic Lupus Erythematosus: An Overview. Lupus 2006, 15, 715–719. [Google Scholar] [CrossRef] [PubMed]
- Symmons, D.P. Frequency of Lupus in People of African Origin. Lupus 1995, 4, 176–178. [Google Scholar] [CrossRef]
- Pons-Estel, G.J.; Alarcón, G.S.; Scofield, L.; Reinlib, L.; Cooper, G.S. Understanding the Epidemiology and Progression of Systemic Lupus Erythematosus. Semin. Arthritis Rheum. 2010, 39, 257–268. [Google Scholar] [CrossRef]
- Fossati, G.; Bucknall, R.C.; Edwards, S.W. Fcγ Receptors in Autoimmune Diseases. Eur. J. Clin. Investig. 2001, 31, 821–831. [Google Scholar] [CrossRef]
- Kimberly, R.P.; Salmon, J.E.; Edberg, J.C. Receptors for Immunoglobulin G. Molecular Diversity and Implications for Disease. Arthritis Rheum. 1995, 38, 306–314. [Google Scholar] [CrossRef]
- Hargreaves, C.E.; Rose-Zerilli, M.J.J.; Machado, L.R.; Iriyama, C.; Hollox, E.J.; Cragg, M.S.; Strefford, J.C. Fcγ Receptors: Genetic Variation, Function, and Disease. Immunol. Rev. 2015, 268, 6–24. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.R.; Clarkson, S.B.; Ory, P.A.; Stollman, N.; Goldstein, I.M. Molecular Basis for a Polymorphism Involving Fc Receptor II on Human Monocytes. J. Immunol. 1989, 143, 1731–1734. [Google Scholar] [CrossRef] [PubMed]
- Bruhns, P.; Iannascoli, B.; England, P.; Mancardi, D.A.; Fernandez, N.; Jorieux, S.; Daëron, M. Specificity and Affinity of Human Fcgamma Receptors and Their Polymorphic Variants for Human IgG Subclasses. Blood 2009, 113, 3716–3725. [Google Scholar] [CrossRef] [PubMed]
- Warmerdam, P.A.; van de Winkel, J.G.; Vlug, A.; Westerdaal, N.A.; Capel, P.J. A Single Amino Acid in the Second Ig-like Domain of the Human Fc Gamma Receptor II Is Critical for Human IgG2 Binding. J. Immunol. 1991, 147, 1338–1343. [Google Scholar] [CrossRef] [PubMed]
- Salmon, J.E.; Edberg, J.C.; Brogle, N.L.; Kimberly, R.P. Allelic Polymorphisms of Human Fc Gamma Receptor IIA and Fc Gamma Receptor IIIB. Independent Mechanisms for Differences in Human Phagocyte Function. J. Clin. Investig. 1992, 89, 1274–1281. [Google Scholar] [CrossRef]
- Floto, R.A.; Clatworthy, M.R.; Heilbronn, K.R.; Rosner, D.R.; MacAry, P.A.; Rankin, A.; Lehner, P.J.; Ouwehand, W.H.; Allen, J.M.; Watkins, N.A.; et al. Loss of Function of a Lupus-Associated FcgammaRIIb Polymorphism through Exclusion from Lipid Rafts. Nat. Med. 2005, 11, 1056–1058. [Google Scholar] [CrossRef]
- Kono, H.; Kyogoku, C.; Suzuki, T.; Tsuchiya, N.; Honda, H.; Yamamoto, K.; Tokunaga, K.; Honda, Z.-I. FcgammaRIIB Ile232Thr Transmembrane Polymorphism Associated with Human Systemic Lupus Erythematosus Decreases Affinity to Lipid Rafts and Attenuates Inhibitory Effects on B Cell Receptor Signaling. Hum. Mol. Genet. 2005, 14, 2881–2892. [Google Scholar] [CrossRef] [PubMed]
- Koene, H.R.; Kleijer, M.; Algra, J.; Roos, D.; von dem Borne, A.E.; de Haas, M. Fc gammaRIIIa-158V/F Polymorphism Influences the Binding of IgG by Natural Killer Cell Fc gammaRIIIa, Independently of the Fc gammaRIIIa-48L/R/H Phenotype. Blood 1997, 90, 1109–1114. [Google Scholar] [CrossRef] [PubMed]
- Salmon, J.E.; Edberg, J.C.; Kimberly, R.P. Fc Gamma Receptor III on Human Neutrophils. Allelic Variants Have Functionally Distinct Capacities. J. Clin. Investig. 1990, 85, 1287–1295. [Google Scholar] [CrossRef] [PubMed]
- Tsang-A-Sjoe, M.W.P.; Nagelkerke, S.Q.; Bultink, I.E.M.; Geissler, J.; Tanck, M.W.T.; Tacke, C.E.; Ellis, J.A.; Zenz, W.; Bijl, M.; Berden, J.H.; et al. Fc-Gamma Receptor Polymorphisms Differentially Influence Susceptibility to Systemic Lupus Erythematosus and Lupus Nephritis. Rheumatology 2016, 55, 939–948. [Google Scholar] [CrossRef]
- Hitomi, Y.; Tsuchiya, N.; Kawasaki, A.; Ohashi, J.; Suzuki, T.; Kyogoku, C.; Fukazawa, T.; Bejrachandra, S.; Siriboonrit, U.; Chandanayingyong, D.; et al. CD72 Polymorphisms Associated with Alternative Splicing Modify Susceptibility to Human Systemic Lupus Erythematosus through Epistatic Interaction with FCGR2B. Hum. Mol. Genet. 2004, 13, 2907–2917. [Google Scholar] [CrossRef]
- Kumanogoh, A.; Watanabe, C.; Lee, I.; Wang, X.; Shi, W.; Araki, H.; Hirata, H.; Iwahori, K.; Uchida, J.; Yasui, T.; et al. Identification of CD72 as a Lymphocyte Receptor for the Class IV Semaphorin CD100: A Novel Mechanism for Regulating B Cell Signaling. Immunity 2000, 13, 621–631. [Google Scholar] [CrossRef]
- Ishida, I.; Kumanogoh, A.; Suzuki, K.; Akahani, S.; Noda, K.; Kikutani, H. Involvement of CD100, a Lymphocyte Semaphorin, in the Activation of the Human Immune System via CD72: Implications for the Regulation of Immune and Inflammatory Responses. Int. Immunol. 2003, 15, 1027–1034. [Google Scholar] [CrossRef]
- Hitomi, Y.; Adachi, T.; Tsuchiya, N.; Honda, Z.-I.; Tokunaga, K.; Tsubata, T. Human CD72 Splicing Isoform Responsible for Resistance to Systemic Lupus Erythematosus Regulates Serum Immunoglobulin Level and Is Localized in Endoplasmic Reticulum. BMC Immunol. 2012, 13, 72. [Google Scholar] [CrossRef]
- Bera, O.; Cesaire, R.; Quelvennec, E.; Quillivic, F.; De Chavigny, V.; Ribal, C.; Semana, G. HLA Class I and Class II Allele and Haplotype Diversity in Martinicans. Tissue Antigens 2001, 57, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Suzon, B.; Louis-Sidney, F.; Aglaé, C.; Henry, K.; Bagoée, C.; Wolff, S.; Moinet, F.; Emal-Aglaé, V.; Polomat, K.; DeBandt, M.; et al. Good Long-Term Prognosis of Lupus Nephritis in the High-Income Afro-Caribbean Population of Martinique with Free Access to Healthcare. J. Clin. Med. 2022, 11, 4860. [Google Scholar] [CrossRef]
- Deligny, C.; Thomas, L.; Dubreuil, F.; Théodose, C.; Garsaud, A.M.; Numéric, P.; Ranlin, A.; Jean-Baptiste, G.; Arfi, S. Systemic lupus erythematosus in Martinique: An epidemiologic study. Rev. Med. Interne 2002, 23, 21–29. [Google Scholar] [CrossRef]
- Mc, H. Updating the American College of Rheumatology Revised Criteria for the Classification of Systemic Lupus Erythematosus. Arthritis Rheum. 1997, 40, 1725. [Google Scholar] [CrossRef]
- Tanaka, Y.; Suzuki, Y.; Tsuge, T.; Kanamaru, Y.; Horikoshi, S.; Monteiro, R.C.; Tomino, Y. FcγRIIa-131R Allele and FcγRIIIa-176V/V Genotype Are Risk Factors for Progression of IgA Nephropathy. Nephrol. Dial. Transplant. 2005, 20, 2439–2445. [Google Scholar] [CrossRef] [PubMed]
- Tackenberg, B.; Jelčić, I.; Baerenwaldt, A.; Oertel, W.H.; Sommer, N.; Nimmerjahn, F.; Lünemann, J.D. Impaired Inhibitory Fcγ Receptor IIB Expression on B Cells in Chronic Inflammatory Demyelinating Polyneuropathy. Proc. Natl. Acad. Sci. USA 2009, 106, 4788–4792. [Google Scholar] [CrossRef]
- Kyogoku, C.; Dijstelbloem, H.M.; Tsuchiya, N.; Hatta, Y.; Kato, H.; Yamaguchi, A.; Fukazawa, T.; Jansen, M.D.; Hashimoto, H.; Van De Winkel, J.G.J.; et al. Fcγ Receptor Gene Polymorphisms in Japanese Patients with Systemic Lupus Erythematosus: Contribution of FCGR2B to Genetic Susceptibility. Arthritis Rheum. 2002, 46, 1242–1254. [Google Scholar] [CrossRef]
- Kyogoku, C.; Tsuchiya, N.; Matsuta, K.; Tokunaga, K. Studies on the Association of Fcγ Receptor IIA, IIB, IIIA and IIIB Polymorphisms with Rheumatoid Arthritis in the Japanese: Evidence for a Genetic Interaction between HLA-DRB1 and FCGR3A. Genes Immun. 2002, 3, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Siriboonrit, U.; Tsuchiya, N.; Sirikong, M.; Kyogoku, C.; Bejrachandra, S.; Suthipinittharm, P.; Luangtrakool, K.; Srinak, D.; Thongpradit, R.; Fujiwara, K.; et al. Association of Fcgamma Receptor IIb and IIIb Polymorphisms with Susceptibility to Systemic Lupus Erythematosus in Thais. Tissue Antigens 2003, 61, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Lu, S.; Tao, J.; Zhou, Z.; Chen, Z.; Huang, Y.; Yang, R. CD72 Polymorphism Associated with Child-Onset of Idiopathic Thrombocytopenic Purpura in Chinese Patients. J. Clin. Immunol. 2008, 28, 214–219. [Google Scholar] [CrossRef]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and Visualization of LD and Haplotype Maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef]
- Vigato-Ferreira, I.C.C.; Toller-Kawahisa, J.E.; Pancoto, J.A.T.; Mendes-Junior, C.T.; Martinez, E.Z.; Donadi, E.A.; Louzada-Júnior, P.; Del Lama, J.E.C.; Marzocchi-Machado, C.M. FcγRIIa and FcγRIIIb Polymorphisms and Associations with Clinical Manifestations in Systemic Lupus Erythematosus Patients. Autoimmunity 2014, 47, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, D.L.; Zidovetzki, R.; Alarcón-Riquelme, M.E.; Tsao, B.P.; Criswell, L.A.; Kimberly, R.P.; Harley, J.B.; Sivils, K.L.; Vyse, T.J.; Gaffney, P.M.; et al. GWAS Identifies Novel SLE Susceptibility Genes and Explains the Association of the HLA Region. Genes Immun. 2014, 15, 347–354. [Google Scholar] [CrossRef]
- Fike, A.J.; Elcheva, I.; Rahman, Z.S.M. The Post-GWAS Era: How to Validate the Contribution of Gene Variants in Lupus. Curr. Rheumatol. Rep. 2019, 21, 3. [Google Scholar] [CrossRef]
- Niederer, H.A.; Clatworthy, M.R.; Willcocks, L.C.; Smith, K.G.C. FcgammaRIIB, FcgammaRIIIB, and Systemic Lupus Erythematosus. Ann. N. Y. Acad. Sci. 2010, 1183, 69–88. [Google Scholar] [CrossRef]
- Xu, Y.; Wei, H.-T.; Zou, J.-J.; Ma, Y.-R. Association of FcγRIIA-R/H131 Polymorphism and Systemic Lupus Erythematosus Lupus Nephritis Risk: A Meta-Analysis. Int. J. Rheum. Dis. 2020, 23, 853–867. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, W.; Zhang, H.; Wei, L.; Guo, S. Association of FCGR2A Rs1801274 Polymorphism with Susceptibility to Autoimmune Diseases: A Meta-Analysis. Oncotarget 2016, 7, 39436–39443. [Google Scholar] [CrossRef]
- Karassa, F.B.; Bijl, M.; Davies, K.A.; Kallenberg, C.G.M.; Khamashta, M.A.; Manger, K.; Michel, M.; Piette, J.-C.; Salmon, J.E.; Song, Y.W.; et al. Role of the Fcgamma Receptor IIA Polymorphism in the Antiphospholipid Syndrome: An International Meta-Analysis. Arthritis Rheum. 2003, 48, 1930–1938. [Google Scholar] [CrossRef]
- Salmon, J.E.; Millard, S.; Schachter, L.A.; Arnett, F.C.; Ginzler, E.M.; Gourley, M.F.; Ramsey-Goldman, R.; Peterson, M.G.; Kimberly, R.P. Fc Gamma RIIA Alleles Are Heritable Risk Factors for Lupus Nephritis in African Americans. J. Clin. Investig. 1996, 97, 1348–1354. [Google Scholar] [CrossRef]
- Edberg, J.C.; Langefeld, C.D.; Wu, J.; Moser, K.L.; Kaufman, K.M.; Kelly, J.; Bansal, V.; Brown, W.M.; Salmon, J.E.; Rich, S.S.; et al. Genetic Linkage and Association of Fcgamma Receptor IIIA (CD16A) on Chromosome 1q23 with Human Systemic Lupus Erythematosus. Arthritis Rheum. 2002, 46, 2132–2140. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.W.; Han, C.W.; Kang, S.W.; Baek, H.J.; Lee, E.B.; Shin, C.H.; Hahn, B.H.; Tsao, B.P. Abnormal Distribution of Fc Gamma Receptor Type IIa Polymorphisms in Korean Patients with Systemic Lupus Erythematosus. Arthritis Rheum. 1998, 41, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Peng, H.; Chen, G.-M.; Feng, C.-C.; Zhang, Y.-J.; Wen, P.-F.; Qiu, L.-J.; Leng, R.-X.; Pan, H.-F.; Ye, D.-Q. Association of FCGR2A-R/H131 Polymorphism with Susceptibility to Systemic Lupus Erythematosus among Asian Population: A Meta-Analysis of 20 Studies. Arch. Dermatol. Res. 2014, 306, 781–791. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ptacek, T.S.; Brown, E.E.; Edberg, J.C. Fcγ Receptors: Structure, Function and Role as Genetic Risk Factors in SLE. Genes Immun. 2009, 10, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Oh, M.; Petri, M.A.; Kim, N.A.; Sullivan, K.E. Frequency of the Fc Gamma RIIIA-158F Allele in African American Patients with Systemic Lupus Erythematosus. J. Rheumatol. 1999, 26, 1486–1489. [Google Scholar]
- Magnusson, V.; Johanneson, B.; Lima, G.; Odeberg, J.; Alarcón-Segovia, D.; Alarcón-Riquelme, M.E.; SLE Genetics Collaboration Group. Both Risk Alleles for FcgammaRIIA and FcgammaRIIIA Are Susceptibility Factors for SLE: A Unifying Hypothesis. Genes Immun. 2004, 5, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Zuñiga, R.; Ng, S.; Peterson, M.G.; Reveille, J.D.; Baethge, B.A.; Alarcón, G.S.; Salmon, J.E. Low-Binding Alleles of Fcgamma Receptor Types IIA and IIIA Are Inherited Independently and Are Associated with Systemic Lupus Erythematosus in Hispanic Patients. Arthritis Rheum. 2001, 44, 361–367. [Google Scholar] [CrossRef]
- Chu, Z.T.; Tsuchiya, N.; Kyogoku, C.; Ohashi, J.; Qian, Y.P.; Xu, S.B.; Mao, C.Z.; Chu, J.Y.; Tokunaga, K. Association of Fcgamma Receptor IIb Polymorphism with Susceptibility to Systemic Lupus Erythematosus in Chinese: A Common Susceptibility Gene in the Asian Populations. Tissue Antigens 2004, 63, 21–27. [Google Scholar] [CrossRef]
- Li, L.-H.; Yuan, H.; Pan, H.-F.; Li, W.-X.; Li, X.-P.; Ye, D.-Q. Role of the Fcgamma Receptor IIIA-V/F158 Polymorphism in Susceptibility to Systemic Lupus Erythematosus and Lupus Nephritis: A Meta-Analysis. Scand. J. Rheumatol. 2010, 39, 148–154. [Google Scholar] [CrossRef]
- Brown, E.E.; Edberg, J.C.; Kimberly, R.P. Fc Receptor Genes and the Systemic Lupus Erythematosus Diathesis. Autoimmunity 2007, 40, 567–581. [Google Scholar] [CrossRef] [PubMed]
- Jönsen, A.; Gunnarsson, I.; Gullstrand, B.; Svenungsson, E.; Bengtsson, A.A.; Nived, O.; Lundberg, I.E.; Truedsson, L.; Sturfelt, G. Association between SLE Nephritis and Polymorphic Variants of the CRP and FcgammaRIIIa Genes. Rheumatology 2007, 46, 1417–1421. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Ptacek, T.S.; Redden, D.T.; Zhang, K.; Brown, E.E.; Edberg, J.C.; McGwin, G.; Alarcón, G.S.; Ramsey-Goldman, R.; Reveille, J.D.; et al. Fcγ Receptor IIIa Single-Nucleotide Polymorphisms and Haplotypes Affect Human IgG Binding and Are Associated with Lupus Nephritis in African Americans. Arthritis Rheumatol. 2014, 66, 1291–1299. [Google Scholar] [CrossRef]
- Dai, M.; Zhou, Z.; Wang, X.; Qian, X.; Huang, X. Association of FcγRIIIa-158V/F with Systemic Lupus Erythematosus in a Chinese Population. Int. J. Rheum. Dis. 2013, 16, 685–691. [Google Scholar] [CrossRef]
- Alarcón, G.S.; McGwin, G.; Petri, M.; Ramsey-Goldman, R.; Fessler, B.J.; Vilá, L.M.; Edberg, J.C.; Reveille, J.D.; Kimberly, R.P.; PROFILE Study Group. Time to Renal Disease and End-Stage Renal Disease in PROFILE: A Multiethnic Lupus Cohort. PLoS Med. 2006, 3, e396. [Google Scholar] [CrossRef]
- Bux, J. Human Neutrophil Alloantigens. Vox Sang. 2008, 94, 277–285. [Google Scholar] [CrossRef]
- Hatta, Y.; Tsuchiya, N.; Ohashi, J.; Matsushita, M.; Fujiwara, K.; Hagiwara, K.; Juji, T.; Tokunaga, K. Association of Fc Gamma Receptor IIIB, but Not of Fc Gamma Receptor IIA and IIIA Polymorphisms with Systemic Lupus Erythematosus in Japanese. Genes Immun. 1999, 1, 53–60. [Google Scholar] [CrossRef]
- Hong, C.H.; Lee, J.S.; Lee, H.S.; Bae, S.C.; Yoo, D.H. The Association between fcgammaRIIIB Polymorphisms and Systemic Lupus Erythematosus in Korea. Lupus 2005, 14, 346–350. [Google Scholar] [CrossRef] [PubMed]
- Yap, S.N.; Phipps, M.E.; Manivasagar, M.; Tan, S.Y.; Bosco, J.J. Human Fc Gamma Receptor IIA (FcgammaRIIA) Genotyping and Association with Systemic Lupus Erythematosus (SLE) in Chinese and Malays in Malaysia. Lupus 1999, 8, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Dijstelbloem, H.M.; Bijl, M.; Fijnheer, R.; Scheepers, R.H.; Oost, W.W.; Jansen, M.D.; Sluiter, W.J.; Limburg, P.C.; Derksen, R.H.; van de Winkel, J.G.; et al. Fcgamma Receptor Polymorphisms in Systemic Lupus Erythematosus: Association with Disease and in Vivo Clearance of Immune Complexes. Arthritis Rheum. 2000, 43, 2793–2800. [Google Scholar] [CrossRef]
- Mueller, M.; Barros, P.; Witherden, A.S.; Roberts, A.L.; Zhang, Z.; Schaschl, H.; Yu, C.-Y.; Hurles, M.E.; Schaffner, C.; Floto, R.A.; et al. Genomic Pathology of SLE-Associated Copy-Number Variation at the FCGR2C/FCGR3B/FCGR2B Locus. Am. J. Hum. Genet. 2013, 92, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-Y.; Wang, C.M.; Ma, C.-C.; Luo, S.-F.; Edberg, J.C.; Kimberly, R.P.; Wu, J. Association of a Transmembrane Polymorphism of Fcγ Receptor IIb (FCGR2B) with Systemic Lupus Erythematosus in Taiwanese Patients. Arthritis Rheum. 2006, 54, 3908–3917. [Google Scholar] [CrossRef] [PubMed]
- Willcocks, L.C.; Carr, E.J.; Niederer, H.A.; Rayner, T.F.; Williams, T.N.; Yang, W.; Scott, J.A.G.; Urban, B.C.; Peshu, N.; Vyse, T.J.; et al. A Defunctioning Polymorphism in FCGR2B Is Associated with Protection against Malaria but Susceptibility to Systemic Lupus Erythematosus. Proc. Natl. Acad. Sci. USA 2010, 107, 7881–7885. [Google Scholar] [CrossRef]
- Li, X.; Wu, J.; Carter, R.H.; Edberg, J.C.; Su, K.; Cooper, G.S.; Kimberly, R.P. A Novel Polymorphism in the Fcgamma Receptor IIB (CD32B) Transmembrane Region Alters Receptor Signaling. Arthritis Rheum. 2003, 48, 3242–3252. [Google Scholar] [CrossRef] [PubMed]
- Lassauniere, R.; Tiemessen, C.T. Variability at the FCGR Locus: Characterization in Black South Africans and Evidence for Ethnic Variation in and out of Africa. Genes Immun. 2016, 17, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Niederer, H.A.; Willcocks, L.C.; Rayner, T.F.; Yang, W.; Lau, Y.L.; Williams, T.N.; Scott, J.A.G.; Urban, B.C.; Peshu, N.; Dunstan, S.J.; et al. Copy Number, Linkage Disequilibrium and Disease Association in the FCGR Locus. Hum. Mol. Genet. 2010, 19, 3282–3294. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Zhang, Y.; Sun, X.; Zhang, T.; Xu, L.; Xie, H.; Li, Z.; Liu, W.; Lou, J.; Chen, W. FcγRIIB-I232T Polymorphic Change Allosterically Suppresses Ligand Binding. Elife 2019, 8, e46689. [Google Scholar] [CrossRef]
- Lenski, R.E. What Is Adaptation by Natural Selection? Perspectives of an Experimental Microbiologist. PLoS Genet. 2017, 13, e1006668. [Google Scholar] [CrossRef]
- Damena, D.; Denis, A.; Golassa, L.; Chimusa, E.R. Genome-Wide Association Studies of Severe P. Falciparum Malaria Susceptibility: Progress, Pitfalls and Prospects. BMC Med. Genom. 2019, 12, 120. [Google Scholar] [CrossRef] [PubMed]
- Quin, J.E.; Bujila, I.; Chérif, M.; Sanou, G.S.; Qu, Y.; Vafa Homann, M.; Rolicka, A.; Sirima, S.B.; O’Connell, M.A.; Lennartsson, A.; et al. Major Transcriptional Changes Observed in the Fulani, an Ethnic Group Less Susceptible to Malaria. eLife 2017, 6, e29156. [Google Scholar] [CrossRef] [PubMed]
- Waisberg, M.; Tarasenko, T.; Vickers, B.K.; Scott, B.L.; Willcocks, L.C.; Molina-Cruz, A.; Pierce, M.A.; Huang, C.; Torres-Velez, F.J.; Smith, K.G.C.; et al. Genetic Susceptibility to Systemic Lupus Erythematosus Protects against Cerebral Malaria in Mice. Proc. Natl. Acad. Sci. USA 2011, 108, 1122–1127. [Google Scholar] [CrossRef]
- Amiah, M.A.; Ouattara, A.; Okou, D.T.; N’Guetta, S.-P.A.; Yavo, W. Polymorphisms in Fc Gamma Receptors and Susceptibility to Malaria in an Endemic Population. Front. Immunol. 2020, 11, 561142. [Google Scholar] [CrossRef]
- Nasr, A.; Iriemenam, N.C.; Giha, H.A.; Balogun, H.A.; Anders, R.F.; Troye-Blomberg, M.; ElGhazali, G.; Berzins, K. FcgammaRIIa (CD32) Polymorphism and Anti-Malarial IgG Subclass Pattern among Fulani and Sympatric Ethnic Groups Living in Eastern Sudan. Malar. J. 2009, 8, 43. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, L.; Chen, S.; Xie, Y.; Xie, L.; Deng, Y.; He, Y.; Li, T.; Wang, J.; Li, S.; et al. Association between Fc-Gamma Receptor IIa (CD32) Gene Polymorphism and Malaria Susceptibility: A Meta-Analysis Based on 6928 Subjects. Infect. Genet. Evol. 2014, 23, 169–175. [Google Scholar] [CrossRef]
- Clatworthy, M.R.; Willcocks, L.; Urban, B.; Langhorne, J.; Williams, T.N.; Peshu, N.; Watkins, N.A.; Floto, R.A.; Smith, K.G.C. Systemic Lupus Erythematosus-Associated Defects in the Inhibitory Receptor FcγRIIb Reduce Susceptibility to Malaria. Proc. Natl. Acad. Sci. USA 2007, 104, 7169–7174. [Google Scholar] [CrossRef] [PubMed]
- Tarantola, A.; Eltges, F.; Ardillon, V.; Lernout, T.; Sissoko, D.; Kendjo, E.; Achirafi, A.; Thiria, J.; Flamand, C.; D’Ortenzio, E.; et al. Le paludisme en France: Métropole et outre-mer. Médecine Mal. Infect. 2011, 41, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Garcia--Van Smévoorde, M.; Piorkowski, G.; Emboulé, L.; Dos Santos, G.; Loraux, C.; Guyomard-Rabenirina, S.; Joannes, M.-O.; Fagour, L.; Najioullah, F.; Cabié, A.; et al. Phylogenetic Investigations of Dengue 2019–2021 Outbreak in Guadeloupe and Martinique Caribbean Islands. Pathogens 2023, 12, 1182. [Google Scholar] [CrossRef]
- Loke, H.; Bethell, D.; Phuong, C.X.T.; Day, N.; White, N.; Farrar, J.; Hill, A. Susceptibility to Dengue Hemorrhagic Fever in Vietnam: Evidence of an Association with Variation in the Vitamin d Receptor and Fc Gamma Receptor IIa Genes. Am. J. Trop. Med. Hyg. 2002, 67, 102–106. [Google Scholar] [CrossRef]
Groups | Age (Mean ± SD) | Male n (%) | Female n (%) |
---|---|---|---|
Healthy controls (n = 120) | 53 ± 18.3 | 11 (9.17) | 109 (90.83) |
Systemic lupus erythematosus (n = 126) | 48.25 ± 15.79 | 10 (7.94) | 116 (92.06) |
Lupus nephritis (n = 58) | 46.02 ± 14.39 | 5 (8.62) | 53 (91.38) |
Lupus without nephritis (n = 48) | 51.33 ± 16.13 | 2 (4.17) | 46 (95.83) |
FCGRs | OR (95% CI) | p-Value |
---|---|---|
SLE (n = 126) versus controls (n = 120) | ||
Homozygous FCGR3B-NA1 | 2.83 (1.49–5.38) | 0.001 |
Homozygous FCGR3B-NA2 | 0.18 (0.05–0.64) | 0.004 |
Allele FCGR3A-158F | 1.52 (1.06–2.16) | 0.02 |
Allele FCGR3B-NA1 | 1.76 (1.23–2.54) | 0.003 |
Allele FCGR3B-NA2 | 0.56 (0.39–0.80) | 0.003 |
LN (n = 58) versus controls (n = 120) | ||
Homozygous FCGR2A-132R | 2.42 (1.26–4.74) | 0.007 |
Allele FCGR2A-132R | 1.73 (1.09–2.77) | 0.02 |
LN (n = 58) versus LWN (n = 48) | ||
Homozygous FCGR2A-132R | 3.36 (1.41–7.65) | 0.004 |
Allele FCGR2A-132R | 1.79 (1.22–3.65) | 0.007 |
Allele FCGR3A-158V | 2.14 (1.22–3.69) | 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radouani, F.; Deligny, C.; Cesaire, R.; Dueymes, M.; Dos Santos, G. FCGR2A-131R Is Associated with Lupus Nephritis Rather than Non-Lupus Nephritis SLE in an Indigenous African Caribbean Population. Curr. Issues Mol. Biol. 2025, 47, 490. https://doi.org/10.3390/cimb47070490
Radouani F, Deligny C, Cesaire R, Dueymes M, Dos Santos G. FCGR2A-131R Is Associated with Lupus Nephritis Rather than Non-Lupus Nephritis SLE in an Indigenous African Caribbean Population. Current Issues in Molecular Biology. 2025; 47(7):490. https://doi.org/10.3390/cimb47070490
Chicago/Turabian StyleRadouani, Fatima, Christophe Deligny, Raymond Cesaire, Maryvonne Dueymes, and Georges Dos Santos. 2025. "FCGR2A-131R Is Associated with Lupus Nephritis Rather than Non-Lupus Nephritis SLE in an Indigenous African Caribbean Population" Current Issues in Molecular Biology 47, no. 7: 490. https://doi.org/10.3390/cimb47070490
APA StyleRadouani, F., Deligny, C., Cesaire, R., Dueymes, M., & Dos Santos, G. (2025). FCGR2A-131R Is Associated with Lupus Nephritis Rather than Non-Lupus Nephritis SLE in an Indigenous African Caribbean Population. Current Issues in Molecular Biology, 47(7), 490. https://doi.org/10.3390/cimb47070490