Circulating Nucleosomes and Histones in the Development of Lung Injury and Sepsis
Abstract
:1. Circulating Nucleosomes and Histones
2. Lung Injury and Sepsis
3. Role of Nucleosomes/Histones in Pathology
4. Contribution of Neutrophil–Histone Interplay in Pathology
5. Contribution of Other Nucleosome-Related Factors in Pathology
6. Diagnostic Potentials of Circulating Nucleosomes and Histones
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Takizawa, Y.; Kurumizaka, H. Chromatin structure meets cryo-EM: Dynamic building blocks of the functional architecture. Biochim. Biophys. Acta Gene Regul. Mech. 2022, 1865, 194851. [Google Scholar] [CrossRef]
- Koyama, M.; Kurumizaka, H. Structural diversity of the nucleosome. J. Biochem. 2018, 163, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Chong, C.Y.Y.; Gan, L. Are extraordinary nucleosome structures more ordinary than we thought? Chromosoma 2023, 132, 139–152. [Google Scholar] [CrossRef]
- Kurumizaka, H. Structural studies of functional nucleosome complexes with transacting factors. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2022, 98, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Almuntashiri, S.; Zhu, Y.; Wang, X.; Islam, S.; Zhang, D. Increased Circulating Nucleosomes and Their Potential Contribution to Inflammation in COVID-19 Patients. In B33. COVID-19, LUNG INJURY, AND SEPSIS; American Thoracic Society International Conference Abstracts; American Thoracic Society: New York, NY, USA, 2024; p. A3325. [Google Scholar]
- Zhou, K.; Gaullier, G.; Luger, K. Nucleosome structure and dynamics are coming of age. Nat. Struct. Mol. Biol. 2019, 26, 3–13. [Google Scholar] [CrossRef]
- Smrt, S.T.; Gonzalez Salguero, N.; Thomas, J.K.; Zandian, M.; Poirier, M.G.; Jaroniec, C.P. Histone H3 core domain in chromatin with different DNA linker lengths studied by (1)H-Detected solid-state NMR spectroscopy. Front. Mol. Biosci. 2022, 9, 1106588. [Google Scholar] [CrossRef] [PubMed]
- Bohm, V.; Hieb, A.R.; Andrews, A.J.; Gansen, A.; Rocker, A.; Toth, K.; Luger, K.; Langowski, J. Nucleosome accessibility governed by the dimer/tetramer interface. Nucleic Acids Res. 2011, 39, 3093–3102. [Google Scholar] [CrossRef]
- Armeev, G.A.; Kniazeva, A.S.; Komarova, G.A.; Kirpichnikov, M.P.; Shaytan, A.K. Histone dynamics mediate DNA unwrapping and sliding in nucleosomes. Nat. Commun. 2021, 12, 2387. [Google Scholar] [CrossRef] [PubMed]
- Fujita, Y. Spatial Organization of Chromatin Structure in the Central Nervous System. Shimane J. Med. Sci. 2023, 39, 77–93. [Google Scholar] [CrossRef]
- Cary, P.D.; Hines, M.L.; Bradbury, E.M.; Smith, B.J.; Johns, E.W. Conformation studies of histone H1(0) in comparison with histones H1 and H5. Eur. J. Biochem. 1981, 120, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Yan, R.; Jiang, W.; Irudayaraj, J.M.K. Chromatin hierarchical branching visualized at the nanoscale by electron microscopy. Nanoscale Adv. 2021, 3, 1019–1028. [Google Scholar] [CrossRef]
- Eltsov, M.; Grewe, D.; Lemercier, N.; Frangakis, A.; Livolant, F.; Leforestier, A. Nucleosome conformational variability in solution and in interphase nuclei evidenced by cryo-electron microscopy of vitreous sections. Nucleic Acids Res. 2018, 46, 9189–9200. [Google Scholar] [CrossRef] [PubMed]
- Jansen, A.; Verstrepen, K.J. Nucleosome positioning in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 2011, 75, 301–320. [Google Scholar] [CrossRef] [PubMed]
- Schlissel, G.; Rine, J. The nucleosome core particle remembers its position through DNA replication and RNA transcription. Proc. Natl. Acad. Sci. USA 2019, 116, 20605–20611. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, Y.; Zhang, D.; Li, P. Circulating nucleosomes as potential biomarkers for cancer diagnosis and treatment monitoring. Int. J. Biol. Macromol. 2024, 262, 130005. [Google Scholar] [CrossRef] [PubMed]
- Holdenrieder, S.; Stieber, P. Clinical use of circulating nucleosomes. Crit. Rev. Clin. Lab. Sci. 2009, 46, 1–24. [Google Scholar] [CrossRef]
- Sheta, M.; Taha, E.A.; Lu, Y.; Eguchi, T. Extracellular Vesicles: New Classification and Tumor Immunosuppression. Biology 2023, 12, 110. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Ye, L.; Jin, Y.; Zhang, N.; Lou, T.; Qiu, Z.; Jin, Y.; Cheng, B.; Fang, X. Circulating nucleosomes as a predictor of sepsis and organ dysfunction in critically ill patients. Int. J. Infect. Dis. 2012, 16, e558–e564. [Google Scholar] [CrossRef]
- Wang, H.; Zang, C.; Ren, M.; Shang, M.; Wang, Z.; Peng, X.; Zhang, Q.; Wen, X.; Xi, Z.; Zhou, C. Cellular uptake of extracellular nucleosomes induces innate immune responses by binding and activating cGMP-AMP synthase (cGAS). Sci. Rep. 2020, 10, 15385. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, L.; Ma, S.; Cheng, L.; Yu, G. Repair and regeneration of the alveolar epithelium in lung injury. FASEB J. 2024, 38, e23612. [Google Scholar] [CrossRef]
- Dutta, S.; Zhu, Y.; Han, Y.; Almuntashiri, S.; Wang, X.; Zhang, D. Long Noncoding RNA: A Novel Insight into the Pathogenesis of Acute Lung Injury. J. Clin. Med. 2023, 12, 604. [Google Scholar] [CrossRef]
- Uwagboe, I.; Adcock, I.M.; Lo Bello, F.; Caramori, G.; Mumby, S. New drugs under development for COPD. Minerva Med. 2022, 113, 471–496. [Google Scholar] [CrossRef] [PubMed]
- Kahnert, K.; Jorres, R.A.; Behr, J.; Welte, T. The Diagnosis and Treatment of COPD and Its Comorbidities. Dtsch. Arztebl. Int. 2023, 120, 434–444. [Google Scholar] [CrossRef]
- Jobe, A.H. Mechanisms of Lung Injury and Bronchopulmonary Dysplasia. Am. J. Perinatol. 2016, 33, 1076–1078. [Google Scholar] [CrossRef]
- Dankhara, N.; Holla, I.; Ramarao, S.; Kalikkot Thekkeveedu, R. Bronchopulmonary Dysplasia: Pathogenesis and Pathophysiology. J. Clin. Med. 2023, 12, 4207. [Google Scholar] [CrossRef] [PubMed]
- Shukla, V.V.; Ambalavanan, N. Recent Advances in Bronchopulmonary Dysplasia. Indian J. Pediatr. 2021, 88, 690–695. [Google Scholar] [CrossRef]
- Gauer, R.; Forbes, D.; Boyer, N. Sepsis: Diagnosis and Management. Am. Fam. Physician 2020, 101, 409–418. [Google Scholar] [PubMed]
- Font, M.D.; Thyagarajan, B.; Khanna, A.K. Sepsis and Septic Shock—Basics of diagnosis, pathophysiology and clinical decision making. Med. Clin. North. Am. 2020, 104, 573–585. [Google Scholar] [CrossRef] [PubMed]
- Srzic, I.; Nesek Adam, V.; Tunjic Pejak, D. Sepsis Definition: What’s New in the Treatment Guidelines. Acta Clin. Croat. 2022, 61, 67–72. [Google Scholar] [CrossRef]
- Liu, D.; Huang, S.Y.; Sun, J.H.; Zhang, H.C.; Cai, Q.L.; Gao, C.; Li, L.; Cao, J.; Xu, F.; Zhou, Y.; et al. Sepsis-induced immunosuppression: Mechanisms, diagnosis and current treatment options. Mil. Med. Res. 2022, 9, 56. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Zhu, Y.; Almuntashiri, S.; Somanath, P.R.; Islam, S.; Zhi, W.; Ramirez, G.; Regino, N.; Leyva-Zilli, M.J.; Munoz-Guido, V.; et al. The impact of circulating nucleosomes on inflammation in acute lung injury. FASEB J. 2024, 38, e70214. [Google Scholar] [CrossRef] [PubMed]
- McAnena, P.; Brown, J.A.; Kerin, M.J. Circulating Nucleosomes and Nucleosome Modifications as Biomarkers in Cancer. Cancers 2017, 9, 5. [Google Scholar] [CrossRef] [PubMed]
- Shabrish, S.; Mittra, I. Cytokine Storm as a Cellular Response to dsDNA Breaks: A New Proposal. Front. Immunol. 2021, 12, 622738. [Google Scholar] [CrossRef] [PubMed]
- Dolan, C.; Miller, T.; Jill, J.; Terrell, J.; Kelly, T.K.; Bygott, T.; Wilson-Robles, H. Characterizing circulating nucleosomes in the plasma of dogs with lymphoma. BMC Vet. Res. 2021, 17, 276. [Google Scholar] [CrossRef] [PubMed]
- Phan, T.; McMillan, R.; Skiadopoulos, L.; Walborn, A.; Hoppensteadt, D.; Fareed, J.; Bansal, V. Elevated extracellular nucleosomes and their relevance to inflammation in stage 5 chronic kidney disease. Int. Angiol. 2018, 37, 419–426. [Google Scholar] [CrossRef]
- Holdenrieder, S.; Nagel, D.; Schalhorn, A.; Heinemann, V.; Wilkowski, R.; von Pawel, J.; Raith, H.; Feldmann, K.; Kremer, A.E.; Muller, S.; et al. Clinical relevance of circulating nucleosomes in cancer. Ann. N. Y. Acad. Sci. 2008, 1137, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, T.A.; Kremer Hovinga, J.A.; Schatzberg, D.; Wagner, D.D.; Lämmle, B. Circulating DNA and myeloperoxidase indicate disease activity in patients with thrombotic microangiopathies. Blood 2012, 120, 1157–1164. [Google Scholar] [CrossRef] [PubMed]
- Nishimoto, S.; Fukuda, D.; Higashikuni, Y.; Tanaka, K.; Hirata, Y.; Murata, C.; Kim-Kaneyama, J.R.; Sato, F.; Bando, M.; Yagi, S.; et al. Obesity-induced DNA released from adipocytes stimulates chronic adipose tissue inflammation and insulin resistance. Sci. Adv. 2016, 2, e1501332. [Google Scholar] [CrossRef]
- Abrams, S.T.; Zhang, N.; Manson, J.; Liu, T.; Dart, C.; Baluwa, F.; Wang, S.S.; Brohi, K.; Kipar, A.; Yu, W.; et al. Circulating histones are mediators of trauma-associated lung injury. Am. J. Respir. Crit. Care Med. 2013, 187, 160–169. [Google Scholar] [CrossRef]
- Force, A.D.T.; Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute respiratory distress syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar] [CrossRef]
- Lv, X.; Wen, T.; Song, J.; Xie, D.; Wu, L.; Jiang, X.; Jiang, P.; Wen, Z. Extracellular histones are clinically relevant mediators in the pathogenesis of acute respiratory distress syndrome. Respir. Res. 2017, 18, 165. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Baalachandran, R.; Li, Y.; Zhang, C.O.; Ke, Y.; Karki, P.; Birukov, K.G.; Birukova, A.A. Circulating extracellular histones exacerbate acute lung injury by augmenting pulmonary endothelial dysfunction via TLR4-dependent mechanism. Am. J. Physiol. Lung Cell Mol. Physiol. 2022, 323, L223–L239. [Google Scholar] [CrossRef] [PubMed]
- Lei, B.; Wang, C.; Snow, K.; Graton, M.E.; Tighe, R.M.; Fager, A.M.; Hoffman, M.R.; Giangrande, P.H.; Miller, F.J., Jr. Inhalation of an RNA aptamer that selectively binds extracellular histones protects from acute lung injury. Mol. Ther. Nucleic Acids 2023, 31, 662–673. [Google Scholar] [CrossRef]
- Yehya, N.; Fazelinia, H.; Lawrence, G.G.; Spruce, L.A.; Mai, M.V.; Worthen, G.S.; Christie, J.D. Plasma Nucleosomes Are Associated with Mortality in Pediatric Acute Respiratory Distress Syndrome. Crit. Care Med. 2021, 49, 1149–1158. [Google Scholar] [CrossRef] [PubMed]
- Yehya, N.; Thomas, N.J.; Margulies, S.S. Circulating nucleosomes are associated with mortality in pediatric acute respiratory distress syndrome. Am. J. Physiol. Lung Cell Mol. Physiol. 2016, 310, L1177–L1184. [Google Scholar] [CrossRef]
- Patel, B.V.; Lee, T.M.L.; O’Dea, K. CLUSTERINg Circulating Histones in Sepsis. Am. J. Respir. Crit. Care Med. 2023, 208, 125–127. [Google Scholar] [CrossRef] [PubMed]
- Su, F.; Moreau, A.; Savi, M.; Salvagno, M.; Annoni, F.; Zhao, L.; Xie, K.; Vincent, J.L.; Taccone, F.S. Circulating Nucleosomes as a Novel Biomarker for Sepsis: A Scoping Review. Biomedicines 2024, 12, 1385. [Google Scholar] [CrossRef] [PubMed]
- Garcia, B.; Su, F.; Dewachter, L.; Wang, Y.; Li, N.; Remmelink, M.; Eycken, M.V.; Khaldi, A.; Favory, R.; Herpain, A.; et al. Neutralization of extracellular histones by sodium-Β-O-methyl cellobioside sulfate in septic shock. Critical Care 2023, 27, 458. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wan, D.; Luo, X.; Song, T.; Wang, Y.; Yu, Q.; Jiang, L.; Liao, R.; Zhao, W.; Su, B. Circulating Histones in Sepsis: Potential Outcome Predictors and Therapeutic Targets. Front. Immunol. 2021, 12, 650184. [Google Scholar] [CrossRef] [PubMed]
- Ginsburg, I.; Koren, E. Are histones real pathogenic agents in sepsis? Nat. Rev. Immunol. 2018, 18, 148. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X. The Role of Histones and Heparin in Sepsis: A Review. J. Intensive Care Med. 2021, 37, 319–326. [Google Scholar] [CrossRef]
- Barichello, T.; Generoso, J.S.; Singer, M.; Dal-Pizzol, F. Biomarkers for sepsis: More than just fever and leukocytosis—A narrative review. Crit. Care 2022, 26, 14. [Google Scholar] [CrossRef]
- Zeerleder, S.; Stephan, F.; Emonts, M.; de Kleijn, E.D.; Esmon, C.T.; Varadi, K.; Hack, C.E.; Hazelzet, J.A. Circulating nucleosomes and severity of illness in children suffering from meningococcal sepsis treated with protein C. Crit. Care Med. 2012, 40, 3224–3229. [Google Scholar] [CrossRef] [PubMed]
- Stoian, M.; Roman, A.; Boeriu, A.; Onisor, D.; Bandila, S.R.; Baba, D.F.; Cocuz, I.; Niculescu, R.; Costan, A.; Laszlo, S.S.; et al. Long-Term Radiological Pulmonary Changes in Mechanically Ventilated Patients with Respiratory Failure due to SARS-CoV-2 Infection. Biomedicines 2023, 11, 2637. [Google Scholar] [CrossRef]
- Husain-Syed, F.; McCullough, P.A.; Birk, H.W.; Renker, M.; Brocca, A.; Seeger, W.; Ronco, C. Cardio-Pulmonary-Renal Interactions: A Multidisciplinary Approach. J. Am. Coll. Cardiol. 2015, 65, 2433–2448. [Google Scholar] [CrossRef] [PubMed]
- Hamam, H.J.; Palaniyar, N. Post-Translational Modifications in NETosis and NETs-Mediated Diseases. Biomolecules 2019, 9, 369. [Google Scholar] [CrossRef]
- Rosales, C. Neutrophils at the crossroads of innate and adaptive immunity. J. Leukoc. Biol. 2020, 108, 377–396. [Google Scholar] [CrossRef]
- Liu, X.; Arfman, T.; Wichapong, K.; Reutelingsperger, C.P.M.; Voorberg, J.; Nicolaes, G.A.F. PAD4 takes charge during neutrophil activation: Impact of PAD4 mediated NET formation on immune-mediated disease. J. Thromb. Haemost. 2021, 19, 1607–1617. [Google Scholar] [CrossRef] [PubMed]
- Vorobjeva, N.V.; Chernyak, B.V. NETosis: Molecular Mechanisms, Role in Physiology and Pathology. Biochemistry 2020, 85, 1178–1190. [Google Scholar] [CrossRef]
- Poli, V.; Zanoni, I. Neutrophil intrinsic and extrinsic regulation of NETosis in health and disease. Trends Microbiol. 2023, 31, 280–293. [Google Scholar] [CrossRef]
- Aranda-Valderrama, P.; Kaynar, A.M. The Basic Science and Molecular Mechanisms of Lung Injury and Acute Respiratory Distress Syndrome. Int. Anesthesiol. Clin. 2018, 56, 1–25. [Google Scholar] [CrossRef]
- Liu, M.L.; Lyu, X.; Werth, V.P. Recent progress in the mechanistic understanding of NET formation in neutrophils. FEBS J. 2022, 289, 3954–3966. [Google Scholar] [CrossRef]
- Shrestha, S.; Hong, C.-W. Extracellular Mechanisms of Neutrophils in Immune Cell Crosstalk. Immune Netw. 2023, 23, e38. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Kim, S.J.; Lei, Y.; Wang, S.; Wang, H.; Huang, H.; Zhang, H.; Tsung, A. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct. Target. Ther. 2024, 9, 235. [Google Scholar] [CrossRef] [PubMed]
- Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 2018, 18, 134–147. [Google Scholar] [CrossRef] [PubMed]
- Koike, H.; Iguchi, Y.; Sahashi, K.; Katsuno, M. Neutrophil extracellular traps: From antimicrobial innate immunity to the development of chemotherapy-induced peripheral neuropathy. eBioMedicine 2023, 90, 104526. [Google Scholar] [CrossRef] [PubMed]
- Wigerblad, G.; Kaplan, M.J. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases. Nat. Rev. Immunol. 2023, 23, 274–288. [Google Scholar] [CrossRef] [PubMed]
- Tillack, K.; Breiden, P.; Martin, R.; Sospedra, M. T lymphocyte priming by neutrophil extracellular traps links innate and adaptive immune responses. J. Immunol. 2012, 188, 3150–3159. [Google Scholar] [CrossRef] [PubMed]
- Melbouci, D.; Haidar Ahmad, A.; Decker, P. Neutrophil extracellular traps (NET): Not only antimicrobial but also modulators of innate and adaptive immunities in inflammatory autoimmune diseases. RMD Open 2023, 9, e003104. [Google Scholar] [CrossRef]
- Fang, H.; Shao, S.; Xue, K.; Yuan, X.; Qiao, P.; Zhang, J.; Cao, T.; Luo, Y.; Bai, X.; Li, W.; et al. Neutrophil extracellular traps contribute to immune dysregulation in bullous pemphigoid via inducing B-cell differentiation and antibody production. FASEB J. 2021, 35, e21746. [Google Scholar] [CrossRef]
- Romano, A.; Parrinello, N.L.; Barchitta, M.; Manuele, R.; Puglisi, F.; Maugeri, A.; Barbato, A.; Triolo, A.M.; Giallongo, C.; Tibullo, D.; et al. In-vitro NET-osis induced by COVID-19 sera is associated to severe clinical course in not vaccinated patients and immune-dysregulation in breakthrough infection. Sci. Rep. 2022, 12, 7237. [Google Scholar] [CrossRef] [PubMed]
- Merlo Pich, L.M.; Ziogas, A.; Netea, M.G. Genetic and epigenetic dysregulation of innate immune mechanisms in autoinflammatory diseases. FEBS J. 2024, 291, 4414–4432. [Google Scholar] [CrossRef]
- Dutta, S.; Zhu, Y.; Almuntashiri, S.; Peh, H.Y.; Zuñiga, J.; Zhang, D.; Somanath, P.R.; Ramírez, G.; Irineo-Moreno, V.; Jiménez-Juárez, F.; et al. PDGFRα-positive cell-derived TIMP-1 modulates adaptive immune responses to influenza A viral infection. Am. J. Physiol. Lung Cell. Mol. Physiol. 2024, 328, L60–L74. [Google Scholar] [CrossRef]
- Zhang, H.; Villar, J.; Slutsky, A.S. Circulating histones: A novel target in acute respiratory distress syndrome? Am. J. Respir. Crit. Care Med. 2013, 187, 118–120. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Hong, W.; Wan, M.; Zheng, L. Molecular mechanisms and therapeutic target of NETosis in diseases. MedComm 2022, 3, e162. [Google Scholar] [CrossRef]
- Thiam, H.R.; Wong, S.L.; Wagner, D.D.; Waterman, C.M. Cellular Mechanisms of NETosis. Annu. Rev. Cell Dev. Biol. 2020, 36, 191–218. [Google Scholar] [CrossRef]
- Hoeksema, M.; van Eijk, M.; Haagsman, H.P.; Hartshorn, K.L. Histones as mediators of host defense, inflammation and thrombosis. Future Microbiol. 2016, 11, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Karki, P.; Birukov, K.G.; Birukova, A.A. Extracellular histones in lung dysfunction: A new biomarker and therapeutic target? Pulm. Circ. 2020, 10, 2045894020965357. [Google Scholar] [CrossRef] [PubMed]
- Chachanidze, R.D.; Aouane, O.; Harting, J.; Wagner, C.; Leonetti, M. Margination of artificially stiffened red blood cells. Phys. Rev. Fluids 2024, 9, L091101. [Google Scholar] [CrossRef]
- Haem Rahimi, M.; Bidar, F.; Lukaszewicz, A.-C.; Garnier, L.; Payen-Gay, L.; Venet, F.; Monneret, G. Association of pronounced elevation of NET formation and nucleosome biomarkers with mortality in patients with septic shock. Ann. Intensive Care 2023, 13, 102. [Google Scholar] [CrossRef] [PubMed]
- Stoian, M.; Andone, A.; Bandila, S.R.; Onisor, D.; Laszlo, S.S.; Lupu, G.; Danielescu, A.; Baba, D.F.; Vasiesiu, A.M.; Manea, A.; et al. Mechanical Ventilator-Associated Pneumonia in the COVID-19 Pandemic Era: A Critical Challenge in the Intensive Care Units. Antibiotics 2025, 14, 28. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Jiang, P.; Ji, L.; Lam, W.K.J.; Zhou, Q.; Ma, M.L.; Ding, S.C.; Ramakrishnan, S.; Wan, C.W.; Yang, T.C.; et al. Histone modifications of circulating nucleosomes are associated with changes in cell-free DNA fragmentation patterns. Proc. Natl. Acad. Sci. USA 2024, 121, e2404058121. [Google Scholar] [CrossRef]
- Luo, G.; Liu, B.; Fu, T.; Liu, Y.; Li, B.; Li, N.; Geng, Q. The Role of Histone Deacetylases in Acute Lung Injury—Friend or Foe. Int. J. Mol. Sci. 2023, 24, 7876. [Google Scholar] [CrossRef] [PubMed]
- Bauden, M.; Pamart, D.; Ansari, D.; Herzog, M.; Eccleston, M.; Micallef, J.; Andersson, B.; Andersson, R. Circulating nucleosomes as epigenetic biomarkers in pancreatic cancer. Clin. Epigenet. 2015, 7, 106. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhang, X.; Pelayo, R.; Monestier, M.; Ammollo, C.T.; Semeraro, F.; Taylor, F.B.; Esmon, N.L.; Lupu, F.; Esmon, C.T. Extracellular histones are major mediators of death in sepsis. Nat. Med. 2009, 15, 1318–1321. [Google Scholar] [CrossRef] [PubMed]
- Guiot, J.; Henket, M.; Andre, B.; Herzog, M.; Hardat, N.; Njock, M.-S.; Moermans, C.; Malaise, M.; Louis, R. A new nucleosomic-based model to identify and diagnose SSc-ILD. Clin. Epigenet. 2020, 12, 124. [Google Scholar] [CrossRef] [PubMed]
- Penttila, A.K.; Rouhiainen, A.; Kylanpaa, L.; Mustonen, H.; Puolakkainen, P.; Rauvala, H.; Repo, H. Circulating nucleosomes as predictive markers of severe acute pancreatitis. J. Intensive Care 2016, 4, 14. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dutta, S.; Dutta, S.; Somanath, P.R.; Narayanan, S.P.; Wang, X.; Zhang, D. Circulating Nucleosomes and Histones in the Development of Lung Injury and Sepsis. Curr. Issues Mol. Biol. 2025, 47, 133. https://doi.org/10.3390/cimb47020133
Dutta S, Dutta S, Somanath PR, Narayanan SP, Wang X, Zhang D. Circulating Nucleosomes and Histones in the Development of Lung Injury and Sepsis. Current Issues in Molecular Biology. 2025; 47(2):133. https://doi.org/10.3390/cimb47020133
Chicago/Turabian StyleDutta, Saugata, Sauradeep Dutta, Payaningal R. Somanath, S. Priya Narayanan, Xiaoyun Wang, and Duo Zhang. 2025. "Circulating Nucleosomes and Histones in the Development of Lung Injury and Sepsis" Current Issues in Molecular Biology 47, no. 2: 133. https://doi.org/10.3390/cimb47020133
APA StyleDutta, S., Dutta, S., Somanath, P. R., Narayanan, S. P., Wang, X., & Zhang, D. (2025). Circulating Nucleosomes and Histones in the Development of Lung Injury and Sepsis. Current Issues in Molecular Biology, 47(2), 133. https://doi.org/10.3390/cimb47020133