Advances in Multi-Omics Research on Biomarkers of Intrahepatic Cholangiocarcinoma
Abstract
1. Introduction
2. Molecular Biomarkers at Different Omics Levels
2.1. Genomic Biomarkers
| Acronym (Full Name) | Frequency [14,15] | Oncogenic Alterations | Biologic Function | Targeted Therapy Drugs [30,31] |
|---|---|---|---|---|
| IDH1/2 (isocitrate dehydrogenase) | 14–36% | mutation | encoding enzymes involved in the citric acid cycle | ivosidenib/AG-120, AB-218 capsule (NCT 5814536-Ⅰ), dasatinib (NCT 2428855-Ⅱ), IDH305 (NCT 2977689-Ⅰ) |
| FGFR2 (Fibroblast growth factor receptor 2) | 10–15% | fusion | encoding a receptor tyrosine kinase involved in cell growth and angiogenesis | Pemigatinib/INC054828, Infigratinib/BGJ398 (NCT 3773302-Ⅲ), Derazantinib/ARQ087 (NCT 3230318-Ⅱ), TT-00420 (NCT 4919642-Ⅱ), HMPL453 (NCT 4353375-Ⅱ), HH185/D185 (NCT 5039892-Ⅱ), Lenvatinib/E7080 (NCT 02579616/04211168-Ⅱ), Gunagratinib (NCT 3758664-Ⅰ/Ⅱ), E7090 (NCT 4238715-Ⅰ), RLY-4008 (NCT 4526106-Ⅰ/Ⅱ) |
| EGFR (epidermal growth factor receptor) | 25% | amplification | encoding a receptor tyrosine kinase that regulates cell proliferation and survival | erlotinib, geitinib, cetuximab, panitumumab |
| BRAF (B-Raf proto-oncogene, serine/threonine kinase) | 5–7% | mutation | encoding a kinase involved in the RAS/MAPK pathway | Vemurafenib, dabrafenib |
| KRAS (Kirsten rat sarcoma viral oncogene homolog) | 7–22% | mutation | encoding a GTPase, playing a key role in the RAS/MAPK signaling pathway | Trametinib, Selumetinib |
| BAP1 (breast cancer 1-associated protein 1) | 10–15% | mutation | encoding a deubiquitinating enzyme that regulates chromatin and DNA repair | romidepsin, vorinostat, valproic acid |
| PBX1 (Pre-B-cell leukemia homeobox transcription factor 1) | 29.20% | amplification | a transcription factor that regulates numerous embryonic processes including hematopoiesis | Nonclinical drugs |
| ERBB3 (Erb-B2 Receptor Tyrosine Kinase 3) | 7% | amplification | encoding a member of the EGFR family, involved in cellular growth and differentiation | Nonclinical drugs |
2.2. Transcriptomic Biomarkers
2.2.1. mRNA Biomarkers
2.2.2. LncRNA Biomarkers
2.2.3. CircRNA Biomarkers
2.2.4. Small RNA Biomarkers
2.3. Proteomics Biomarkers
2.4. Metabolomic Biomarkers
2.5. Epigenetic Biomarkers
3. Application of Biomarkers
3.1. Diagnostic Biomarkers
3.2. Development of Therapeutic Targets
3.3. Prognostic Biomarkers
4. Limitations
5. Discussion and Future Prospects
6. Highlights
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| Abbr | Full Name |
| CA19-9 | carbohydrate antigen 19-9 |
| CEA | carcinoembryonic antigen |
| CNV | copy number variations |
| dCCA | distal cholangiocarcinoma |
| ECM | extracellular matrix |
| FDA | the U.S. Food and Drug Administration |
| HCC | hepatocellular carcinoma |
| iCCA | intrahepatic cholangiocarcinoma |
| LC-MS/MS | liquid chromatography–tandem mass spectrometry |
| NIH | National Institutes of Health |
| pCCA | perihilar cholangiocarcinoma |
| scRNA-seq | single-cell RNA sequencing |
| SNP | single nucleotide polymorphisms |
| ST | spatial transcriptomics |
| WGBS | whole-genome bisulfite sequencing |
References
- Alvaro, D.; Gores, G.J.; Walicki, J.; Hassan, C.; Sapisochin, G.; Komuta, M.; Forner, A.; Valle, J.W.; Laghi, A.; Ilyas, S.I.; et al. EASL-ILCA Clinical Practice Guidelines on the management of intrahepatic cholangiocarcinoma. J. Hepatol. 2023, 79, 181–208. [Google Scholar] [CrossRef]
- Wang, H.; Chen, J.; Zhang, X.; Sheng, X.; Chang, X.-Y.; Chen, J.; Chen, M.-S.; Dong, H.; Duan, G.-J.; Hu, H.-P.; et al. Expert Consensus on Pathological Diagnosis of Intrahepatic Cholangiocarcinoma (2022 version). J. Clin. Transl. Hepatol. 2023, 11, 1553–1564. [Google Scholar] [CrossRef]
- Moris, D.; Palta, M.; Kim, C.; Allen, P.J.; Morse, M.A.; Lidsky, M.E. Advances in the treatment of intrahepatic cholangiocarcinoma: An overview of the current and future therapeutic landscape for clinicians. CA Cancer J. Clin. 2023, 73, 198–222. [Google Scholar] [CrossRef]
- De Santis, A.; Zhu, L.; Tao, J.; Reißfelder, C.; Schölch, S. Molecular subtypes of intrahepatic cholangiocarcinoma. Trends Mol. Med. 2025, 31, 755–769. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Zhu, K.; Pang, Y.; Han, J.; Zhang, X.; Jiang, Z.; Huang, Y.; Gu, W.; Ji, Y. Molecular Detection of FGFR2 Rearrangements in Resected Intrahepatic Cholangiocarcinomas: FISH Could Be An Ideal Method in Patients with Histological Small Duct Subtype. J. Clin. Transl. Hepatol. 2023, 11, 1355–1367. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Liu, Z.; Yu, Y.; Chen, Y.; Liu, H.; Guo, Y.; Peng, Z.; Cai, G.; Hua, Z.; Han, X.; et al. TP53/KRAS Co-Mutations Create Divergent Prognosis Signatures in Intrahepatic Cholangiocarcinoma. Front. Genet. 2022, 13, 844800. [Google Scholar] [CrossRef] [PubMed]
- Brandi, G.; Deiana, C.; Galvani, L.; Palloni, A.; Ricci, A.D.; Rizzo, A.; Tavolari, S. Are FGFR and IDH1-2 alterations a positive prognostic factor in intrahepatic cholangiocarcinoma? An unresolved issue. Front. Oncol. 2023, 13, 1137510. [Google Scholar] [CrossRef]
- Gupta, A.; Dixon, E. Epidemiology and risk factors: Intrahepatic cholangiocarcinoma. Hepatobiliary Surg. Nutr. 2017, 6, 101–104. [Google Scholar] [CrossRef]
- Xu, J.; Wang, R.; Guan, X. Enhancing insights into Global Cancer Statistics 2022: Implications for cancer control. Sci. China Life Sci. 2025, 68, 294–296. [Google Scholar] [CrossRef]
- He, S.; Xia, C.; Li, H.; Cao, M.; Yang, F.; Yan, X.; Zhang, S.; Teng, Y.; Li, Q.; Chen, W. Cancer profiles in China and comparisons with the USA: A comprehensive analysis in the incidence, mortality, survival, staging, and attribution to risk factors. Sci. China Life Sci. 2024, 67, 122–131. [Google Scholar] [CrossRef]
- Kraus, V.B. Biomarkers as drug development tools: Discovery, validation, qualification and use. Nat. Rev. Rheumatol. 2018, 14, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Brown, Z.J.; Hewitt, D.B.; Pawlik, T.M. Biomarkers of intrahepatic cholangiocarcinoma: Diagnosis and response to therapy. Front. Biosci. (Landmark Ed.) 2022, 27, 85. [Google Scholar] [CrossRef] [PubMed]
- Lowery, M.A.; Ptashkin, R.; Jordan, E.; Berger, M.F.; Zehir, A.; Capanu, M.; Kemeny, N.E.; O’Reilly, E.M.; El-Dika, I.; Jarnagin, W.R.; et al. Comprehensive Molecular Profiling of Intrahepatic and Extrahepatic Cholangiocarcinomas: Potential Targets for Intervention. Clin. Cancer Res. 2018, 24, 4154–4161. [Google Scholar] [CrossRef]
- Zou, S.; Li, J.; Zhou, H.; Frech, C.; Jiang, X.; Chu, J.S.C.; Zhao, X.; Li, Y.; Li, Q.; Wang, H.; et al. Mutational landscape of intrahepatic cholangiocarcinoma. Nat. Commun. 2014, 5, 5696. [Google Scholar] [CrossRef]
- Boerner, T.; Drill, E.; Pak, L.M.; Nguyen, B.; Sigel, C.S.; Doussot, A.; Shin, P.; Goldman, D.A.; Gonen, M.; Allen, P.J.; et al. Genetic Determinants of Outcome in Intrahepatic Cholangiocarcinoma. Hepatology 2021, 74, 1429–1444. [Google Scholar] [CrossRef]
- Pellat, A.; Vaquero, J.; Fouassier, L. Role of ErbB/HER family of receptor tyrosine kinases in cholangiocyte biology. Hepatology 2018, 67, 762–773. [Google Scholar] [CrossRef]
- Plum, P.S.; Hess, T.; Bertrand, D.; Morgenstern, I.; Velazquez Camacho, O.; Jonas, C.; Alidousty, C.; Wagner, B.; Roessler, S.; Albrecht, T.; et al. Integrative genomic analyses of European intrahepatic cholangiocarcinoma: Novel ROS1 fusion gene and PBX1 as prognostic marker. Clin. Transl. Med. 2024, 14, e1723. [Google Scholar] [CrossRef]
- Wardell, C.P.; Fujita, M.; Yamada, T.; Simbolo, M.; Fassan, M.; Karlic, R.; Polak, P.; Kim, J.; Hatanaka, Y.; Maejima, K.; et al. Genomic characterization of biliary tract cancers identifies driver genes and predisposing mutations. J. Hepatol. 2018, 68, 959–969. [Google Scholar] [CrossRef]
- Nakamura, H.; Arai, Y.; Totoki, Y.; Shirota, T.; Elzawahry, A.; Kato, M.; Hama, N.; Hosoda, F.; Urushidate, T.; Ohashi, S.; et al. Genomic spectra of biliary tract cancer. Nat. Genet. 2015, 47, 1003–1010. [Google Scholar] [CrossRef]
- Madoff, D.C.; Abi-Jaoudeh, N.; Braxton, D.; Goyal, L.; Jain, D.; Odisio, B.C.; Salem, R.; Schattner, M.; Sheth, R.; Li, D. An Expert, Multidisciplinary Perspective on Best Practices in Biomarker Testing in Intrahepatic Cholangiocarcinoma. Oncologist 2022, 27, 884–891. [Google Scholar] [CrossRef] [PubMed]
- Kendre, G.; Murugesan, K.; Brummer, T.; Segatto, O.; Saborowski, A.; Vogel, A. Charting co-mutation patterns associated with actionable drivers in intrahepatic cholangiocarcinoma. J. Hepatol. 2023, 78, 614–626. [Google Scholar] [CrossRef] [PubMed]
- Tsilimigras, D.I.; Pawlik, T.M. ASO Author Reflections: Racial and Sex Differences in Genomic Profiling of Intrahepatic Cholangiocarcinoma. Ann. Surg. Oncol. 2024, 31, 9231–9232. [Google Scholar] [CrossRef]
- Zhu, A.X.; Macarulla, T.; Javle, M.M.; Kelley, R.K.; Lubner, S.J.; Adeva, J.; Cleary, J.M.; Catenacci, D.V.T.; Borad, M.J.; Bridgewater, J.A.; et al. Final Overall Survival Efficacy Results of Ivosidenib for Patients With Advanced Cholangiocarcinoma With IDH1 Mutation: The Phase 3 Randomized Clinical ClarIDHy Trial. JAMA Oncol. 2021, 7, 1669–1677. [Google Scholar] [CrossRef]
- Research C for DE and FDA Grants Accelerated Approval to Pemigatinib for Cholangiocarcinoma with an FGFR2 Rearrangement or Fusion. FDA. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-pemigatinib-cholangiocarcinoma-fgfr2-rearrangement-or-fusion (accessed on 7 August 2024).
- Vogel, A.; Sahai, V.; Hollebecque, A.; Vaccaro, G.; Melisi, D.; Al Rajabi, R.; Paulson, A.; Borad, M.; Gallinson, D.; Murphy, A.; et al. An open-label study of pemigatinib in cholangiocarcinoma: Final results from FIGHT-202. ESMO Open. 2024, 9, 103488. [Google Scholar] [CrossRef]
- Zhang, P.; Li, P.; Tang, M.; Gimple, R.C.; Huang, L.; Yue, J.; Shen, Q.; Du, Y.; Zhang, Q.; Yang, Z.; et al. The genomic and immunogenomic landscape of mechanics pathway informs clinical prognosis and response to mechanotherapy. Sci. China Life Sci. 2024, 67, 1549–1562. [Google Scholar] [CrossRef]
- de Langen, A.J.; Johnson, M.L.; Mazieres, J.; Dingemans, A.-M.C.; Mountzios, G.; Pless, M.; Wolf, J.; Schuler, M.; Lena, H.; Skoulidis, F.; et al. Sotorasib versus docetaxel for previously treated non-small-cell lung cancer with KRASG12C mutation: A randomised, open-label, phase 3 trial. Lancet 2023, 401, 733–746. [Google Scholar] [CrossRef]
- Weng, S.; Zhang, D.; Yang, M.; Wang, L.; Yuan, Y. Vemurafenib effectively controlled Chemotherapy-refractory Intrahepatic Cholangiocarcinoma with BRAF V600E Mutation: A case report and literature review. Z. Gastroenterol. 2022, 60, 1787–1791. [Google Scholar] [CrossRef] [PubMed]
- Sherman, R.M.; Salzberg, S.L. Pan-genomics in the human genome era. Nat. Rev. Genet. 2020, 21, 243–254. [Google Scholar] [CrossRef]
- Li, Y.; Yu, J.; Zhang, Y.; Peng, C.; Song, Y.; Liu, S. Advances in targeted therapy of cholangiocarcinoma. Ann. Med. 2024, 56, 2310196. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, U.; Abbass, A.; Khan, K. Optimizing outcomes and personalizing care with targeted agents in advanced cholangiocarcinoma. Cancer Treat. Rev. 2024, 131, 102851. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef]
- Huang, D.; Ma, N.; Li, X.; Gou, Y.; Duan, Y.; Liu, B.; Xia, J.; Zhao, X.; Wang, X.; Li, Q.; et al. Advances in single-cell RNA sequencing and its applications in cancer research. J. Hematol. Oncol. 2023, 16, 98. [Google Scholar] [CrossRef]
- Pentimalli, T.M.; Karaiskos, N.; Rajewsky, N. Challenges and Opportunities in the Clinical Translation of High-Resolution Spatial Transcriptomics. Annu. Rev. Pathol. 2025, 20, 405–432. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Cao, H.; Liu, C.; Sun, X.; Dai, S.; Liu, L.; Wang, Y.; Guo, C.; Wang, X.; Gao, Y.; et al. MAL2 reprograms lipid metabolism in intrahepatic cholangiocarcinoma via EGFR/SREBP-1 pathway based on single-cell RNA sequencing. Cell Death Dis. 2024, 15, 411. [Google Scholar] [CrossRef] [PubMed]
- Li, J.H.; Zhu, X.X.; Li, F.X.; Huang, C.-S.; Huang, X.-T.; Wang, J.-Q.; Gao, Z.-X.; Li, S.-J.; Xu, Q.-C.; Zhao, W.; et al. MFAP5 facilitates the aggressiveness of intrahepatic Cholangiocarcinoma by activating the Notch1 signaling pathway. J. Exp. Clin. Cancer Res. 2019, 38, 476. [Google Scholar] [CrossRef]
- Lei, G.L.; Li, Z.; Li, Y.Y.; Hong, Z.-X.; Wang, S.; Bai, Z.-F.; Sun, F.; Yan, J.; Yu, L.-X.; Yang, P.-H.; et al. Long noncoding RNA FAM66C promotes tumor progression and glycolysis in intrahepatic cholangiocarcinoma by regulating hsa-miR-23b-3p/KCND2 axis. Environ. Toxicol. 2021, 36, 2322–2332. [Google Scholar] [CrossRef]
- Jiao, M.; Ning, S.; Chen, J.; Chen, L.; Jiao, M.; Cui, Z.; Guo, L.; Mu, W.; Yang, H. Long non-coding RNA ZEB1-AS1 predicts a poor prognosis and promotes cancer progression through the miR-200a/ZEB1 signaling pathway in intrahepatic cholangiocarcinoma. Int. J. Oncol. 2020, 56, 1455–1467. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, L.; Lu, S.; Xiang, Y.; Zeng, C.; He, T.; Ding, Y.; Wang, W. Long Non-coding RNA CASC15 Promotes Intrahepatic Cholangiocarcinoma Possibly through Inducing PRDX2/PI3K/AKT Axis. Cancer Res. Treat. 2021, 53, 184–198. [Google Scholar] [CrossRef]
- Liao, W.; Du, J.; Li, L.; Wu, X.; Chen, X.; Feng, Q.; Xu, L.; Chen, X.; Liao, M.; Huang, J.; et al. CircZNF215 promotes tumor growth and metastasis through inactivation of the PTEN/AKT pathway in intrahepatic cholangiocarcinoma. J. Exp. Clin. Cancer Res. 2023, 42, 125. [Google Scholar] [CrossRef]
- Li, J.; Xu, X.; Xu, K.; Zhou, X.; Wu, K.; Yao, Y.; Liu, Z.; Chen, C.; Wang, L.; Sun, Z.; et al. N6-methyladenosine-modified circSLCO1B3 promotes intrahepatic cholangiocarcinoma progression via regulating HOXC8 and PD-L1. J. Exp. Clin. Cancer Res. 2024, 43, 119. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Wang, T.; Shi, K.; Fan, S.; Li, C.; Chen, R.; Wang, J.; Jiang, W.; Zhang, Y.; et al. CircPCNXL2 promotes tumor growth and metastasis by interacting with STRAP to regulate ERK signaling in intrahepatic cholangiocarcinoma. Mol. Cancer 2024, 23, 35. [Google Scholar] [CrossRef]
- Louis, C.; Ferlier, T.; Leroux, R.; Pineau, R.; Desoteux, M.; Papoutsoglou, P.; Leclerc, D.; Angenard, G.; Vaquero, J.; Macias, R.I.R.; et al. TGFβ-induced circLTBP2 predicts a poor prognosis in intrahepatic cholangiocarcinoma and mediates gemcitabine resistance by sponging miR-338-3p. JHEP Rep. 2023, 5, 100900. [Google Scholar] [CrossRef]
- Xu, Y.P.; Dong, Z.N.; Wang, S.W.; Zheng, Y.-M.; Zhang, C.; Zhou, Y.-Q.; Zhao, Y.-J.; Zhao, Y.; Wang, F.; Peng, R.; et al. circHMGCS1-016 reshapes immune environment by sponging miR-1236-3p to regulate CD73 and GAL-8 expression in intrahepatic cholangiocarcinoma. J. Exp. Clin. Cancer Res. 2021, 40, 290. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, H.; Li, Z.; Li, F.; Liang, L.; Zou, Y.; Shen, H.; Li, J.; Xia, Y.; Cheng, Z.; et al. Circular RNA ACTN4 promotes intrahepatic cholangiocarcinoma progression by recruiting YBX1 to initiate FZD7 transcription. J. Hepatol. 2022, 76, 135–147. [Google Scholar] [CrossRef]
- Xu, Y.; Leng, K.; Yao, Y.; Kang, P.; Liao, G.; Han, Y.; Shi, G.; Ji, D.; Huang, P.; Zheng, W.; et al. A Circular RNA, Cholangiocarcinoma-Associated Circular RNA 1, Contributes to Cholangiocarcinoma Progression, Induces Angiogenesis, and Disrupts Vascular Endothelial Barriers. Hepatology 2021, 73, 1419–1435. [Google Scholar] [CrossRef]
- Chen, R.X.; Liu, S.C.; Kan, X.C.; Wang, Y.R.; Wang, J.F.; Wang, T.L.; Li, C.; Jiang, W.J.; Chen, Y.A.L.; Zhou, T.; et al. CircUGP2 Suppresses Intrahepatic Cholangiocarcinoma Progression via p53 Signaling Through Interacting With PURB to Regulate ADGRB1 Transcription and Sponging miR-3191-5p. Adv. Sci. 2024, 11, e2402329. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Li, S.H.; Huang, G.L.; Lin, G.-H.; Shuang, Z.-Y.; Lao, X.-M.; Xu, L.; Lin, X.-J.; Wang, H.-Y.; Li, S.-P. Identification of a novel microRNA signature associated with intrahepatic cholangiocarcinoma (ICC) patient prognosis. BMC Cancer 2015, 15, 64. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Lanzarini, E.; Santosh, P. Autonomic dysfunction and sudden death in patients with Rett syndrome: A systematic review. J. Psychiatry Neurosci. 2020, 45, 150–181. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Shi, Y.; Meng, L.; Ma, J.; Huang, S.; Zhang, J.; Wu, Y.; Li, J.; Lin, Y.; Yang, S.; et al. Single-cell transcriptomic analysis suggests two molecularly subtypes of intrahepatic cholangiocarcinoma. Nat. Commun. 2022, 13, 1642. [Google Scholar] [CrossRef] [PubMed]
- Matsumori, T.; Kodama, Y.; Takai, A.; Shiokawa, M.; Nishikawa, Y.; Matsumoto, T.; Takeda, H.; Marui, S.; Okada, H.; Hirano, T.; et al. Hes1 Is Essential in Proliferating Ductal Cell-Mediated Development of Intrahepatic Cholangiocarcinoma. Cancer Res. 2020, 80, 5305–5316. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Chen, Q.; Xue, H.; Zhang, L.; Wang, K.; Shen, F. LncRNA MNX1-AS1 promotes progression of intrahepatic cholangiocarcinoma through the MNX1/Hippo axis. Cell Death Dis. 2020, 11, 894. [Google Scholar] [CrossRef]
- Xu, Y.; Yao, Y.; Jiang, X.; Zhong, X.; Wang, Z.; Li, C.; Kang, P.; Leng, K.; Ji, D.; Li, Z.; et al. SP1-induced upregulation of lncRNA SPRY4-IT1 exerts oncogenic properties by scaffolding EZH2/LSD1/DNMT1 and sponging miR-101-3p in cholangiocarcinoma. J. Exp. Clin. Cancer Res. 2018, 37, 81. [Google Scholar] [CrossRef] [PubMed]
- Angenard, G.; Merdrignac, A.; Louis, C.; Edeline, J.; Coulouarn, C. Expression of long non-coding RNA ANRIL predicts a poor prognosis in intrahepatic cholangiocarcinoma. Dig. Liver Dis. 2019, 51, 1337–1343. [Google Scholar] [CrossRef]
- Xia, L.; Chen, X.; Yang, J.; Zhu, S.; Zhang, L.; Yin, Q.; Hong, Y.; Chen, H.; Chen, G.; Li, H. Long Non-Coding RNA-PAICC Promotes the Tumorigenesis of Human Intrahepatic Cholangiocarcinoma by Increasing YAP1 Transcription. Front. Oncol. 2020, 10, 595533. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Lan, T.; Liao, H.; Feng, X.; Chen, X.; Liao, W.; Hou, G.; Xu, L.; Feng, Q.; Xie, K.; et al. CircNFIB inhibits tumor growth and metastasis through suppressing MEK1/ERK signaling in intrahepatic cholangiocarcinoma. Mol. Cancer 2022, 21, 18. [Google Scholar] [CrossRef]
- Chen, Z.; Kang, F.; Xie, C.; Liao, C.; Li, G.; Wu, Y.; Lin, H.; Zhu, S.; Hu, J.; Lin, C.; et al. A Novel Trojan Horse Nanotherapy Strategy Targeting the cPKM-STMN1/TGFB1 Axis for Effective Treatment of Intrahepatic Cholangiocarcinoma. Adv. Sci. 2023, 10, 2303814. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Lan, T.; Liu, H.; Liu, C.; Dai, J.; Xu, L.; Cai, Y.; Hou, G.; Xie, K.; Liao, M.; et al. IL-6-induced cGGNBP2 encodes a protein to promote cell growth and metastasis in intrahepatic cholangiocarcinoma. Hepatology 2022, 75, 1402–1419. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, Y.; Tao, L.; Cai, J.; Shen, Z.; Liu, Y.; Pan, H.; Li, S.; Ruan, Y.; Chen, T.; et al. Circ-RAPGEF5 promotes intrahepatic cholangiocarcinoma progression by stabilizing SAE1 to facilitate SUMOylation. J. Exp. Clin. Cancer Res. 2023, 42, 239. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Hu, Z.; Yu, S.; Su, S.; Wu, R.; Chen, C.; Ye, Y.; Wang, H.; Ye, X.; Zhou, Z.; et al. A novel protein encoded by circFOXP1 enhances ferroptosis and inhibits tumor recurrence in intrahepatic cholangiocarcinoma. Cancer Lett. 2024, 598, 217092. [Google Scholar] [CrossRef]
- Yu, X.; Tong, H.; Chen, J.; Tang, C.; Wang, S.; Si, Y.; Wang, S.; Tang, Z. CircRNA MBOAT2 promotes intrahepatic cholangiocarcinoma progression and lipid metabolism reprogramming by stabilizing PTBP1 to facilitate FASN mRNA cytoplasmic export. Cell Death Dis. 2023, 14, 20. [Google Scholar] [CrossRef]
- Xiong, Q.; Zhang, Y. Small RNA modifications: Regulatory molecules and potential applications. J. Hematol. Oncol. 2023, 16, 64. [Google Scholar] [CrossRef]
- Zhu, L.; Li, J.; Gong, Y.; Wu, Q.; Tan, S.; Sun, D.; Xu, X.; Zuo, Y.; Zhao, Y.; Wei, Y.-Q.; et al. Exosomal tRNA-derived small RNA as a promising biomarker for cancer diagnosis. Mol. Cancer 2019, 18, 74. [Google Scholar] [CrossRef]
- Liu, Y.; Ruan, H.; Li, S.; Ye, Y.; Hong, W.; Gong, J.; Zhang, Z.; Jing, Y.; Zhang, X.; Diao, L.; et al. The genetic and pharmacogenomic landscape of snoRNAs in human cancer. Mol. Cancer 2020, 19, 108. [Google Scholar] [CrossRef]
- Jing, Z.; Xi, Y.; Yin, J.; Shuwen, H. Biological roles of piRNAs in colorectal cancer. Gene 2021, 769, 145063. [Google Scholar] [CrossRef]
- Ng, C.K.Y.; Dazert, E.; Boldanova, T.; Coto-Llerena, M.; Nuciforo, S.; Ercan, C.; Suslov, A.; Meier, M.-A.; Bock, T.; Schmidt, A.; et al. Integrative proteogenomic characterization of hepatocellular carcinoma across etiologies and stages. Nat. Commun. 2022, 13, 2436. [Google Scholar] [CrossRef]
- Guo, Y.; Li, Q.; Ren, W.; Wu, H.; Wang, C.; Li, X.; Xue, B.; Qiu, Y.; Zhang, J.; Chen, J.; et al. Quantitative Proteomics Reveals Down-Regulated Glycolysis/Gluconeogenesis in the Large-Duct Type Intrahepatic Cholangiocarcinoma. J. Proteome Res. 2022, 21, 2504–2514. [Google Scholar] [CrossRef]
- Li, H.; Zhang, J.; Gu, L. Efficacy and safety of maintenance therapy with anlotinib for advanced cholangiocarcinoma after first-line chemotherapy and the variations in efficacy based on different neutrophil-to-lymphocyte ratio (NLR). World J. Surg. Oncol. 2024, 22, 200. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Niu, K.; Wang, J.; Shen, W.; Jiang, R.; Liu, L.; Song, W.; Wang, X.; Zhang, X.; Zhang, R.; et al. Nucleolin lactylation contributes to intrahepatic cholangiocarcinoma pathogenesis via RNA splicing regulation of MADD. J. Hepatol. 2024, 81, 651–666. [Google Scholar] [CrossRef] [PubMed]
- Boyd, L.N.C.; Ali, M.; Comandatore, A.; Brandi, G.; Tavolari, S.; Gaeta, R.; Meijer, L.L.; Le Large, T.Y.S.; Riefolo, M.; Vasuri, F.; et al. Prognostic value of microRNA-21 in intra- and extrahepatic cholangiocarcinoma after radical resection: Cohort study. BJS Open 2024, 8, zrae031. [Google Scholar] [CrossRef]
- Fu, J.; Zheng, L.; Tang, S.; Lin, K.; Zheng, S.; Bi, X.; Wang, J.; Guo, W.; Li, F.; Wang, J.; et al. Tumor burden score and carcinoembryonic antigen predict outcomes in patients with intrahepatic cholangiocarcinoma following liver resection: A multi-institutional analysis. BMC Cancer 2024, 24, 358. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.-L.; Yu, G.; Dong, H.; Chen, K.; Xie, J.; Yu, H.; Ji, Y.; Yang, G.-S.; Li, A.-J.; Cong, W.-M.; et al. Proteomics analysis identified TPI1 as a novel biomarker for predicting recurrence of intrahepatic cholangiocarcinoma. J. Gastroenterol. 2020, 55, 1171–1182. [Google Scholar] [CrossRef]
- Chen, F.; Gao, K.; Li, Y.; Li, Y.; Wu, Y.; Dong, L.; Yang, Z.; Shi, J.; Guo, K.; Gao, Q.; et al. ST3GAL1 promotes malignant phenotypes in intrahepatic cholangiocarcinoma. Mol. Cell Proteom. 2024, 23, 100821. [Google Scholar] [CrossRef] [PubMed]
- Carpino, G.; Cardinale, V.; Di Giamberardino, A.; Overi, D.; Donsante, S.; Colasanti, T.; Amato, G.; Mennini, G.; Franchitto, M.; Conti, F.; et al. Thrombospondin 1 and 2 along with PEDF inhibit angiogenesis and promote lymphangiogenesis in intrahepatic cholangiocarcinoma. J. Hepatol. 2021, 75, 1377–1386. [Google Scholar] [CrossRef]
- Yi, X.; Zhu, J.; Liu, W.; Peng, L.; Lu, C.; Sun, P.; Huang, L.; Nie, X.; Huang, S.; Guo, T.; et al. Proteome Landscapes of Human Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma. Mol. Cell Proteom. 2023, 22, 100604. [Google Scholar] [CrossRef]
- Gonçalves, E.; Poulos, R.C.; Cai, Z.; Barthorpe, S.; Manda, S.S.; Lucas, N.; Beck, A.; Bucio-Noble, D.; Dausmann, M.; Hall, C.; et al. Pan-cancer proteomic map of 949 human cell lines. Cancer Cell 2022, 40, 835–849.e8. [Google Scholar] [CrossRef]
- Jiang, H.W.; Chen, H.; Zheng, Y.X.; Wang, X.-N.; Meng, Q.; Xie, J.; Zhang, J.; Zhang, C.; Xu, Z.-W.; Chen, Z.-Q.; et al. Specific pupylation as IDEntity reporter (SPIDER) for the identification of protein-biomolecule interactions. Sci. China Life Sci. 2023, 66, 1869–1887. [Google Scholar] [CrossRef] [PubMed]
- Bennett, H.M.; Stephenson, W.; Rose, C.M.; Darmanis, S. Single-cell proteomics enabled by next-generation sequencing or mass spectrometry. Nat. Methods 2023, 20, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Wang, N.; Ji, N.; Chen, Z.S. Proteomics technologies for cancer liquid biopsies. Mol. Cancer 2022, 21, 53. [Google Scholar] [CrossRef]
- Park, H.J.; Park, B.; Park, S.Y.; Choi, S.H.; Rhee, H.; Park, J.H.; Cho, E.-S.; Yeom, S.-K.; Park, S.; Park, M.-S.; et al. Preoperative prediction of postsurgical outcomes in mass-forming intrahepatic cholangiocarcinoma based on clinical, radiologic, and radiomics features. Eur. Radiol. 2021, 31, 8638–8648. [Google Scholar] [CrossRef]
- Tan, J.; Shu, M.; Liao, J.; Liang, R.; Liu, S.; Kuang, M.; Peng, S.; Xiao, H.; Zhou, Q. Identification and validation of a plasma metabolomics-based model for risk stratification of intrahepatic cholangiocarcinoma. J. Cancer Res. Clin. Oncol. 2023, 149, 12365–12377. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, J.; Zhai, D.; Jiang, Q.; Yang, M.; Zhou, M. Gut microbiota regulates the ALK5/NOX1 axis by altering glutamine metabolism to inhibit ferroptosis of intrahepatic cholangiocarcinoma cells. Biochim. Biophys. Acta Mol. Basis Dis. 2024, 1870, 167152. [Google Scholar] [CrossRef]
- Zhang, W.; Dong, C.; Li, Z.; Shi, H.; Xu, Y.; Zhu, M. Serum targeted metabolomics uncovering specific amino acid signature for diagnosis of intrahepatic cholangiocarcinoma. J. Pharm. Biomed. Anal. 2025, 252, 116457. [Google Scholar] [CrossRef] [PubMed]
- Shi, A.; Liu, Z.; Fan, Z.; Li, K.; Liu, X.; Tang, Y.; Hu, J.; Li, X.; Shu, L.; Zhao, L.; et al. Function of mast cell and bile-cholangiocarcinoma interplay in cholangiocarcinoma microenvironment. Gut 2024, 73, 1350–1363. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Z.; Xu, J.; Tang, S.; An, N.; Jiang, L.; Zhang, Y.; Zhang, S.; Zhang, Q.; Shen, Y.; et al. SLC1A1-mediated cellular and mitochondrial influx of R-2-hydroxyglutarate in vascular endothelial cells promotes tumor angiogenesis in IDH1-mutant solid tumors. Cell Res. 2022, 32, 638–658. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X.; Hang, D.; Lau, H.C.-H.; Du, J.; Liu, C.; Xie, M.; Pan, Y.; Wang, L.; Liang, C.; et al. Integrative plasma and fecal metabolomics identify functional metabolites in adenoma-colorectal cancer progression and as early diagnostic biomarkers. Cancer Cell 2024, 42, 1386–1400.e8. [Google Scholar] [CrossRef]
- Liao, H.; Chen, X.; Wang, H.; Lin, Y.; Chen, L.; Yuan, K.; Liao, M.; Jiang, H.; Peng, J.; Wu, Z.; et al. Whole-Genome DNA Methylation Profiling of Intrahepatic Cholangiocarcinoma Reveals Prognostic Subtypes with Distinct Biological Drivers. Cancer Res. 2024, 84, 1747–1763. [Google Scholar] [CrossRef]
- Vedeld, H.M.; Grimsrud, M.M.; Andresen, K.; Pharo, H.D.; von Seth, E.; Karlsen, T.H.; Honne, H.; Paulsen, V.; Färkkilä, M.A.; Bergquist, A.; et al. Early and accurate detection of cholangiocarcinoma in patients with primary sclerosing cholangitis by methylation markers in bile. Hepatology 2022, 75, 59–73. [Google Scholar] [CrossRef]
- Xiao, P.; Meng, Q.; Liu, Q.; Lang, Q.; Yin, Z.; Li, G.; Li, Z.; Xu, Y.; Yu, Z.; Geng, Q.; et al. IGF2BP1-mediated N6-methyladenosine modification promotes intrahepatic cholangiocarcinoma progression. Cancer Lett. 2023, 557, 216075. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Xu, C.; Zhang, Z.; Wu, H.; Li, X.; Zhang, Y.; Deng, N.; Dang, N.; Tang, G.; Yang, X.; et al. Cellular heterogeneity and transcriptomic profiles during intrahepatic cholangiocarcinoma initiation and progression. Hepatology 2022, 76, 1302–1317. [Google Scholar] [CrossRef]
- Xiong, F.; Wang, D.; Xiong, W.; Wang, X.; Huang, W.-H.; Wu, G.-H.; Liu, W.-Z.; Wang, Q.; Chen, J.-S.; Kuai, Y.-Y.; et al. Unveiling the role of HP1α-HDAC1-STAT1 axis as a therapeutic target for HP1α-positive intrahepatic cholangiocarcinoma. J. Exp. Clin. Cancer Res. 2024, 43, 152. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.C.; Tien, Y.C.; Shi, Y.H.; Chen, S.; Zhu, Y.-Q.; Huang, X.-T.; Huang, C.-S.; Zhao, W.; Yin, X.-Y. METTL3 promotes intrahepatic cholangiocarcinoma progression by regulating IFIT2 expression in an m6A-YTHDF2-dependent manner. Oncogene 2022, 41, 1622–1633. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Zhu, W.; Hou, Y.; Zhang, X.; Ren, X.; Lei, K.; Liao, J.; Liu, H.; Chen, Z.; Peng, S.; et al. METTL5-mediated 18S rRNA m6A modification promotes oncogenic mRNA translation and intrahepatic cholangiocarcinoma progression. Mol. Ther. 2023, 31, 3225–3242. [Google Scholar] [CrossRef]
- Banales, J.M.; Iñarrairaegui, M.; Arbelaiz, A.; Milkiewicz, P.; Muntané, J.; Muñoz-Bellvis, L.; La Casta, A.; Gonzalez, L.M.; Arretxe, E.; Alonso, C.; et al. Serum Metabolites as Diagnostic Biomarkers for Cholangiocarcinoma, Hepatocellular Carcinoma, and Primary Sclerosing Cholangitis. Hepatology 2019, 70, 547–562. [Google Scholar] [CrossRef]
- Nault, J.-C.; Villanueva, A. Biomarkers for Hepatobiliary Cancers. Hepatology 2021, 73 (Suppl. S1), 115–127. [Google Scholar] [CrossRef]
- Macias, R.I.R.; Cardinale, V.; Kendall, T.J.; Avila, M.A.; Guido, M.; Coulouarn, C.; Braconi, C.; Frampton, A.E.; Bridgewater, J.; Overi, D.; et al. Clinical relevance of biomarkers in cholangiocarcinoma: Critical revision and future directions. Gut 2022, 71, 1669–1683. [Google Scholar] [CrossRef]
- Kelley, R.K.; Bridgewater, J.; Gores, G.J.; Zhu, A.X. Systemic therapies for intrahepatic cholangiocarcinoma. J. Hepatol. 2020, 72, 353–363. [Google Scholar] [CrossRef]
- Dong, L.; Lu, D.; Chen, R.; Lin, Y.; Zhu, H.; Zhang, Z.; Cai, S.; Cui, P.; Song, G.; Rao, D.; et al. Proteogenomic characterization identifies clinically relevant subgroups of intrahepatic cholangiocarcinoma. Cancer Cell 2022, 40, 70–87.e15. [Google Scholar] [CrossRef] [PubMed]
- Ou, F.-S.; Michiels, S.; Shyr, Y.; Adjei, A.A.; Oberg, A.L. Biomarker Discovery and Validation: Statistical Considerations. J. Thorac. Oncol. 2021, 16, 537–545. [Google Scholar] [CrossRef]
- Balasubramanian, B.; Yacqub-Usman, K.; Venkatraman, S.; Myint, K.Z.; Juengsamarn, J.; Sarkhampee, P.; Lertsawatvicha, N.; Sripa, J.; Kuakpaetoon, T.; Suriyonplengsaeng, C.; et al. Targeting FGFRs Using PD173074 as a Novel Therapeutic Strategy in Cholangiocarcinoma. Cancers 2023, 15, 2528. [Google Scholar] [CrossRef] [PubMed]


| Prognostic Assessment | Gene Name | Category | Source | Mechanism | Ref. |
|---|---|---|---|---|---|
| High expression is correlated with unfavorable prognosis | MAL2 | mRNA | tissue | Reprograms lipid metabolism via EGFR/SREBP-1 signaling in iCCA | [35] |
| MFAP5 | mRNA | serum, tissue | Activates the Notch1 signaling pathway to promote iCCA aggressiveness | [36] | |
| SPRY4-IT1 | lncRNA | tissue | Upregulates in CCA and associates with advanced tumor stage and poor survival | [37] | |
| FAM66C | lncRNA | tissue | Drives tumorigenesis and glycolysis via the miR-23b-3p/KCND2 axis; enhances proliferation and metastasis | [37] | |
| MNX1-AS1 | lncRNA | tissue | Promotes iCCA progression via the MNX1-AS1/c-Myc/MAZ/MNX1/Ajuba/Hippo signaling cascade | [38] | |
| ZEB1-AS1 | lncRNA | tissue | Promotes cancer progression via the miR-200a/ZEB1 signaling pathway | [38] | |
| CASC15 | lncRNA | tissue | Correlates with larger tumor size, advanced TNM stage, and poor prognosis | [39] | |
| circZNF215 (hsa_circ_0096334) | circRNA | tissue | Promotes tumor growth and metastasis by inactivating the PTEN/AKT pathway in iCCA | [40] | |
| circSLCO1B3 (hsa_circ_0025580) | circRNA | tissue | Promotes iCCA proliferation and metastasis via the miR-502-5p/HOXC8/SMAD3 axis and inhibits PD-L1 degradation via SPOP | [41] | |
| circPCNXL2 (has_circ_0016956) | circRNA | tissue | Promotes tumor growth and metastasis by interacting with STRAP to activate ERK signaling in iCCA | [42] | |
| circLTBP2 (has_circ_0032603) | circRNA | serum, tissue | Promotes pro-metastatic targets by competitively regulating miR-338-3p | [43] | |
| circHMGCS1-016 (hsa_circ_0008621) | circRNA | tissue | Induces immune evasion by sponging miR-1236-3p and upregulating CD73 and GAL-8 | [44] | |
| circACTN4 (Hsa_circ_0050898) | circRNA | tissue | Promotes iCCA progression by recruiting YBX1 to activate FZD7 transcription | [45] | |
| circCCAC1 (hsa_circ_0043469) | circRNA | bile, tissue | Promotes iCCA by sequestering EZH2 in the cytoplasm, elevating SH3 domain-containing homolog | [46] | |
| miR-3191-5p | miRNA | tissue | Suppresses tumor growth via p53 activation and associates with better survival | [47] | |
| Low expression is correlated with unfavorable prognosis | circUGP2 (hsa_circ_0001020) | circRNA | tissue | Suppresses iCCA progression via p53 signaling by targeting UHRF1 and regulating ADGRB1 transcription | [47] |
| miR-338-3p | miRNA | tissue | Suppresses iCCA progression by targeting oncogenic transcripts and correlates with improved OS and RFS | [48] |
| Panel | Biomarkers | Sample Source | Omics Source | Applicable Clinical Scenario | Rationale |
|---|---|---|---|---|---|
| Blood-based screening panel | Glutamine + MFAP5 + CA19-9 + CEA | Blood (serum/plasma) | Metabolomics + Transcriptomics + Proteomics | Early-stage screening, liquid biopsy | Easily accessible, biologically complementary, suitable for high-throughput diagnostic platforms |
| Bile-based confirmation panel | circCCAC1 + CDO1 methylation + SEPT9 methylation | Bile | Transcriptomics + Epigenetics | Confirmatory diagnosis in high-risk individuals | High specificity, applicable for PSC patients or inconclusive imaging cases via endoscopic sampling |
| Panel | Biomarkers | Omics Source | Mechanism Summary | Proposed Therapeutic Strategy | Applicable Clinical Scenario |
|---|---|---|---|---|---|
| Metabolic-Mutation Panel | IDH1/2 mutation + R-2HG accumulation + ALDH overexpression | Genomics + Metabolomics + Proteomics | Alters metabolic reprogramming, promotes malignant phenotype | mIDH1 inhibitors (e.g., Ivosidenib)+ ALDH inhibitors (e.g., NCT-501) | IDH-mutant or metabolically dysregulated iCCA subtypes |
| Immune-Resistance Panel | KRAS mutation + Treg infiltration + PD-1 overexpression | Genomics + Transcriptomics | Induces immunosuppressive TME, mediates poor immunotherapy response | KRAS inhibitors (e.g., sotorasib) combined with PD-1 checkpoint blockade | KRAS-mutant iCCA with immune-cold phenotype and resistance to PD-1 therapy |
| Drug Resistance Targets | MAL2, circLTBP2, circHMGCS1-016 | Transcriptomics | Modulate sensitivity to cisplatin, gemcitabine, and PD-1 blockade | Combination strategies tailored by functional validation | iCCA patients with high risk of primary or acquired resistance |
| Subtype | Omics Characteristics | Prognostic Biomarker | Prognostic Trend |
|---|---|---|---|
| S1 Inflammatory subtype | Proteomics: Upregulation of inflammatory proteins such as MPO, CD14, and C5AR1 | SLC16A3 | Worst |
| Genomics: KRAS mutations | |||
| Immunomics: Infiltration of immunosuppressive cells; high expression of IDO and PD-L1 | |||
| S2 Mesenchymal subtype | Proteomics: High expression of CAF/ECM-related proteins such as POSTN and FAP | POSTN | Intermediate |
| Immunomics: Enhanced angiogenic signaling; elevated expression of immune checkpoints such as CD276 | |||
| S3 Metabolic subtype | Proteomics: Upregulation of metabolic enzymes such as FASN, IDH1, and MAPK-related proteins | ALDOB | Favorable |
| Genomics: TP53 mutations enriched | |||
| Metabolomics: Active carbon metabolism | |||
| S4 Differentiated subtype | Proteomics: High expression of biliary differentiation markers such as EPCAM and KRT18 | HKDC1 | Best |
| Genomics: Mutations in FGFR2, IDH1/2, and BAP1 | |||
| Immunomics: Enriched CD8+ naive T cells |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Na, J.; Shi, T.; Liu, X. Advances in Multi-Omics Research on Biomarkers of Intrahepatic Cholangiocarcinoma. Curr. Issues Mol. Biol. 2025, 47, 905. https://doi.org/10.3390/cimb47110905
Yang J, Na J, Shi T, Liu X. Advances in Multi-Omics Research on Biomarkers of Intrahepatic Cholangiocarcinoma. Current Issues in Molecular Biology. 2025; 47(11):905. https://doi.org/10.3390/cimb47110905
Chicago/Turabian StyleYang, Jingxue, Jintong Na, Tieliu Shi, and Xiyu Liu. 2025. "Advances in Multi-Omics Research on Biomarkers of Intrahepatic Cholangiocarcinoma" Current Issues in Molecular Biology 47, no. 11: 905. https://doi.org/10.3390/cimb47110905
APA StyleYang, J., Na, J., Shi, T., & Liu, X. (2025). Advances in Multi-Omics Research on Biomarkers of Intrahepatic Cholangiocarcinoma. Current Issues in Molecular Biology, 47(11), 905. https://doi.org/10.3390/cimb47110905
