Neonatal Diabetes in Patients Affected by Liang-Wang Syndrome Carrying KCNMA1 Variant p.(Gly375Arg) Suggest a Potential Role of Ca2+ and Voltage-Activated K+ Channel Activity in Human Insulin Secretion
Abstract
:1. Introduction
2. Case Presentation
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Latorre, R.; Castillo, K.; Carrasquel-Ursulaez, W.; Sepulveda, R.V.; Gonzalez-Nilo, F.; Gonzalez, C.; Alvarez, O. Molecular Determinants of BK Channel Functional Diversity and Functioning. Physiol. Rev. 2016, 97, 39–87. [Google Scholar] [CrossRef]
- Kshatri, A.S.; Gonzalez-Hernandez, A.; Giraldez, T. Physiological Roles and Therapeutic Potential of Ca2+ Activated Potassium Channels in the Nervous System. Front. Mol. Neurosci. 2018, 11, 258. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Li, X.; Moutton, S.; Vergano, S.A.S.; Cogné, B.; Saint-Martin, A.; Hurst, A.C.E.; Hu, Y.; Bodamer, O.; Thevenon, J.; et al. De novo loss-of-function KCNMA1 variants are associated with a new multiple malformation syndrome and a broad spectrum of developmental and neurological phenotypes. Hum. Mol. Genet. 2019, 28, 2937–2951. [Google Scholar] [CrossRef]
- Vetri, F.; Choudhury, M.S.R.; Pelligrino, D.A.; Sundivakkam, P. BKca channels as physiological regulators: A focused review. J. Receptor. Ligand Channel Res. 2014, 7, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Ledoux, J.; Werner, M.E.; Brayden, J.E.; Nelson, M.T. Calcium-activated potassium channels and the regulation of vascular tone. Physiology 2006, 21, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Ghatta, S.; Nimmagadda, D.; Xu, X.; O’Rourke, S.T. Large-conductance, calcium-activated potassium channels: Structural and functional implications. Pharmacol. Ther. 2006, 110, 103–116. [Google Scholar] [CrossRef]
- Ferrera, L.; Barbieri, R.; Picco, C.; Zuccolini, P.; Remigante, A.; Bertelli, S.; Fumagalli, M.R.; Zifarelli, G.; La Porta, C.A.M.; Gavazzo, P.; et al. TRPM2 Oxidation Activates Two Distinct Potassium Channels in Melanoma Cells through Intracellular Calcium Increase. Int. J. Mol. Sci. 2021, 22, 8359. [Google Scholar] [CrossRef] [PubMed]
- Mohr, C.J.; Schroth, W.; Mürdter, T.E.; Gross, D.; Maier, S.; Stegen, B.; Dragoi, A.; Steudel, F.A.; Stehling, S.; Hoppe, R.; et al. Subunits of BK channels promote breast cancer development and modulate responses to endocrine treatment in preclinical models. Br. J. Pharmacol. 2020. online ahead of print. [Google Scholar] [CrossRef]
- Rosa, P.; Catacuzzeno, L.; Sforna, L.; Mangino, G.; Carlomagno, S.; Mincione, G.; Petrozza, V.; Ragona, G.; Franciolini, F.; Calogero, A. BK channels blockage inhibits hypoxia-induced migration and chemoresistance to cisplatin in human glioblastoma cells. J. Cell. Physiol. 2018, 233, 6866–6877. [Google Scholar] [CrossRef]
- Rorsman, P.; Ashcroft, F.M. Pancreatic β-cell electrical activity and insulin secretion: Of mice and men. Physiol. Rev. 2018, 98, 117–214. [Google Scholar] [CrossRef]
- Ashcroft, F.M.; Rorsman, P. KATP channels and islet hormone secretion: New insightsand controversies. Nat. Rev. Endocrinol. 2013, 9, 660–669. [Google Scholar] [CrossRef] [Green Version]
- Miko, I. Phenotype variability: Penetrance and expressivity. Nat. Educ. 2008, 1, 137. [Google Scholar]
- Ashcroft, F.M.; Puljung, M.C.; Vedovato, N. Neonatal Diabetes and the KATP Channel: From Mutation to Therapy. Trends Endocrinol. Metab. 2017, 28, 377–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimomura, K.; Maejima, Y. KATP Channel Mutations and Neonatal Diabetes. Intern. Med. 2017, 56, 2387–2393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vierra, N.C.; Dadi, P.K.; Milian, S.C.; Dickerson, M.T.; Jordan, K.L.; Gilon, P.; Jacobson, D.A. TALK-1 channels control β cell endoplasmic reticulum Ca2+ homeostasis. Sci. Signal. 2017, 10, eaan2883. [Google Scholar] [CrossRef] [Green Version]
- Graff, S.M.; Dadi, P.; Ibsen, C.E.; Dickerson, M.; Jordan, K.L.; Jacobson, D. 40-OR: The Role of TALK-1 K+ Channels in Pancreatic ß-Cell Insulin Secretion, Mitochondrial Function, and the ER Stress Response. Diabetes 2019, 68, 40-OR. [Google Scholar] [CrossRef]
- Nardi, A.; Olesen, S.-P. BK Channel Modulators: A Comprehensive Overview. Curr. Med. Chem. 2008, 15, 1126–1146. [Google Scholar] [CrossRef]
- Qian, L.-L.; Liu, X.-Y.; Yu, Z.-M.; Wang, R.-X. BK Channel Dysfunction in Diabetic Coronary Artery: Role of the E3 Ubiquitin Ligases. Front. Physiol. 2020, 11, 453. [Google Scholar] [CrossRef]
- Nystoriak, M.A.; Nieves-Cintrón, M.; Nygren, P.J.; Hinke, S.A.; Nichols, C.B.; Chen, C.-Y.; Puglisi, J.L.; Izu, L.T.; Bers, D.M.; Dell’Acqua, M.L.; et al. AKAP150 Contributes to Enhanced Vascular Tone by Facilitating Large-Conductance Ca2+-Activated K+ Channel Remodeling in Hyperglycemia and Diabetes Mellitus. Circ. Res. 2014, 114, 607–615. [Google Scholar] [CrossRef] [Green Version]
- McGahon, M.K.; Dash, D.P.; Arora, A.; Wall, N.; Dawicki, J.; Simpson, D.A.; Scholfield, C.N.; McGeown, J.G.; Curtis, T.M. Diabetes Downregulates Large-Conductance Ca2+-Activated Potassium β1 Channel Subunit in Retinal Arteriolar Smooth Muscle. Circ. Res. 2007, 100, 703–711. [Google Scholar] [CrossRef] [Green Version]
- Lu, T.; Chai, Q.; Jiao, G.; Wang, X.-L.; Sun, X.; Furuseth, J.D.; Stulak, J.M.; Daly, R.C.; Greason, K.L.; Cha, Y.-M.; et al. Downregulation of BK channel function and protein expression in coronary arteriolar smooth muscle cells of type 2 diabetic patients. Cardiovasc. Res. 2019, 115, 145–153. [Google Scholar] [CrossRef]
- Zhang, Z.-Y.; Qian, L.-L.; Wang, N.; Miao, L.-F.; Ma, X.; Dang, S.-P.; Wu, Y.; Liu, X.-Y.; Li, X.-Y.; Chai, Q.; et al. Glucose fluctuations promote vascular BK channels dysfunction via PKCα/NF-κB/MuRF1 signaling. J. Mol. Cell. Cardiol. 2020, 145, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Liu, S.; Sun, P.; Pan, H.; Tian, C.; Zhang, L. Peptide toxins and small-molecule blockers of BK channels. Acta Pharmacol. Sin. 2016, 37, 56–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braun, M.; Ramracheya, R.; Bengtsson, M.; Zhang, Q.; Karanauskaite, J.; Partridge, C.; Johnson, P.R.; Rorsman, P. Voltage-gated ion channels in human pancreatic β-cells: Electrophysiological characterization and role in insulin secretion. Diabetes 2008, 57, 1618–1628. [Google Scholar] [CrossRef] [Green Version]
- Houamed, K.M.; Sweet, I.R.; Satin, L.S. BK channels mediate a novel ionic mechanism that regulates glucose-dependent electrical activity and insulin secretion in mouse pancreatic β-cells. J. Physiol. 2010, 588, 3511–3523. [Google Scholar] [CrossRef]
- Düfer, M.; Neye, Y.; Hörth, K.; Krippeit-Drews, P.; Hennige, A.; Widmer, H.; McClafferty, H.; Shipston, M.J.; Häring, H.U.; Ruth, P.; et al. BK channels affect glucose homeostasis and cell viability of murine pancreatic beta cells. Diabetologia 2011, 54, 423–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rorsman, P.; Braun, M.; Zhang, Q. Regulation of calcium in pancreatic α- and β-cells in health and disease. Cell Calcium 2012, 51, 300–308. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Diaz, R.; Abdulreda, M.H.; Formoso, A.L.; Gans, I.; Ricordi, C.; Berggren, P.O.; Caicedo, A. Innervation patterns of autonomic axons in the human endocrine pancreas. Cell Metab. 2011, 14, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Fu, Z.; Gilbert, E.R.; Liu, D. Regulation of Insulin Synthesis and Secretion and Pancreatic Beta-Cell Dysfunction in Diabetes. Curr. Diabetes Rev. 2013, 9, 25. [Google Scholar] [CrossRef]
- Kalwat, M.A.; Cobb, M.H. Mechanisms of the Amplifying Pathway of Insulin Secretion in the β Cell. Pharmacol. Ther. 2017, 179, 17–30. [Google Scholar] [CrossRef]
- Campbell, J.E.; Newgard, C.B. Mechanisms controlling pancreatic islet cell function in insulin secretion. Nat. Rev. Mol. Cell Biol. 2021, 22, 142–158. [Google Scholar] [CrossRef]
- Checchetto, V.; Teardo, E.; Carraretto, L.; Leanza, L.; Szabo, I. Physiology of intracellular potassium channels: A unifying role as mediators of counterion fluxes? Biochim. Biophys. Acta Bioenerg. 2016, 1857, 1258–1266. [Google Scholar] [CrossRef] [PubMed]
- Kuum, M.; Veksler, V.; Kaasik, A. Potassium fluxes across the endoplasmic reticulum and their role in endoplasmic reticulum calcium homeostasis. Cell Calcium 2015, 58, 79–85. [Google Scholar] [CrossRef]
- Thorens, B. Neural regulation of pancreatic islet cell mass and function. Diabetes Obes. Metab. 2014, 16, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.S.; Marx, S.O. The BK potassium channel in the vascular smooth muscle and kidney: α- And Β-subunits. Kidney Int. 2010, 78, 963–974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szteyn, K.; Singh, H. Bkca channels as targets for cardioprotection. Antioxidants 2020, 9, 760. [Google Scholar] [CrossRef]
- Johansson, M.; Andersson, A.; Carlsson, P.O.; Jansson, L. Perinatal development of the pancreatic islet microvasculature in rats. J. Anat. 2006, 208, 191–196. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mameli, C.; Cazzola, R.; Spaccini, L.; Calcaterra, V.; Macedoni, M.; La Verde, P.A.; D’Auria, E.; Verduci, E.; Lista, G.; Zuccotti, G.V. Neonatal Diabetes in Patients Affected by Liang-Wang Syndrome Carrying KCNMA1 Variant p.(Gly375Arg) Suggest a Potential Role of Ca2+ and Voltage-Activated K+ Channel Activity in Human Insulin Secretion. Curr. Issues Mol. Biol. 2021, 43, 1036-1042. https://doi.org/10.3390/cimb43020073
Mameli C, Cazzola R, Spaccini L, Calcaterra V, Macedoni M, La Verde PA, D’Auria E, Verduci E, Lista G, Zuccotti GV. Neonatal Diabetes in Patients Affected by Liang-Wang Syndrome Carrying KCNMA1 Variant p.(Gly375Arg) Suggest a Potential Role of Ca2+ and Voltage-Activated K+ Channel Activity in Human Insulin Secretion. Current Issues in Molecular Biology. 2021; 43(2):1036-1042. https://doi.org/10.3390/cimb43020073
Chicago/Turabian StyleMameli, Chiara, Roberta Cazzola, Luigina Spaccini, Valeria Calcaterra, Maddalena Macedoni, Paola Azzurra La Verde, Enza D’Auria, Elvira Verduci, Gianluca Lista, and Gian Vincenzo Zuccotti. 2021. "Neonatal Diabetes in Patients Affected by Liang-Wang Syndrome Carrying KCNMA1 Variant p.(Gly375Arg) Suggest a Potential Role of Ca2+ and Voltage-Activated K+ Channel Activity in Human Insulin Secretion" Current Issues in Molecular Biology 43, no. 2: 1036-1042. https://doi.org/10.3390/cimb43020073
APA StyleMameli, C., Cazzola, R., Spaccini, L., Calcaterra, V., Macedoni, M., La Verde, P. A., D’Auria, E., Verduci, E., Lista, G., & Zuccotti, G. V. (2021). Neonatal Diabetes in Patients Affected by Liang-Wang Syndrome Carrying KCNMA1 Variant p.(Gly375Arg) Suggest a Potential Role of Ca2+ and Voltage-Activated K+ Channel Activity in Human Insulin Secretion. Current Issues in Molecular Biology, 43(2), 1036-1042. https://doi.org/10.3390/cimb43020073