Somatic Mutations in DNA Mismatch Repair Genes, Mutation Rate and Neoantigen Load in Acute Lymphoblastic Leukemia
Abstract
1. Introduction
2. Results
2.1. Clinical Characteristics of Studied Population
2.2. Distribution of HLA Class I Alleles
2.3. High Correlation of Missense Mutation and Neoantigen Load
2.4. Association Among Clinical Features, Mutations and Neoantigens Numbers
2.5. Number of Mutations, Neoantigens and Neoantigen Frequency Survival Analysis
2.6. High Correlation Between Number of Mutations in DNA Mismatch Repair Genes and Neoantigens Load
3. Discussion
4. Materials and Methods
4.1. Patients, Samples and Data
4.2. DNA Isolation and Exome Sequencing
4.3. Class I HLA Alleles Prediction and Peptides–HLA Binding Predictions
4.4. Gene Expression Analysis of the Most Frequent Neoantigens
4.5. Mutations in DNA Mismatch Repair Genes
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALL | Acute Lymphoblastic Leukemia |
TMB | Tumor Mutational Burden |
OS | Overall Survival |
MMR | Mismatch Repair |
HLA | Human Leukocyte Antigen |
EFS | Event Free Survival |
WBC | White Blood Cells |
BM | Bone Marrow |
WT | Wild-Type, Non-Mutated |
MUT | Mutated |
CAR | Chimeric Antigen Receptor |
MIGICCL | Mexican Interinstitutional Group for the Identification of the Causes of Childhood Leukemia |
NCI | The National Cancer Institute |
References
- Graiqevci-Uka, V.; Behluli, E.; Spahiu, L.; Liehr, T.; Temaj, G. Targeted Treatment and Immunotherapy in High-risk and Relapsed/Refractory Pediatric Acute Lymphoblastic Leukemia. Curr. Pediatr. Rev. 2023, 19, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Barcenas-Lopez, D.A.; Nunez-Enriquez, J.C.; Hidalgo-Miranda, A.; Beltran-Anaya, F.O.; May-Hau, D.I.; Jimenez-Hernandez, E.; Bekker-Mendez, V.C.; Flores-Lujano, J.; Medina-Sanson, A.; Tamez-Gomez, E.L.; et al. Transcriptome Analysis Identifies LINC00152 as a Biomarker of Early Relapse and Mortality in Acute Lymphoblastic Leukemia. Genes 2020, 11, 302. [Google Scholar] [CrossRef]
- Burke, W.; Thummel, K. Precision medicine and health disparities: The case of pediatric acute lymphoblastic leukemia. Nurs. Outlook 2019, 67, 331–336. [Google Scholar] [CrossRef]
- Flores-Lujano, J.; Duarte-Rodriguez, D.A.; Jimenez-Hernandez, E.; Martin-Trejo, J.A.; Allende-Lopez, A.; Penaloza-Gonzalez, J.G.; Perez-Saldivar, M.L.; Medina-Sanson, A.; Torres-Nava, J.R.; Solis-Labastida, K.A.; et al. Persistently high incidence rates of childhood acute leukemias from 2010 to 2017 in Mexico City: A population study from the MIGICCL. Front. Public Health 2022, 10, 918921. [Google Scholar] [CrossRef]
- Jimenez-Morales, S.; Miranda-Peralta, E.; Saldana-Alvarez, Y.; Perez-Vera, P.; Paredes-Aguilera, R.; Rivera-Luna, R.; Velazquez-Cruz, R.; Ramirez-Bello, J.; Carnevale, A.; Orozco, L. BCR-ABL, ETV6-RUNX1 and E2A-PBX1: Prevalence of the most common acute lymphoblastic leukemia fusion genes in Mexican patients. Leuk. Res. 2008, 32, 1518–1522. [Google Scholar] [CrossRef]
- Rahnemoon, A.R.; Zaker, F.; Izadyar, M.; Ansari, S.; Poopak, B.; Tadavosyan, Y. Prevalence of ETV6/RUNX1 Fusion Gene in Pediatric Patients with Acute Lymphoblastic Leukemia in Iran. Iran. J. Pediatr. 2013, 23, 681–686. [Google Scholar] [PubMed]
- Mata-Rocha, M.; Rangel-Lopez, A.; Jimenez-Hernandez, E.; Nunez-Enriquez, J.C.; Morales-Castillo, B.A.; Sanchez-Escobar, N.; Sepulveda-Robles, O.A.; Bravata-Alcantara, J.C.; Najera-Cortes, A.S.; Perez-Saldivar, M.L.; et al. Low Prevalence of ETV6::RUNX1 Fusion Gene in a Hispanic Population. Front. Pediatr. 2022, 10, 837656. [Google Scholar] [CrossRef]
- Romana, S.P.; Poirel, H.; Leconiat, M.; Flexor, M.A.; Mauchauffe, M.; Jonveaux, P.; Macintyre, E.A.; Berger, R.; Bernard, O.A. High frequency of t(12;21) in childhood B-lineage acute lymphoblastic leukemia. Blood 1995, 86, 4263–4269. [Google Scholar] [CrossRef]
- Jimenez-Hernandez, E.; Jaimes-Reyes, E.Z.; Arellano-Galindo, J.; Garcia-Jimenez, X.; Tiznado-Garcia, H.M.; Duenas-Gonzalez, M.T.; Martinez Villegas, O.; Sanchez-Jara, B.; Bekker-Mendez, V.C.; Ortiz-Torres, M.G.; et al. Survival of Mexican Children with Acute Lymphoblastic Leukaemia under Treatment with the Protocol from the Dana-Farber Cancer Institute 00-01. BioMed Res. Int. 2015, 2015, 576950. [Google Scholar] [CrossRef] [PubMed]
- Jaime-Perez, J.C.; Lopez-Razo, O.N.; Garcia-Arellano, G.; Pinzon-Uresti, M.A.; Jimenez-Castillo, R.A.; Gonzalez-Llano, O.; Gomez-Almaguer, D. Results of Treating Childhood Acute Lymphoblastic Leukemia in a Low-middle Income Country: 10 Year Experience in Northeast Mexico. Arch. Med. Res. 2016, 47, 668–676. [Google Scholar] [CrossRef]
- Jimenez-Morales, S.; Aranda-Uribe, I.S.; Perez-Amado, C.J.; Ramirez-Bello, J.; Hidalgo-Miranda, A. Mechanisms of Immunosuppressive Tumor Evasion: Focus on Acute Lymphoblastic Leukemia. Front. Immunol. 2021, 12, 737340. [Google Scholar] [CrossRef]
- Zamora, A.E.; Crawford, J.C.; Allen, E.K.; Guo, X.J.; Bakke, J.; Carter, R.A.; Abdelsamed, H.A.; Moustaki, A.; Li, Y.; Chang, T.C.; et al. Pediatric patients with acute lymphoblastic leukemia generate abundant and functional neoantigen-specific CD8+ T cell responses. Sci. Transl. Med. 2019, 11, eaat8549. [Google Scholar] [CrossRef]
- Xie, N.; Shen, G.; Gao, W.; Huang, Z.; Huang, C.; Fu, L. Neoantigens: Promising targets for cancer therapy. Signal Transduct. Target. Ther. 2023, 8, 9. [Google Scholar] [CrossRef]
- Molenaar, J.J.; Gerard, B.; Chambon-Pautas, C.; Cave, H.; Duval, M.; Vilmer, E.; Grandchamp, B. Microsatellite instability and frameshift mutations in BAX and transforming growth factor-beta RII genes are very uncommon in acute lymphoblastic leukemia in vivo but not in cell lines. Blood 1998, 92, 230–233. [Google Scholar] [CrossRef]
- Mathonnet, G.; Krajinovic, M.; Labuda, D.; Sinnett, D. Role of DNA mismatch repair genetic polymorphisms in the risk of childhood acute lymphoblastic leukaemia. Br. J. Haematol. 2003, 123, 45–48. [Google Scholar] [CrossRef]
- Best, A.; Matheson, E.; Minto, L.; Hall, A.G.; Irving, J.A. Mismatch repair and the downstream target genes, PAX5 and Ikaros, in childhood acute lymphoblastic leukemia. Leuk. Res. 2010, 34, 1098–1102. [Google Scholar] [CrossRef]
- Germano, G.; Lamba, S.; Rospo, G.; Barault, L.; Magri, A.; Maione, F.; Russo, M.; Crisafulli, G.; Bartolini, A.; Lerda, G.; et al. Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth. Nature 2017, 552, 116–120. [Google Scholar] [CrossRef]
- Ott, P.A.; Hu, Z.; Keskin, D.B.; Shukla, S.A.; Sun, J.; Bozym, D.J.; Zhang, W.; Luoma, A.; Giobbie-Hurder, A.; Peter, L.; et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 2017, 547, 217–221. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, A.; Larkin, J. Checkpoint inhibitors in advanced melanoma: Effect on the field of immunotherapy. Expert Rev. Anticancer Ther. 2017, 17, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Lauss, M.; Donia, M.; Harbst, K.; Andersen, R.; Mitra, S.; Rosengren, F.; Salim, M.; Vallon-Christersson, J.; Torngren, T.; Kvist, A.; et al. Mutational and putative neoantigen load predict clinical benefit of adoptive T cell therapy in melanoma. Nat. Commun. 2017, 8, 1738. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhao, W.; Wu, J.; Lu, J.; Ding, Y.; Wu, S.; Wang, H.; Ding, D.; Mo, F.; Zhou, Z.; et al. Neoantigens Derived from Recurrently Mutated Genes as Potential Immunotherapy Targets for Gastric Cancer. BioMed Res. Int. 2019, 2019, 8103142. [Google Scholar] [CrossRef] [PubMed]
- Bachireddy, P.; Burkhardt, U.E.; Rajasagi, M.; Wu, C.J. Haematological malignancies: At the forefront of immunotherapeutic innovation. Nat. Rev. Cancer 2015, 15, 201–215. [Google Scholar] [CrossRef]
- Zacharakis, N.; Chinnasamy, H.; Black, M.; Xu, H.; Lu, Y.C.; Zheng, Z.; Pasetto, A.; Langhan, M.; Shelton, T.; Prickett, T.; et al. Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat. Med. 2018, 24, 724–730. [Google Scholar] [CrossRef]
- Biernacki, M.A.; Bleakley, M. Neoantigens in Hematologic Malignancies. Front. Immunol. 2020, 11, 121. [Google Scholar] [CrossRef] [PubMed]
- Hackl, H.; Charoentong, P.; Finotello, F.; Trajanoski, Z. Computational genomics tools for dissecting tumour-immune cell interactions. Nat. Rev. Genet. 2016, 17, 441–458. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.C.; Carter, R.A.; Li, Y.; Li, Y.; Wang, H.; Edmonson, M.N.; Chen, X.; Arnold, P.; Geiger, T.L.; Wu, G.; et al. The neoepitope landscape in pediatric cancers. Genome Med. 2017, 9, 78. [Google Scholar] [CrossRef]
- Brennick, C.A.; George, M.M.; Corwin, W.L.; Srivastava, P.K.; Ebrahimi-Nik, H. Neoepitopes as cancer immunotherapy targets: Key challenges and opportunities. Immunotherapy 2017, 9, 361–371. [Google Scholar] [CrossRef]
- Ho, S.Y.; Chang, C.M.; Liao, H.N.; Chou, W.H.; Guo, C.L.; Yen, Y.; Nakamura, Y.; Chang, W.C. Current Trends in Neoantigen-Based Cancer Vaccines. Pharmaceuticals 2023, 16, 392. [Google Scholar] [CrossRef]
- Yadav, M.; Jhunjhunwala, S.; Phung, Q.T.; Lupardus, P.; Tanguay, J.; Bumbaca, S.; Franci, C.; Cheung, T.K.; Fritsche, J.; Weinschenk, T.; et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 2014, 515, 572–576. [Google Scholar] [CrossRef]
- Gubin, M.M.; Zhang, X.; Schuster, H.; Caron, E.; Ward, J.P.; Noguchi, T.; Ivanova, Y.; Hundal, J.; Arthur, C.D.; Krebber, W.J.; et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 2014, 515, 577–581. [Google Scholar] [CrossRef]
- Duan, F.; Duitama, J.; Al Seesi, S.; Ayres, C.M.; Corcelli, S.A.; Pawashe, A.P.; Blanchard, T.; McMahon, D.; Sidney, J.; Sette, A.; et al. Genomic and bioinformatic profiling of mutational neoepitopes reveals new rules to predict anticancer immunogenicity. J. Exp. Med. 2014, 211, 2231–2248. [Google Scholar] [CrossRef]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 2013, 6, pl1. [Google Scholar] [CrossRef] [PubMed]
- Rooney, M.S.; Shukla, S.A.; Wu, C.J.; Getz, G.; Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 2015, 160, 48–61. [Google Scholar] [CrossRef] [PubMed]
- Mlecnik, B.; Bindea, G.; Angell, H.K.; Maby, P.; Angelova, M.; Tougeron, D.; Church, S.E.; Lafontaine, L.; Fischer, M.; Fredriksen, T.; et al. Integrative Analyses of Colorectal Cancer Show Immunoscore Is a Stronger Predictor of Patient Survival Than Microsatellite Instability. Immunity 2016, 44, 698–711. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, H.; Hasegawa, K.; Oda, K.; Yamamoto, S.; Nishijima, A.; Imai, Y.; Asada, K.; Ikeda, Y.; Karasaki, T.; Fujiwara, K.; et al. The frequency of neoantigens per somatic mutation rather than overall mutational load or number of predicted neoantigens per se is a prognostic factor in ovarian clear cell carcinoma. Oncoimmunology 2017, 6, e1338996. [Google Scholar] [CrossRef]
- Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017, 357, 409–413. [Google Scholar] [CrossRef]
- Chae, Y.K.; Anker, J.F.; Bais, P.; Namburi, S.; Giles, F.J.; Chuang, J.H. Mutations in DNA repair genes are associated with increased neo-antigen load and activated T cell infiltration in lung adenocarcinoma. Oncotarget 2018, 9, 7949–7960. [Google Scholar] [CrossRef]
- Karnell, J.L.; Dimasi, N.; Karnell, F.G., 3rd; Fleming, R.; Kuta, E.; Wilson, M.; Wu, H.; Gao, C.; Herbst, R.; Ettinger, R. CD19 and CD32b differentially regulate human B cell responsiveness. J. Immunol. 2014, 192, 1480–1490. [Google Scholar] [CrossRef]
- Poe, J.C.; Hasegawa, M.; Tedder, T.F. CD19, CD21, and CD22: Multifaceted response regulators of B lymphocyte signal transduction. Int. Rev. Immunol. 2001, 20, 739–762. [Google Scholar] [CrossRef]
- Walker, K.; Mistry, A.; Watson, C.M.; Nadat, F.; O’Callaghan, E.; Care, M.; Crinnion, L.A.; Arumugakani, G.; Bonthron, D.T.; Carter, C.; et al. Inherited CD19 Deficiency Does Not Impair Plasma Cell Formation or Response to CXCL12. J. Clin. Immunol. 2023, 43, 1543–1556. [Google Scholar] [CrossRef]
- von Stackelberg, A.; Locatelli, F.; Zugmaier, G.; Handgretinger, R.; Trippett, T.M.; Rizzari, C.; Bader, P.; O’Brien, M.M.; Brethon, B.; Bhojwani, D.; et al. Phase I/Phase II Study of Blinatumomab in Pediatric Patients with Relapsed/Refractory Acute Lymphoblastic Leukemia. J. Clin. Oncol. 2016, 34, 4381–4389. [Google Scholar] [CrossRef] [PubMed]
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 439–448. [Google Scholar] [CrossRef]
- Panuciak, K.; Margas, M.; Makowska, K.; Lejman, M. Insights into Modern Therapeutic Approaches in Pediatric Acute Leukemias. Cells 2022, 11, 139. [Google Scholar] [CrossRef] [PubMed]
- Anderson, N.D.; Birch, J.; Accogli, T.; Criado, I.; Khabirova, E.; Parks, C.; Wood, Y.; Young, M.D.; Porter, T.; Richardson, R.; et al. Transcriptional signatures associated with persisting CD19 CAR-T cells in children with leukemia. Nat. Med. 2023, 29, 1700–1709. [Google Scholar] [CrossRef]
- Giavridis, T.; van der Stegen, S.J.C.; Eyquem, J.; Hamieh, M.; Piersigilli, A.; Sadelain, M. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat. Med. 2018, 24, 731–738. [Google Scholar] [CrossRef]
- Brudno, J.N.; Kochenderfer, J.N. Recent advances in CAR T-cell toxicity: Mechanisms, manifestations and management. Blood Rev. 2019, 34, 45–55. [Google Scholar] [CrossRef]
- Loeza, F.; Vargas-Alarcon, G.; Andrade, F.; Vergara, Y.; Rodriguez-Perez, J.M.; Ruiz-Morales, J.A.; Alarcon-Segovia, D.; Granados, J. Distribution of class I and class III MHC antigens in the Tarasco Amerindians. Hum. Immunol. 2002, 63, 143–148. [Google Scholar] [CrossRef]
- Garcia-Ortiz, J.E.; Sandoval-Ramirez, L.; Rangel-Villalobos, H.; Maldonado-Torres, H.; Cox, S.; Garcia-Sepulveda, C.A.; Figuera, L.E.; Marsh, S.G.; Little, A.M.; Madrigal, J.A.; et al. High-resolution molecular characterization of the HLA class I and class II in the Tarahumara Amerindian population. Tissue Antigens 2006, 68, 135–146. [Google Scholar] [CrossRef]
- Barquera, R.; Hernandez-Zaragoza, D.I.; Bravo-Acevedo, A.; Arrieta-Bolanos, E.; Clayton, S.; Acuna-Alonzo, V.; Martinez-Alvarez, J.C.; Lopez-Gil, C.; Adalid-Sainz, C.; Vega-Martinez, M.D.R.; et al. The immunogenetic diversity of the HLA system in Mexico correlates with underlying population genetic structure. Hum. Immunol. 2020, 81, 461–474. [Google Scholar] [CrossRef] [PubMed]
- Barquera, R.; Zuniga, J.; Hernandez-Diaz, R.; Acuna-Alonzo, V.; Montoya-Gama, K.; Moscoso, J.; Torres-Garcia, D.; Garcia-Salas, C.; Silva, B.; Cruz-Robles, D.; et al. HLA class I and class II haplotypes in admixed families from several regions of Mexico. Mol. Immunol. 2008, 45, 1171–1178. [Google Scholar] [CrossRef]
- Del Angel-Pablo, A.D.; Juarez-Martin, A.I.; Perez-Rubio, G.; Ambrocio-Ortiz, E.; Lopez-Flores, L.A.; Camarena, A.E.; Falfan-Valencia, R. HLA Allele and Haplotype Frequencies in Three Urban Mexican Populations: Genetic Diversity for the Approach of Genomic Medicine. Diagnostics 2020, 10, 47. [Google Scholar] [CrossRef]
- Gonzalez-Quezada, B.A.; Creary, L.E.; Munguia-Saldana, A.J.; Flores-Aguilar, H.; Fernandez-Vina, M.A.; Gorodezky, C. Exploring the ancestry and admixture of Mexican Oaxaca Mestizos from Southeast Mexico using next-generation sequencing of 11 HLA loci. Hum. Immunol. 2019, 80, 157–162. [Google Scholar] [CrossRef]
- Fernandez-Torres, J.; Flores-Jimenez, D.; Arroyo-Perez, A.; Granados, J.; Lopez-Reyes, A. HLA-B*40 allele plays a role in the development of acute leukemia in Mexican population: A case-control study. BioMed Res. Int. 2013, 2013, 705862. [Google Scholar] [CrossRef]
- Bello-Lopez, J.M.; Cisneros, C.B.; Martinez-Albarran, A. HLA analysis of Mexican candidates for bone marrow transplantation and probability of finding compatible related donors. Transfus. Apher. Sci. 2018, 57, 82–87. [Google Scholar] [CrossRef]
- Tosch, C.; Bastien, B.; Barraud, L.; Grellier, B.; Nourtier, V.; Gantzer, M.; Limacher, J.M.; Quemeneur, E.; Bendjama, K.; Preville, X. Viral based vaccine TG4010 induces broadening of specific immune response and improves outcome in advanced NSCLC. J. Immunother. Cancer 2017, 5, 70. [Google Scholar] [CrossRef]
- Obara, W.; Eto, M.; Mimata, H.; Kohri, K.; Mitsuhata, N.; Miura, I.; Shuin, T.; Miki, T.; Koie, T.; Fujimoto, H.; et al. A phase I/II study of cancer peptide vaccine S-288310 in patients with advanced urothelial carcinoma of the bladder. Ann. Oncol. 2017, 28, 798–803. [Google Scholar] [CrossRef] [PubMed]
- Carreno, B.M.; Magrini, V.; Becker-Hapak, M.; Kaabinejadian, S.; Hundal, J.; Petti, A.A.; Ly, A.; Lie, W.R.; Hildebrand, W.H.; Mardis, E.R.; et al. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 2015, 348, 803–808. [Google Scholar] [CrossRef] [PubMed]
- Stokidis, S.; Baxevanis, C.N.; Fortis, S.P. The Prognostic Significance of Selected HLA Alleles on Prostate Cancer Outcome. Int. J. Mol. Sci. 2023, 24, 14454. [Google Scholar] [CrossRef] [PubMed]
- Van Son, C.; Loan, N.T.H.; Trang, T.H.; Thinh, L.X.; Khanh, N.B.; Nhung, L.T.H.; Van Hung, N.; Que, T.N.; Van Lieu, N.; Tung, P.D.; et al. Predominant HLA Alleles and Haplotypes in Mild Adverse Drug Reactions Caused by Allopurinol in Vietnamese Patients with Gout. Diagnostics 2021, 11, 1611. [Google Scholar] [CrossRef]
- Teck, A.T.; Urban, S.; Quass, P.; Nelde, A.; Schuster, H.; Letsch, A.; Busse, A.; Walz, J.S.; Keilholz, U.; Ochsenreither, S. Cancer testis antigen Cyclin A1 harbors several HLA-A*02:01-restricted T cell epitopes, which are presented and recognized in vivo. Cancer Immunol. Immunother. 2020, 69, 1217–1227. [Google Scholar] [CrossRef]
- Chalmers, Z.R.; Connelly, C.F.; Fabrizio, D.; Gay, L.; Ali, S.M.; Ennis, R.; Schrock, A.; Campbell, B.; Shlien, A.; Chmielecki, J.; et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017, 9, 34. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Wei, Z.; Zhang, Z.; Zhang, B.; Zhu, C.; Chen, K.; Chuai, G.; Qu, S.; Xie, L.; Gao, Y.; et al. pTuneos: Prioritizing tumor neoantigens from next-generation sequencing data. Genome Med. 2019, 11, 67. [Google Scholar] [CrossRef] [PubMed]
- Rech, A.J.; Balli, D.; Mantero, A.; Ishwaran, H.; Nathanson, K.L.; Stanger, B.Z.; Vonderheide, R.H. Tumor Immunity and Survival as a Function of Alternative Neopeptides in Human Cancer. Cancer Immunol. Res. 2018, 6, 276–287. [Google Scholar] [CrossRef]
- Ghorani, E.; Rosenthal, R.; McGranahan, N.; Reading, J.L.; Lynch, M.; Peggs, K.S.; Swanton, C.; Quezada, S.A. Differential binding affinity of mutated peptides for MHC class I is a predictor of survival in advanced lung cancer and melanoma. Ann. Oncol. 2018, 29, 271–279. [Google Scholar] [CrossRef]
- Cimen Bozkus, C.; Roudko, V.; Finnigan, J.P.; Mascarenhas, J.; Hoffman, R.; Iancu-Rubin, C.; Bhardwaj, N. Immune Checkpoint Blockade Enhances Shared Neoantigen-Induced T-cell Immunity Directed against Mutated Calreticulin in Myeloproliferative Neoplasms. Cancer Discov. 2019, 9, 1192–1207. [Google Scholar] [CrossRef]
- Bekker-Mendez, V.C.; Miranda-Peralta, E.; Nunez-Enriquez, J.C.; Olarte-Carrillo, I.; Guerra-Castillo, F.X.; Pompa-Mera, E.N.; Ocana-Mondragon, A.; Rangel-Lopez, A.; Bernaldez-Rios, R.; Medina-Sanson, A.; et al. Prevalence of gene rearrangements in Mexican children with acute lymphoblastic leukemia: A population study-report from the Mexican Interinstitutional Group for the identification of the causes of childhood leukemia. BioMed Res. Int. 2014, 2014, 210560. [Google Scholar] [CrossRef]
- Li, X.; You, J.; Hong, L.; Liu, W.; Guo, P.; Hao, X. Neoantigen cancer vaccines: A new star on the horizon. Cancer Biol. Med. 2023, 21, 274–311. [Google Scholar] [CrossRef]
- Blass, E.; Ott, P.A. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat. Rev. Clin. Oncol. 2021, 18, 215–229. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Yong, H.M.; Chen, F.F.; Mei, P.J.; Liu, H.; Li, C.; Pan, Z.Q.; Wu, Y.P.; Zheng, J.N. Cullin1 is a novel marker of poor prognosis and a potential therapeutic target in human breast cancer. Ann. Oncol. 2013, 24, 2016–2022. [Google Scholar] [CrossRef]
- Chen, G.; Cheng, Y.; Martinka, M.; Li, G. Cul1 expression is increased in early stages of human melanoma. Pigment. Cell Melanoma Res. 2010, 23, 572–574. [Google Scholar] [CrossRef]
- Esteves, F.; Xavier, J.M.; Ford, A.M.; Rocha, C.; Pharoah, P.D.P.; Caldas, C.; Chin, S.F.; Maia, A.T. Germline allelic expression of genes at 17q22 locus associates with risk of breast cancer. Eur. J. Cancer 2022, 172, 146–157. [Google Scholar] [CrossRef]
- Tang, L.; Xu, J.; Wei, F.; Wang, L.; Nie, W.W.; Chen, L.B.; Guan, X.X. Association of STXBP4/COX11 rs6504950 (G>A) polymorphism with breast cancer risk: Evidence from 17,960 cases and 22,713 controls. Arch. Med. Res. 2012, 43, 383–388. [Google Scholar] [CrossRef]
- Sens-Abuazar, C.; Napolitano, E.F.E.; Osorio, C.A.; Krepischi, A.C.; Ricca, T.I.; Castro, N.P.; da Cunha, I.W.; Maciel Mdo, S.; Rosenberg, C.; Brentani, M.M.; et al. Down-regulation of ANAPC13 and CLTCL1: Early Events in the Progression of Preinvasive Ductal Carcinoma of the Breast. Transl. Oncol. 2012, 5, 113–123. [Google Scholar] [CrossRef]
- Liu, J.; Pan, S.; Hsieh, M.H.; Ng, N.; Sun, F.; Wang, T.; Kasibhatla, S.; Schuller, A.G.; Li, A.G.; Cheng, D.; et al. Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. Proc. Natl. Acad. Sci. USA 2013, 110, 20224–20229. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Qi, X.; Donnelly, L.; Elghobashi-Meinhardt, N.; Long, T.; Zhou, R.W.; Sun, Y.; Wang, B.; Li, X. Mechanisms and inhibition of Porcupine-mediated Wnt acylation. Nature 2022, 607, 816–822. [Google Scholar] [CrossRef]
- Chen, A.S.; Liu, H.; Wu, Y.; Luo, S.; Patz, E.F., Jr.; Glass, C.; Su, L.; Du, M.; Christiani, D.C.; Wei, Q. Genetic variants in DDO and PEX5L in peroxisome-related pathways predict non-small cell lung cancer survival. Mol. Carcinog. 2022, 61, 619–628. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, J.; Baeza, J.; Gu, K.; Zheng, Y.; Chen, S.; Zhou, Z. DeepTAP: An RNN-based method of TAP-binding peptide prediction in the selection of tumor neoantigens. Comput. Biol. Med. 2023, 164, 107247. [Google Scholar] [CrossRef]
- Wan, Y.R.; Kosaloglu-Yalcin, Z.; Peters, B.; Nielsen, M. A large-scale study of peptide features defining immunogenicity of cancer neo-epitopes. NAR Cancer 2024, 6, zcae002. [Google Scholar] [CrossRef]
- Hilf, N.; Kuttruff-Coqui, S.; Frenzel, K.; Bukur, V.; Stevanovic, S.; Gouttefangeas, C.; Platten, M.; Tabatabai, G.; Dutoit, V.; van der Burg, S.H.; et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 2019, 565, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Creech, A.L.; Ting, Y.S.; Goulding, S.P.; Sauld, J.F.K.; Barthelme, D.; Rooney, M.S.; Addona, T.A.; Abelin, J.G. The Role of Mass Spectrometry and Proteogenomics in the Advancement of HLA Epitope Prediction. Proteomics 2018, 18, e1700259. [Google Scholar] [CrossRef] [PubMed]
- Bulik-Sullivan, B.; Busby, J.; Palmer, C.D.; Davis, M.J.; Murphy, T.; Clark, A.; Busby, M.; Duke, F.; Yang, A.; Young, L.; et al. Deep learning using tumor HLA peptide mass spectrometry datasets improves neoantigen identification. Nat. Biotechnol. 2018, 37, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Ji, N.; Forsthuber, T.G. ELISPOT Techniques. Methods Mol. Biol. 2016, 1304, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zhu, L.; Xu, Q.; Zhang, X.; Li, B.; Lee, L.J. The co-stimulation of anti-CD28 and IL-2 enhances the sensitivity of ELISPOT assays for detection of neoantigen-specific T cells in PBMC. J. Immunol. Methods 2020, 484–485, 112831. [Google Scholar] [CrossRef]
- Lin, J.J.Y.; Low-Nam, S.T.; Alfieri, K.N.; McAffee, D.B.; Fay, N.C.; Groves, J.T. Mapping the stochastic sequence of individual ligand-receptor binding events to cellular activation: T cells act on the rare events. Sci. Signal. 2019, 12, eaat8715. [Google Scholar] [CrossRef]
- Bentzen, A.K.; Marquard, A.M.; Lyngaa, R.; Saini, S.K.; Ramskov, S.; Donia, M.; Such, L.; Furness, A.J.; McGranahan, N.; Rosenthal, R.; et al. Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes. Nat. Biotechnol. 2016, 34, 1037–1045. [Google Scholar] [CrossRef]
- Guan, J.; Lu, C.; Jin, Q.; Lu, H.; Chen, X.; Tian, L.; Zhang, Y.; Ortega, J.; Zhang, J.; Siteni, S.; et al. MLH1 Deficiency-Triggered DNA Hyperexcision by Exonuclease 1 Activates the cGAS-STING Pathway. Cancer Cell 2021, 39, 109–121 e105. [Google Scholar] [CrossRef]
- Van Allen, E.M.; Miao, D.; Schilling, B.; Shukla, S.A.; Blank, C.; Zimmer, L.; Sucker, A.; Hillen, U.; Foppen, M.H.G.; Goldinger, S.M.; et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 2015, 350, 207–211. [Google Scholar] [CrossRef] [PubMed]
- McGranahan, N.; Furness, A.J.; Rosenthal, R.; Ramskov, S.; Lyngaa, R.; Saini, S.K.; Jamal-Hanjani, M.; Wilson, G.A.; Birkbak, N.J.; Hiley, C.T.; et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 2016, 351, 1463–1469. [Google Scholar] [CrossRef]
- Gong, L.; He, R.; Xu, Y.; Luo, T.; Jin, K.; Yuan, W.; Zheng, Z.; Liu, L.; Liang, Z.; Li, A.; et al. Neoantigen load as a prognostic and predictive marker for stage II/III non-small cell lung cancer in Chinese patients. Thorac. Cancer 2021, 12, 2170–2181. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, B.; Zhou, N.; Sun, Z.; Li, J.; Chen, Q.; Wu, X.; Zhou, Y.; Shi, Y.; Lu, X.; et al. Identification of WDFY3 Neoantigens as Prognostic Markers in Longterm Survivors of Extrahepatic Cholangiocarcinoma. Curr. Cancer Drug Targets 2020, 20, 875–886. [Google Scholar] [CrossRef]
- Miller, A.; Asmann, Y.; Cattaneo, L.; Braggio, E.; Keats, J.; Auclair, D.; Lonial, S.; Network, M.C.; Russell, S.J.; Stewart, A.K. High somatic mutation and neoantigen burden are correlated with decreased progression-free survival in multiple myeloma. Blood Cancer J. 2017, 7, e612. [Google Scholar] [CrossRef]
- Chen, R.; Im, H.; Snyder, M. Whole-Exome Enrichment with the Illumina TruSeq Exome Enrichment Platform. Cold Spring Harb. Protoc. 2015, 2015, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010, 26, 589–595. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef]
- Rizvi, N.A.; Hellmann, M.D.; Snyder, A.; Kvistborg, P.; Makarov, V.; Havel, J.J.; Lee, W.; Yuan, J.; Wong, P.; Ho, T.S.; et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015, 348, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Szolek, A.; Schubert, B.; Mohr, C.; Sturm, M.; Feldhahn, M.; Kohlbacher, O. OptiType: Precision HLA typing from next-generation sequencing data. Bioinformatics 2014, 30, 3310–3316. [Google Scholar] [CrossRef]
- Cock, P.J.; Antao, T.; Chang, J.T.; Chapman, B.A.; Cox, C.J.; Dalke, A.; Friedberg, I.; Hamelryck, T.; Kauff, F.; Wilczynski, B.; et al. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 2009, 25, 1422–1423. [Google Scholar] [CrossRef]
- Karosiene, E.; Lundegaard, C.; Lund, O.; Nielsen, M. NetMHCcons: A consensus method for the major histocompatibility complex class I predictions. Immunogenetics 2012, 64, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Bartha, A.; Gyorffy, B. TNMplot.com: A Web Tool for the Comparison of Gene Expression in Normal, Tumor and Metastatic Tissues. Int. J. Mol. Sci. 2021, 22, 2622. [Google Scholar] [CrossRef]
- He, Y.; Zhang, L.; Zhou, R.; Wang, Y.; Chen, H. The role of DNA mismatch repair in immunotherapy of human cancer. Int. J. Biol. Sci. 2022, 18, 2821–2832. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 15 August 2025).
Clinical Characteristics | Acute Lymphoblastic Leukemia Patients n = 64 | Normal-Tumor Paired Patients n = 35 |
---|---|---|
Gender | ||
Male | 37 (58%) | 19 (54%) |
Female | 27 (42%) | 16 (46%) |
Age (months) | 104.2 (±61.4) | 104.5 (±62.2) |
Immunophenotype | ||
Pre-B | 56 (88%) | 32 (91%) |
T-cell | 8 (12%) | 3 (9%) |
Leukocytes in PB (≥50,000 mm3) | 19 (30%) | 10 (29%) |
NCI risk classification | ||
High risk | 25 (39%) | 14 (40%) |
Standard risk | 38 (64%) | 21 (60%) |
Relapsed | 14 (22%) | 4 (11%) |
Death | 12 (19%) | 5 (14%) |
Clinical Features | Missense Mutations (Mean) | p-Value | Neoantigens (Mean) | p-Value |
---|---|---|---|---|
Sex | 0.882 | 0.778 | ||
Female | 1301 | 360.6 | ||
Male | 687.5 | 217.2 | ||
Age (years at diagnosis) | 0.741 | 1 | ||
<10 y | 1256.4 | 348.9 | ||
>10 y | 695.5 | 220.2 | ||
WBC/ µL at diagnosis | 0.235 | 0.235 | ||
<50,000 | 1039.12 | 289.84 | ||
>50,000 | 790 | 264.9 | ||
Blast % in BM at diagnosis | 0.517 | 0.717 | ||
<50% | 222 | 69.5 | ||
>50% | 1064.2 | 310.2 | ||
Immunophenotype | 0.019 * | 0.025 * | ||
B-cell precursor | 872 | 247.2 | ||
T-cell | 1991.7 | 661.7 | ||
NCI risk classification | 0.381 | 0.590 | ||
Standard | 664.9 | 211.8 | ||
High | 1422.6 | 389.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendiola-Soto, D.K.; Gómez-Romero, L.; Núñez-Enríquez, J.C.; Flores-Lujano, J.; Jiménez-Hernández, E.; Medina-Sansón, A.; Bekker-Méndez, V.C.; Mata-Rocha, M.; Pérez-Saldívar, M.L.; Duarte-Rodríguez, D.A.; et al. Somatic Mutations in DNA Mismatch Repair Genes, Mutation Rate and Neoantigen Load in Acute Lymphoblastic Leukemia. Pharmaceuticals 2025, 18, 1405. https://doi.org/10.3390/ph18091405
Mendiola-Soto DK, Gómez-Romero L, Núñez-Enríquez JC, Flores-Lujano J, Jiménez-Hernández E, Medina-Sansón A, Bekker-Méndez VC, Mata-Rocha M, Pérez-Saldívar ML, Duarte-Rodríguez DA, et al. Somatic Mutations in DNA Mismatch Repair Genes, Mutation Rate and Neoantigen Load in Acute Lymphoblastic Leukemia. Pharmaceuticals. 2025; 18(9):1405. https://doi.org/10.3390/ph18091405
Chicago/Turabian StyleMendiola-Soto, Diana Karen, Laura Gómez-Romero, Juan Carlos Núñez-Enríquez, Janet Flores-Lujano, Elva Jiménez-Hernández, Aurora Medina-Sansón, Vilma Carolina Bekker-Méndez, Minerva Mata-Rocha, María Luisa Pérez-Saldívar, David Aldebarán Duarte-Rodríguez, and et al. 2025. "Somatic Mutations in DNA Mismatch Repair Genes, Mutation Rate and Neoantigen Load in Acute Lymphoblastic Leukemia" Pharmaceuticals 18, no. 9: 1405. https://doi.org/10.3390/ph18091405
APA StyleMendiola-Soto, D. K., Gómez-Romero, L., Núñez-Enríquez, J. C., Flores-Lujano, J., Jiménez-Hernández, E., Medina-Sansón, A., Bekker-Méndez, V. C., Mata-Rocha, M., Pérez-Saldívar, M. L., Duarte-Rodríguez, D. A., Torres-Nava, J. R., Peñaloza-González, J. G., Flores-Villegas, L. V., Amador-Sánchez, R., Velázquez-Aviña, M. M., Martín-Trejo, J. A., Merino-Pasaye, L. E., Solís-Labastida, K. A., Espinosa-Elizondo, R. M., ... Jiménez-Morales, S. (2025). Somatic Mutations in DNA Mismatch Repair Genes, Mutation Rate and Neoantigen Load in Acute Lymphoblastic Leukemia. Pharmaceuticals, 18(9), 1405. https://doi.org/10.3390/ph18091405