PEPAD: A Promising Therapeutic Approach for the Treatment of Murine Melanoma (B16F10-Nex2)
Abstract
1. Introduction
2. Results
2.1. Cytotoxic Profile of PEPAD
2.2. Morphological Changes with Chromatin Condensation
2.3. Effects on Melanoma Cell Migration
2.4. Mitochondrial and Nuclear Changes
2.5. Apoptosis-Related Active Caspases in Cells
2.6. Apoptosis and Necrosis Detect
2.7. EPAD-Induced Externalization of Calreticulin and HMGB1
2.8. Membrane Interaction and Structural Stability Assessed by Molecular Dynamics
3. Discussion
4. Materials and Methods
4.1. Reagents and Chemicals
4.2. Cell Culture
4.3. Cell Viability Assays
4.4. Analysis of Cellular Morphological Changes
4.5. Observation of Effects on Melanoma Cell Migration
4.6. Mitochondrial and Nuclear Change Evaluation
4.7. Detection of Active Caspases in Cells
4.8. Cell Death Profile
4.9. Release of DAMPs (Calreticulin and HMGB1)
4.10. Molecular Dynamics
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Zhu, R.; Jin, J.; Guo, H.; Zhang, J.; He, Z.; Liang, T.; Guo, L. Exploring the Role of Clustered Mutations in Carcinogenesis and Their Potential Clinical Implications in Cancer. Int. J. Mol. Sci. 2024, 25, 6744. [Google Scholar] [CrossRef]
- Cullin, N.; Antunes, C.A.; Straussman, R.; Stein-Thoeringer, C.K.; Elinav, E. Microbiome and cancer. Cancer Cell 2021, 39, 1317–1341. [Google Scholar] [CrossRef]
- Saginala, K.; Barsouk, A.; Aluru, J.S.; Rawla, P.; Barsouk, A. Epidemiology of Melanoma. Med. Sci. 2021, 9, 63. [Google Scholar] [CrossRef]
- Radiation: Ultraviolet (UV) Radiation and Skin Cancer. Available online: https://www.who.int/news-room/questions-and-answers/item/radiation-ultraviolet- (accessed on 4 January 2024).
- Ali, A.-R.H.; Li, J.; Yang, G. Automating the ABCD Rule for Melanoma Detection: A Survey. IEEE Access 2020, 8, 83333–83346. [Google Scholar] [CrossRef]
- Long, G.V.; Swetter, S.M.; Menzies, A.M.; Gershenwald, J.E.; Scolyer, R.A. Cutaneous melanoma. Lancet 2023, 402, 485–502. [Google Scholar] [CrossRef]
- Cadorini, J.M.d.S.; dos Santos, L.W.; Fernandes, T.C.C.; Simioni, P.U. Principais terapias biológicas para tratamento do melanoma. Saúde Rev. 2020, 20, 75–86. [Google Scholar] [CrossRef]
- Garbe, C.; Amaral, T.; Peris, K.; Hauschild, A.; Arenberger, P.; Basset-Seguin, N.; Bastholt, L.; Bataille, V.; Brochez, L.; del Marmol, V.; et al. European consensus-based interdisciplinary guideline for melanoma. Part 2: Treatment–Update 2024. Eur. J. Cancer 2025, 215, 115153. [Google Scholar] [CrossRef]
- Wang, H.; Tran, T.T.; Duong, K.T.; Nguyen, T.; Le, U.M. Options of Therapeutics and Novel Delivery Systems of Drugs for the Treatment of Melanoma. Mol. Pharm. 2022, 19, 4487–4505. [Google Scholar] [CrossRef]
- Rahimi, A.; Esmaeili, Y.; Dana, N.; Dabiri, A.; Rahimmanesh, I.; Jandaghian, S.; Vaseghi, G.; Shariati, L.; Zarrabi, A.; Haghjooy Javanmard, S.; et al. A comprehensive review on novel targeted therapy methods and nanotechnology-based gene delivery systems in melanoma. Eur. J. Pharm. Sci. 2023, 187, 106476. [Google Scholar] [CrossRef]
- Jenkins, R.W.; Fisher, D.E. Treatment of Advanced Melanoma in 2020 and Beyond. J. Investig. Dermatol. 2021, 141, 23–31. [Google Scholar] [CrossRef]
- Elhassanny, A.; Escobedo, R.; Ladin, D.; Burns, C.; Van Dross, R. Damage-associated molecular pattern (DAMP) activation in melanoma: Investigation of the immunogenic activity of 15-deoxy, Δ12,14 prostamide J2. Oncotarget 2020, 11, 4788–4802. [Google Scholar] [CrossRef]
- Sethuraman, S.N.; Singh, M.P.; Patil, G.; Li, S.; Fiering, S.; Hoopes, P.J.; Guha, C.; Malayer, J.; Ranjan, A. Novel calreticulin-nanoparticle in combination with focused ultrasound induces immunogenic cell death in melanoma to enhance antitumor immunity. Theranostics 2020, 10, 3397–3412. [Google Scholar] [CrossRef]
- Ahmed, A.; Tait, S.W.G. Targeting immunogenic cell death in cancer. Mol. Oncol. 2020, 14, 2994–3006. [Google Scholar] [CrossRef]
- Moreira, A.; Heinzerling, L.; Bhardwaj, N.; Friedlander, P. Current Melanoma Treatments: Where Do We Stand? Cancers 2021, 13, 221. [Google Scholar] [CrossRef]
- Bai, X.; Quach, H.; Cann, C.G.; Zhang, M.; Kim, M.S.; Kasumova, G.G.; Si, L.; Tang, B.; Cui, C.; Yang, X.L.; et al. Heterogeneous response and irAE patterns in advanced melanoma patients treated with anti-PD-1 monotherapy from different ethnic groups: Subtype distribution discrepancy and beyond. J. Clin. Oncol. 2020, 38, 10020. [Google Scholar] [CrossRef]
- Kordi, M.; Borzouyi, Z.; Chitsaz, S.; hadi Asmaei, M.; Salami, R.; Tabarzad, M. Antimicrobial peptides with anticancer activity: Today status, trends and their computational design. Arch. Biochem. Biophys. 2023, 733, 109484. [Google Scholar] [CrossRef]
- Liscano, Y.; Oñate-Garzón, J.; Delgado, J.P. Peptides with Dual Antimicrobial–Anticancer Activity: Strategies to Overcome Peptide Limitations and Rational Design of Anticancer Peptides. Molecules 2020, 25, 4245. [Google Scholar] [CrossRef]
- de Oliveira Gutierrez, C.; de Oliveira Almeida, L.H.; Sardi, J.d.C.O.; Almeida, C.V.; de Oliveira, C.F.R.; Marchetto, R.; Crusca, E.; Buccini, D.F.; Franco, O.L.; Cardoso, M.H.; et al. Boosting the Antibacterial Potential of a Linear Encrypted Peptide in a Kunitz-Type Inhibitor (ApTI) Through Physicochemical-Guided Approaches. Biochimie 2024, 227, 161–171. [Google Scholar] [CrossRef]
- Lima, P.G.; Oliveira, J.T.A.; Amaral, J.L.; Freitas, C.D.T.; Souza, P.F.N. Synthetic antimicrobial peptides: Characteristics, design, and potential as alternative molecules to overcome microbial resistance. Life Sci. 2021, 278, 119647. [Google Scholar] [CrossRef]
- Varga, C.G.; Butnariu, M. Properties/Characteristics of Antimicrobial Peptides. J. Med. Healthc. 2022, 4, 1–6. [Google Scholar] [CrossRef]
- Makhlynets, O.V.; Caputo, G.A. Characteristics and therapeutic applications of antimicrobial peptides. Biophys. Rev. 2021, 2, 011301. [Google Scholar] [CrossRef]
- Chiangjong, W.; Chutipongtanate, S.; Hongeng, S. Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review). Int. J. Oncol. 2020, 57, 678–696. [Google Scholar] [CrossRef]
- Monteiro-Alfredo, T.; dos Santos, J.M.; Antunes, K.Á.; Cunha, J.; da Silva Baldivia, D.; Pires, A.S.; Marques, I.; Abrantes, A.M.; Botelho, M.F.; Monteiro, L.; et al. Acrocomia aculeata associated with doxorubicin: Cardioprotection and anticancer activity. Front. Pharmacol. 2023, 14, 1223933. [Google Scholar] [CrossRef] [PubMed]
- Ju, X.; Fan, D.; Kong, L.; Yang, Q.; Zhu, Y.; Zhang, S.; Su, G.; Li, Y. Antimicrobial Peptide Brevinin-1RL1 from Frog Skin Secretion Induces Apoptosis and Necrosis of Tumor Cells. Molecules 2021, 26, 2059. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wu, S.; Chen, N.; Zhu, J.; Zhao, X.; Zhang, P.; Zeng, Y.; Liu, Z. Fatty Acid Modification of the Anticancer Peptide LVTX-9 to Enhance Its Cytotoxicity Against Malignant Melanoma Cells. Toxins 2021, 13, 867. [Google Scholar] [CrossRef]
- Santana, C.J.C.; Magalhães, A.C.M.; dos Santos Júnior, A.C.M.; Ricart, C.A.O.; Lima, B.D.; Álvares, A.d.C.M.; Freitas, S.M.d.; Pires, O.R., Jr.; Fontes, W.; Castro, M.S. Figainin 1, a Novel Amphibian Skin Peptide with Antimicrobial and Antiproliferative Properties. Antibiotics 2020, 9, 625. [Google Scholar] [CrossRef]
- Catalina-Hernandez, E.; Aguilella-Arzo, M.; Peralvarez-Marin, A.; Lopez-Martin, M. Computational Insights into Membrane Disruption by Cell-Penetrating Peptides. J. Chem. Inf. Model. 2025, 65, 1549–1559. [Google Scholar] [CrossRef]
- Arredondo-Beltrán, I.G.; Ramírez-Sánchez, D.A.; Zazueta-García, J.R.; Canizalez-Roman, A.; Angulo-Zamudio, U.A.; Velazquez-Roman, J.A.; Bolscher, J.G.M.; Nazmi, K.; León-Sicairos, N. Antitumor activity of bovine lactoferrin and its derived peptides against HepG2 liver cancer cells and Jurkat leukemia cells. Biometals 2023, 36, 639–655. [Google Scholar] [CrossRef] [PubMed]
- Castro, D.T.H.; Leite, D.F.; da Silva Baldivia, D.; dos Santos, H.F.; Balogun, S.O.; da Silva, D.B.; Carollo, C.A.; de Picoli Souza, K.; dos Santos, E.L. Structural Characterization and Anticancer Activity of a New Anthraquinone from Senna velutina (Fabaceae). Pharmaceuticals 2023, 16, 951. [Google Scholar] [CrossRef]
- Do, B.H.; Nguyen, T.P.T.; Ho, N.Q.C.; Le, T.L.; Hoang, N.S.; Doan, C.C. Mitochondria-mediated Caspase-Dependent and Caspase-Independent Apoptosis Induced by Aqueous Extract from Moringa oleifera Leaves in Human Melanoma Cells. Mol. Biol. Rep. 2020, 47, 3675–3689. [Google Scholar] [CrossRef]
- Kim, C.-J.; Gonye, A.L.; Truskowski, K.; Lee, C.-F.; Cho, Y.-K.; Austin, R.H.; Pienta, K.J.; Amend, S.R. Nuclear morphology predicts cell survival to cisplatin chemotherapy. Neoplasia 2023, 42, 100906. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.U.; Fatima, K.; Malik, F.; Kalkavan, H.; Wani, A. Cancer metastasis: Molecular mechanisms and clinical perspectives. Pharmacol. Ther. 2023, 250, 108522. [Google Scholar] [CrossRef]
- Yang, S.; Gorshkov, K.; Lee, E.M.; Xu, M.; Cheng, Y.-S.; Sun, N.; Soheilian, F.; de Val, N.; Ming, G.; Song, H.; et al. Zika Virus-Induced Neuronal Apoptosis via Increased Mitochondrial Fragmentation. Front. Microbiol. 2020, 11, 598203. [Google Scholar] [CrossRef] [PubMed]
- Wodlej, C.; Riedl, S.; Rinner, B.; Leber, R.; Drechsler, C.; Voelker, D.R.; Choi, J.-Y.; Lohner, K.; Zweytick, D. Interaction of two antitumor peptides with membrane lipids—Influence of phosphatidylserine and cholesterol on specificity for melanoma cells. PLoS ONE 2019, 14, e0211187. [Google Scholar] [CrossRef]
- Dadsena, S.; Zollo, C.; García-Sáez, A.J. Mechanisms of mitochondrial cell death. Biochem. Soc. Trans. 2021, 49, 663–674. [Google Scholar] [CrossRef]
- Alshehade, S.A.; Almoustafa, H.A.; Alshawsh, M.A.; Chik, Z. Flow cytometry-based quantitative analysis of cellular protein expression in apoptosis subpopulations: A protocol. Heliyon 2024, 10, e33665. [Google Scholar] [CrossRef]
- Gielecińska, A.; Kciuk, M.; Yahya, E.-B.; Ainane, T.; Mujwar, S.; Kontek, R. Apoptosis, necroptosis, and pyroptosis as alternative cell death pathways induced by chemotherapeutic agents? Biochim. Biophys. Acta Rev. Cancer 2023, 1878, 189024. [Google Scholar] [CrossRef]
- Carneiro, B.A.; El-Deiry, W.S. Targeting apoptosis in cancer therapy. Nat. Rev. Clin. Oncol. 2020, 17, 395–417. [Google Scholar] [CrossRef] [PubMed]
- van Loo, G.; Bertrand, M.J.M. Death by TNF: A road to inflammation. Nat. Rev. Immunol. 2023, 23, 289–303. [Google Scholar] [CrossRef]
- Fucikova, J.; Kepp, O.; Kasikova, L.; Petroni, G.; Yamazaki, T.; Liu, P.; Zhao, L.; Spisek, R.; Kroemer, G.; Galluzzi, L. Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis. 2020, 11, 1013. [Google Scholar] [CrossRef]
- Cheng, K.J.; Shastry, S.; Campolargo, J.D.; Hallock, M.J.; Pogorelov, T.V. Charge, Hydrophobicity, and Lipid Type Drive Antimicrobial Peptides’ Unique Perturbation Ensembles. Biochemistry 2025, 64, 1484–1500. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Stravinskiene, D.; Sliziene, A.; Baranauskiene, L.; Petrikaite, V.; Zvirbliene, A. Inhibitory Monoclonal Antibodies and Their Recombinant Derivatives Targeting Surface-Exposed Carbonic Anhydrase XII on Cancer Cells. Int. J. Mol. Sci. 2020, 21, 9411. [Google Scholar] [CrossRef]
- Pesarini, J.R.; de Oliveira, E.J.T.; Pessatto, L.R.; Rabacow, A.P.M.; Camassola, M.; Dos Santos, B.P.; de Barros, M.E.; Cantero, W.d.B.; Antoniolli-Silva, A.C.M.B.; Oliveira, R.J. Calcitriol combined with calcium chloride causes apoptosis in undifferentiated adipose tissue-derived human mesenchymal stem cells, but this effect decreases during adipogenic differentiation. Biomed. Pharmacother. 2018, 108, 914–924. [Google Scholar] [CrossRef]
- Wu, E.L.; Cheng, X.; Jo, S.; Rui, H.; Song, K.C.; Dávila-Contreras, E.M.; Qi, Y.; Lee, J.; Monje-Galvan, V.; Venable, R.M.; et al. CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. J. Comput. Chem. 2014, 35, 1997–2004. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
Cell Type | Cell Lineage | IC50 (μΜ)—PEPAD | SI 1 |
---|---|---|---|
Murine melanoma | B16F10-Nex 2 | 7.4 ± 1.3 | 8.5 |
Human melanoma | Sk-mell-28 | 18 ± 2 | 3.5 |
Human breast cancer | MCF-7 | 65 ± 2 | 0.9 |
Cervical cancer | Hela | 60 ± 2 | 1.1 |
Murine macrophage | RAW 264.7 | 56 ± 2 | - |
Human fibroblast | FN1 | 63 ± 3 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutierrez, C.d.O.; Pereira, R.A.; Almeida, C.V.; Almeida, L.H.d.O.; de Oliveira, C.F.R.; Jacobowski, A.C.; Paiva, P.M.G.; Maria, D.A.; Oliveira, R.J.; de Andrade Farias Rodrigues, T.; et al. PEPAD: A Promising Therapeutic Approach for the Treatment of Murine Melanoma (B16F10-Nex2). Pharmaceuticals 2025, 18, 1203. https://doi.org/10.3390/ph18081203
Gutierrez CdO, Pereira RA, Almeida CV, Almeida LHdO, de Oliveira CFR, Jacobowski AC, Paiva PMG, Maria DA, Oliveira RJ, de Andrade Farias Rodrigues T, et al. PEPAD: A Promising Therapeutic Approach for the Treatment of Murine Melanoma (B16F10-Nex2). Pharmaceuticals. 2025; 18(8):1203. https://doi.org/10.3390/ph18081203
Chicago/Turabian StyleGutierrez, Camila de Oliveira, Rafael Araujo Pereira, Claudiane Vilharroel Almeida, Luís Henrique de Oliveira Almeida, Caio Fernando Ramalho de Oliveira, Ana Cristina Jacobowski, Patrícia Maria Guedes Paiva, Durvanei Augusto Maria, Rodrigo Juliano Oliveira, Thais de Andrade Farias Rodrigues, and et al. 2025. "PEPAD: A Promising Therapeutic Approach for the Treatment of Murine Melanoma (B16F10-Nex2)" Pharmaceuticals 18, no. 8: 1203. https://doi.org/10.3390/ph18081203
APA StyleGutierrez, C. d. O., Pereira, R. A., Almeida, C. V., Almeida, L. H. d. O., de Oliveira, C. F. R., Jacobowski, A. C., Paiva, P. M. G., Maria, D. A., Oliveira, R. J., de Andrade Farias Rodrigues, T., Monteiro-Alfredo, T., Boleti, A. P. d. A., & Macedo, M. L. R. (2025). PEPAD: A Promising Therapeutic Approach for the Treatment of Murine Melanoma (B16F10-Nex2). Pharmaceuticals, 18(8), 1203. https://doi.org/10.3390/ph18081203