Primary Dysmenorrhea Induced Using Diethylstilbestrol and Oxytocin Induces Impaired Uterine Reactivity in Virgin Female Wistar Rats
Abstract
1. Introduction
2. Results
2.1. Writhing Scores of the Experimental Model of Primary Dysmenorrhea in Female Wistar Rats
2.2. Evaluation of the Effects of Primary Dysmenorrhea on the Histomorphometric Parameters of the Uterus
2.3. Evaluation of the Effects of Primary Dysmenorrhea on Oxytocin- or PGF2α-Induced Contractile Reactivity in the Uterus of Female Wistar Rats
2.4. Evaluation of the Effects of Primary Dysmenorrhea on the Electromechanical Coupling of Kcl-Induced Contraction in the Uterus of Female Wistar Rats
2.5. Evaluation of the Effects of Primary Dysmenorrhea on the Cumulative Concentration–Response Curves of Relaxation Induced Using Isoprenaline in Isolated CG (●) and Dysp (◌) Rat UteriPre-Contracted with Oxytocin
2.6. Evaluation of the Effects of Primary Dysmenorrhea on the Pharmacomechanical Coupling of Nifedipine-Induced Relaxation in the Uterus of Female Wistar Rats
2.7. Evaluation of the Effects of Primary Dysmenorrhea onMDA Concentration in the Uterus of Female Wistar Rats
2.8. Evaluation of Effects of Primary Dysmenorrhea onTotal Antioxidant Capacity (TAC) in Rat Uterus
3. Discussion
4. Materials and Methods
4.1. Substances
4.2. Animals
4.3. Experimental Groups
4.4. In Vivo Approach: Dysmenorrhea Induction Protocol
4.4.1. Induction of Primary Dysmenorrhea
4.4.2. Contortion Scoring
4.5. In Vitro Approach: Assessment of Uterine Reactivity
4.5.1. Isolating the Uterus of Female Rats
4.5.2. Effects of Primary Dysmenorrhea on Contractile Reactivity in the Uterus of Female Wistar Rats
4.5.3. Effects of Primary Dysmenorrhea on Relaxant Reactivity in the Uterus of Female Wistar Rats
4.6. Evaluation of Histopathological Changes in the Uterus Induced by Primary Dysmenorrhea
4.7. Evaluation of the Effects of Primary Dysmenorrhea on the Balance Between Oxidative Stress and Antioxidant Defenses in Female Wistar Rats
Analysis of Malondialdehyde (MDA) Levels and Total Antioxidant Capacity (TAC) in Uterine Tissue
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
[Ca2+]c | Cytosolic calcium concentration |
ACh | Acetylcholine |
COX2 | Cyclooxygenases type 2 |
COXs | Cyclooxygenases |
DPPH | 1,1-diphenyl-2-picrylhydrazyl radical |
DysP | Primary dysmenorrhea |
EDTA | Ethylenediamine tetra-acetic acid |
Emax | Maximum effect |
i.p | Intraperitoneal |
DysP + IBU | Primary dysmenorrhea group treated with ibuprofen |
IPeFarM | Institute of Research in Drugs and Medicines |
M3 | Receptor muscarinic type 3 |
MDA | Malondialdehyde |
OT | Oxytocin receptor |
pEC50 | The negative logarithm to the base ten of the concentration of a substance that produced 50% of its maximum effect |
PGF2α | Prostaglandin F2α |
PG’s | Prostanoids |
PLA2 | Phospholipase A2 |
ROS | Free radicals |
s.c. | Subcutaneous |
s.e.m. | Standard error of the mean |
TAC | Total antioxidant capacity |
TBA | Thiobarbituric acid |
TBARS | Thiobarbituric acid reactive species |
UFPB | Federal University of Paraíba |
References
- Koninckx, P.R.; Ussia, A.; Adamyan, L.; Keckstein, J.; Wattiez, A. Primary Dysmenorrhea. J. Obstet. Gynaecol. Can. 2017, 39, 578–579. [Google Scholar] [CrossRef] [PubMed]
- Burnett, M.; Lemyre, M. No. 345-Primary Dysmenorrhea Consensus Guideline. J. Obstet. Gynaecol. Can. 2017, 39, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.X.; Draucker, C.B.; Carpenter, J.S. What Women Say about Their Dysmenorrhea: A Qualitative Thematic Analysis. BMC Women’s Health 2018, 18, 47. [Google Scholar] [CrossRef] [PubMed]
- De Sanctis, V.; Soliman, A.; Bernasconi, S.; Bianchin, L.; Bona, G.; Bozzola, M.; Buzi, F.; De Sanctis, C.; Tonini, G.; Rigon, F.; et al. Primary Dysmenorrhea in Adolescents: Prevalence, Impact and Recent Knowledge. Pediatr. Endocrinol. Rev. 2015, 13, 512–520. [Google Scholar]
- Bahrami, A.; Sadeghnia, H.; Avan, A.; Mirmousavi, S.J.; Moslem, A.; Eslami, S.; Heshmati, M.; Bahrami-Taghanaki, H.; Ferns, G.A.; Ghayour-Mobarhan, M. Neuropsychological Function in Relation to Dysmenorrhea in Adolescents. Eur. J. Obstet. Gynecol. Reprod. Biol. 2017, 215, 224–229. [Google Scholar] [CrossRef]
- Alateeq, D.; Binsuwaidan, L.; Alazwari, L.; Algarni, M.; Al Hussain, M.; Alzahrani, R.; Aljohani, R. Dysmenorrhea and Depressive Symptoms among Female University Students: A Descriptive Study from Saudi Arabia. Egypt. J. Neurol. Psychiatry Neurosurg. 2022, 58, 106. [Google Scholar] [CrossRef]
- Lopes, K.N. Assessment of Sensory and Pain Thresholds in Women with Moderate or Severe Primary Dysmenorrhea; University of São Paulo: São Paulo, Brazil, 2016. [Google Scholar]
- Diegoli, M.S.C.; Diegoli, C.A. Dismenorreia. Rev. Bras. Med. 2007, 64, 81–84. [Google Scholar]
- Harel, Z. Dysmenorrhea in Adolescents. Ann. N. Y. Acad. Sci. 2008, 1135, 185–195. [Google Scholar] [CrossRef]
- Mckenna, K.A.; Fogleman, C.D. Dysmenorrhea. Am. Fam. Physician. 2021, 104, 164–170. [Google Scholar]
- Maybin, J.A.; Critchley, H.O.D. Progesterone: A Pivotal Hormone at Menstruation. Ann. N. Y. Acad. Sci. 2011, 1221, 88–97. [Google Scholar] [CrossRef]
- Sun, L.; Liu, L.-N.; Li, J.-C.; Lv, Y.-Z.; Zong, S.-B.; Zhou, J.; Wang, Z.-Z.; Kou, J.-P.; Xiao, W. The Essential Oil from the Twigs of Cinnamomum Cassia Presl Inhibits Oxytocin-Induced Uterine Contraction in Vitro and in Vivo. J. Ethnopharmacol. 2017, 206, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.P. Dysmenorrhea and Menorrhagia, 1st ed.; Springer: Berlin, Germany, 2018; pp. 55–64. [Google Scholar]
- Barcikowska, Z.; Rajkowska-Labon, E.; Grzybowska, M.E.; Hansdorfer-Korzon, R.; Zorena, K. Inflammatory Markers in Dysmenorrhea and Therapeutic Options. Int. J. Environ. Res. Public Health 2020, 17, 1191. [Google Scholar] [CrossRef] [PubMed]
- Dawood, M.Y. Primary Dysmenorrhea: Advances in Pathogenesis and Management. Obstet. Gynecol. 2006, 108, 428–441. [Google Scholar] [CrossRef] [PubMed]
- Iacovides, S.; Avidon, I.; Baker, F. What we know about primary dysmenorrhea today: A critical review. Hum Reprod. Update. 2015, 21, 762–778. [Google Scholar] [CrossRef]
- Ryan, S. The Treatment of Dysmenorrhea. Pediatr. Clin. N. Am. 2017, 64, 331–342. [Google Scholar] [CrossRef]
- Lu, J.; Wang, Z.; Cao, J.; Chen, Y.; Dong, Y. A novel and compact review on the role of oxidative stress in female reproduction. Rep. Bio. Endo. 2018, 16, 80. [Google Scholar] [CrossRef]
- Armour, M.; Dahlen, H.G.; Zhu, X.; Farquhar, C.; Smith, C.A. The role of treatment timing and mode of stimulation in the treatment of primary dysmenorrhea with acupuncture: An exploratory randomised controlled trial. PLoS ONE 2017, 12, e0180177. [Google Scholar] [CrossRef]
- Sut, N.; Kahyaoglu-Sut, H. Effect of aromatherapy massage on pain in primary dysmenorrhea: A meta-analysis. Com. Ther. Clin. Pract. 2017, 27, 5–10. [Google Scholar] [CrossRef]
- Carroquino-Garcia, P.; Jiménez-Rejano, J.J.; Medrano-Sanchez, E.; De La Casa-Almeida, M.; Diaz-Mohedo, E.; Suarez-Serrano, C. Therapeutic exercise in the treatment of primary dysmenorrhea: A systematic review and meta-analysis. Phys. Ther. 2019, 99, 1371–1380. [Google Scholar] [CrossRef]
- Oladosu, F.A.; Tu, F.F.; Hellman, K.M. Nonsteroidal antiinflammatory drug resistance in dysmenorrhea: Epidemiology, causes, and treatment. Am. J. Obstet. Gynecol. 2018, 218, 390–400. [Google Scholar] [CrossRef]
- Owen, P.R. Prostaglandin synthetase inhibitors in the treatment of primary dysmenorrhea: Outcome trials reviewed. Am. J. Obstet. Gynecol. 1984, 148, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Marjoribanks, J.; Ayeleke, R.A.; Farquhar, C.; Proctor, M. Nonsteroidal anti-inflammatory drugs for primary dysmenorrhoea. Cochrane Database Syst. Rev. 2015, 2015, CD001751. [Google Scholar] [PubMed]
- Guo, S.; Mao, M.D.; Qingliang, M.D.; Xishi, L.M.D. Dysmenorrhea and its severity are associated with increased uterine contractility and overexpression of oxytocin receptor (OTR) in women with symptomatic adenomyosis. Fertil. Steril. 2013, 99, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Shi, T.; Han, L.; Tong, R.; Liao, Z. Mechanism of penehyclidine hydrochloride on a dysmenorrhea rat model. Drug Dev. Res. 2010, 80, 325–332. [Google Scholar] [CrossRef]
- Yang, L.; Cao, Z.; Yu, B.; Chai, C. An in vivo mouse model of primary dysmenorrhea. Exp. Anim. 2015, 64, 295–303. [Google Scholar] [CrossRef]
- NúñezTroconis, J.; Carvallo, D.; Martínez-Núñez, E. Primary Dysmenorrhea: Pathophysiology. Investig. Clin. 2021, 62, 378–406. [Google Scholar] [CrossRef]
- Qu, M.; Lu, P.; Bevell, K.; Fogarty, K.; Lifshitz, L.; Shi, F.; Zhuge, R. Smooth muscle cell-specific TMEM16A deletion does not alter Ca2+ signaling, uterine contraction, gestation length or litter size in mice. Biol. Reprod. 2019, 101, 318–327. [Google Scholar] [CrossRef]
- Tom, N.; Assinder, S.J. Oxytocin in health and disease. Int. J. Biochem. Cell Biol. 2010, 42, 202–205. [Google Scholar] [CrossRef]
- Yulia, A.; Johnson, M.R. Myometrial oxytocin receptor expression and intracellular pathways. Minerva Ginecol. 2014, 66, 267–280. [Google Scholar]
- Neubig, R.R.; Spedding, M.; Kenakin, T.; Christopoulos, A. International union of pharmacology committee on receptor nomenclature and drug classification. XXXVIII. Update on terms and symbols in quantitative pharmacology. Pharmacol. Rev. 2003, 55, 597–606. [Google Scholar] [CrossRef]
- Wilson, T.; Liggins, G.C.; Whittaker, D.J. Oxytocin stimulates the release of arachidonic acid and prostaglandin F2α from human decidual cells. Prostaglandins 1988, 35, 771–780. [Google Scholar] [CrossRef] [PubMed]
- Burns, P.D.; Mendes, J.O., Jr.; Yemm, R.S.; Clay, C.M.; Nelson, S.E.; Hayes, S.H.; Silvia, W.J. Cellular mechanisms by which oxytocin mediates ovine endometrial prostaglandin F2α synthesis: Role of Gi proteins and mitogen-activated protein kinases. Biol. Reprod. 2001, 65, 1150–1155. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, H.N.; Mitchell, B.F. Physiological Pathways and Molecular Mechanisms Regulating Uterine Contractility. Hum. Reprod. Update. 2010, 16, 725–744. [Google Scholar] [CrossRef]
- Hill-Eubanks, D.C.; Werner, M.E.; Heppner, T.J.; Nelson, M.T. Calcium Signaling in Smooth Muscle. Cold Spring Harb. Perspect. Biol. 2011, 3, a004549. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, A.K.S. Efeitos do Óleo Essencial de Ocimumbasilicum, L. e Seu Constituinte Marjoritário Linalol na Musculatura Lisa de Útero de Ratas. Master’s Thesis, Universida de Estadual do Ceará, Fortaleza, Brazil, 2018. [Google Scholar]
- Arrowsmith, S.; Wray, S. Oxytocin: Its Mechanism of Action and Receptor Signalling in the Myometrium. J. Neuroendocrinol. 2014, 26, 356–369. [Google Scholar] [CrossRef]
- Wray, L. Modern Money Theory: A Primer on Macroeconomics for Sovereign Monetary Systems, 2nd ed.; Springer: Berlin, Germany, 2015. [Google Scholar]
- Wray, S.; Arrowsmith, S. Uterine Excitability and Ion Channels and Their Changes with Gestation and Hormonal Environment. Annu. Rev. Physiol. 2021, 83, 331–357. [Google Scholar] [CrossRef]
- Woodrum, D.A.; Brophy, C.M. The Paradox of Smooth Muscle Physiology. Mol. Cell. Endocrinol. 2001, 177, 135–143. [Google Scholar] [CrossRef]
- Somlyo, A.P.; Somlyo, A.V. Ca2+ Sensitivity of Smooth Muscle and Nonmuscle Myosin II: Modulated by G Proteins, Kinases, and Myosin Phosphatase. Physiol. Rev. 2003, 83, 1325–1358. [Google Scholar] [CrossRef]
- Cohen-Tannoudji, J.; Vivat, V.; Heilmann, J.; Legrand, C.; Maltier, J.P. Regulation by Progesterone of the High-Affinity State of Myometrial β-Adrenergic Receptor and of Adenylate Cyclase Activity in the Pregnant Rat. J. Mol. Endocrinol. 1991, 6, 137–145. [Google Scholar] [CrossRef]
- Vivat, V.; Cohen-Tannoudji, J.; Revelli, J.P.; Muzzin, P.; Giacobino, J.P.; Maltier, J.P.; Legrand, C. Progesterone Transcriptionally Regulates the Beta 2-Adrenergic Receptor Gene in Pregnant Rat Myometrium. J. Biol. Chem. 1992, 267, 7975–7978. [Google Scholar] [CrossRef]
- Elwardy-Merezak, J.; Maltier, J.P.; Cohen-Tannoudji, J.; Lecrivain, J.L.; Vivat, V.; Legrand, C. Pregnancy-Related Modifications of Rat Myometrial Gs Proteins: ADP Ribosylation, Immunoreactivity and Gene Expression Studies. J. Mol. Endocrinol. 1994, 13, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Knot, H.T.; Brayden, E.J.; Nelson, M.T. Calcium Channels and Potassium Channels. In Biochemistry of Smooth Muscle Contraction; Bárány, M., Ed.; Elsevier: Amsterdam, The Netherlands, 1996; pp. 203–219. [Google Scholar]
- Mvondo, M.A.; Minko Essono, S.; Bomba Tatsinkou, F.D.; Ateba, S.B.; Njamen, D. The Root Aqueous Extract of Entada africana Guill. et Perr. (Mimosaceae) Inhibits Implant Growth, Alleviates Dysmenorrhea, and Restores Ovarian Dynamic in a Rat Model of Endometriosis. J. Evid. Based Complement. Altern. Med. 2017, 2017, 8563909. [Google Scholar] [CrossRef]
- Szmidt, M.K.; Granda, D.; Sicinska, E.; Kaluza, J. Primary Dysmenorrhea in Relation to Oxidative Stress and Antioxidant Status: A Systematic Review of Case-Control Studies. Antioxidants 2020, 9, 994. [Google Scholar] [CrossRef]
- Bi, W.; Zhou, J.; Zhao, L.; Wang, C.; Wu, W.; Zhang, L.; Ji, B.; Zhang, N.; Zhou, F. Preventive Effect of Different Citrus Essential Oils on Primary Dysmenorrhea: In Vivo and in Vitro Study. Food Biosci. 2021, 42, 101135. [Google Scholar] [CrossRef]
- Amini, L.; Shami, M.; Chegini, R. The Relationship between Serum Levels of Oxidative Stress Biomarkers and Dysmenorrhea, Dyspareunia and Pelvic Pain in Women with Endometriosis. Iran J. Nurs. 2020, 33, 58–68. [Google Scholar] [CrossRef]
- Sherwin, B.B. Estrogen and cognitive functioning in women. End.Rev. 2003, 24, 133–151. [Google Scholar] [CrossRef]
- Brazil National Council for the Control of Animal Experimentation. Resolution No. 16, of 24 March 2016. Provides Guidelines for the Use of Animals in Teaching and Research Activities. Official Gazette of the Union: Brasília, Brazil, 25 March 2016. Available online: https://www.gov.br/mcti/pt-br/composicao/conselhos/concea/paginas/publicacoes-legislacao-e-guia/legislacao-do-concea (accessed on 10 January 2025).
- Chen, Y.; Cao, Y.; Xie, Y.; Zhang, X.; Yang, Q.; Li, X.; Sun, J.; Qiu, P.; Cao, W.; Wang, S. Traditional Chinese medicine for the treatment of primary dysmenorrhea: How do Yuanhu painkillers effectively treat dysmenorrhea? Phytomedicine 2013, 20, 1095–1104. [Google Scholar] [CrossRef]
- Hu, J.Y.; Jin, G.Z. Supraspinal D2 receptor involved in antinociception inducedby l-tetrahydropalmatine. Zhongguo Yao Li Xue Bao 1999, 20, 715–719. [Google Scholar]
- Liu, P.; Duan, J.A.; Hua, Y.Q.; Tang, Y.P.; Yao, X.; Su, S.L. Effects of xiang-fu-si-wu decoction and its main components for dysmenorrhea on uterus contraction. J. Ethnopharmacol. 2011, 133, 591–597. [Google Scholar] [CrossRef]
- Schmauss, C.; Yaksh, T.L. In vivo studies on spinal opiate receptor systems mediating antinociception. II. Pharmacological profiles suggesting a differential association of mu, delta and kappa receptors with visceral chemical and cutaneous thermal stimuli in the rat. J Pharmacol Exp Ther. 1984, 228, 1–12. [Google Scholar]
- Etten, V. Recommended Methods of Anesthesia, Analgesia, and Euthanasia for Laboratory Animal Species. Inst. Anim. Stud. 2002, 460, 839–7100. [Google Scholar]
- Revuelta, M.P.; Cantabrana, B.; Hidalgo, A. Despolarization dependent effect of flavonoids in rat uterine smooth muscle contraction elicited by CaCI2. Gen. Pharmacol. Vasc. 1997, 29, 847–857. [Google Scholar] [CrossRef] [PubMed]
- Heylen, E.; Guerrero, F.; Mansourati, J.; Theron, M.; Thioub, S.; Saiag, B. Effect of training frequency on endothelium-dependent vasorelaxation in rats. Eur. Jour Preven. Cardiol. 2008, 15, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Caliari, M.V. Princípios de Morfometria Digital: KS300 para Iniciantes; Editora UFMG: Belo Horizonte, Brasil, 1997; p. 149. [Google Scholar]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxidation in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
Scores | Features |
---|---|
0 | Normal posture |
1 | Oblique side of body |
2 | Dorsiflexion of hind leg |
2 | Body extension with frequent pelvic lateral rotation |
3 | Abdominal muscle contraction |
3 | Extension of hind limbs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lacerda-Júnior, F.F.; da Silva Souza, P.P.; Ferreira, P.B.; Diniz, A.F.A.; Barros, B.C.; da Conceição Correia Silva, M.; Alves, A.F.; Silva, A.S.; da Silva, B.A. Primary Dysmenorrhea Induced Using Diethylstilbestrol and Oxytocin Induces Impaired Uterine Reactivity in Virgin Female Wistar Rats. Pharmaceuticals 2025, 18, 1191. https://doi.org/10.3390/ph18081191
Lacerda-Júnior FF, da Silva Souza PP, Ferreira PB, Diniz AFA, Barros BC, da Conceição Correia Silva M, Alves AF, Silva AS, da Silva BA. Primary Dysmenorrhea Induced Using Diethylstilbestrol and Oxytocin Induces Impaired Uterine Reactivity in Virgin Female Wistar Rats. Pharmaceuticals. 2025; 18(8):1191. https://doi.org/10.3390/ph18081191
Chicago/Turabian StyleLacerda-Júnior, Francisco Fernandes, Petruska Pessoa da Silva Souza, Paula Benvindo Ferreira, Anderson Fellyp Avelino Diniz, Bárbara Cavalcanti Barros, Maria da Conceição Correia Silva, Adriano Francisco Alves, Alexandre Sérgio Silva, and Bagnólia Araújo da Silva. 2025. "Primary Dysmenorrhea Induced Using Diethylstilbestrol and Oxytocin Induces Impaired Uterine Reactivity in Virgin Female Wistar Rats" Pharmaceuticals 18, no. 8: 1191. https://doi.org/10.3390/ph18081191
APA StyleLacerda-Júnior, F. F., da Silva Souza, P. P., Ferreira, P. B., Diniz, A. F. A., Barros, B. C., da Conceição Correia Silva, M., Alves, A. F., Silva, A. S., & da Silva, B. A. (2025). Primary Dysmenorrhea Induced Using Diethylstilbestrol and Oxytocin Induces Impaired Uterine Reactivity in Virgin Female Wistar Rats. Pharmaceuticals, 18(8), 1191. https://doi.org/10.3390/ph18081191