Exploring the Role of Berberine as a Molecular Disruptor in Antimicrobial Strategies
Abstract
1. Introduction
2. Berberine Disrupting the Efficiency of Bacterial Efflux Pumps
2.1. Berberine Interference with MFS Efflux Pumps Superfamily
2.2. Berberine Interference with RND Efflux Pumps Superfamily
2.3. Berberine Interference with Mycobacterium spp. Efflux Pumps
3. Berberine Interference with Quorum Sensing
3.1. Quorum Sensing and Quorum Quenching
3.2. Berberine Inhibits Quorum Sensing in Pseudomonas aeruginosa
3.3. Berberine Inhibition of Quorum Sensing and Biofilm Formation in Salmonella enterica subsp. enterica Serovar typhimurium
3.4. Berberine Inhibits Quorum Sensing in Hafnia alvei
3.5. Berberine Inhibits Quorum Sensing in Escherichia coli
3.6. Berberine and Quorum Sensing in Gram-Positive Bacteria
3.7. Summary
4. Berberine—Bacterial Mitosis Inhibitor
4.1. Bacterial Division
4.2. Mechanism of Berberine and FtsZ Protein Interaction
4.3. Berberine Activity on Gram-Positive Bacteria
4.4. Berberine Activity on Gram-Negative Bacteria
4.5. Other Studies Concerning the Berberine Effect on Bacterial Mitosis
5. Berberine—β-Lactamases Inhibitor
5.1. β-Lactamases as an Antibiotic Resistance Mechanism
5.2. Berberine as an Antibiotic Adjuvant and β-Lactamases Inhibitor
6. Materials and Methods
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Llor, C.; Bjerrum, L. Antimicrobial Resistance: Risk Associated with Antibiotic Overuse and Initiatives to Reduce the Problem. Ther. Adv. Drug Saf. 2014, 5, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Ndaki, P.M.; Mwanga, J.R.; Mushi, M.F.; Konje, E.T.; Mwita, S.M.; Mshana, S.E. Drivers of Inappropriate Use of Antibiotics among Community Members in Low- and Middle-Income Countries: A Systematic Review of Qualitative Studies. BMC Public Health 2025, 25, 705. [Google Scholar] [CrossRef] [PubMed]
- Anwar, M.; Iqbal, Q.; Saleem, F. Improper Disposal of Unused Antibiotics: An Often Overlooked Driver of Antimicrobial Resistance. Expert Rev. Anti-Infect. Ther. 2020, 18, 697–699. [Google Scholar] [CrossRef]
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef]
- World Health Organization. Antimicrobial Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 23 January 2025).
- de Kraker, M.E.A.; Stewardson, A.J.; Harbarth, S. Will 10 Million People Die a Year Due to Antimicrobial Resistance by 2050? PLoS Med. 2016, 13, e1002184. [Google Scholar] [CrossRef]
- Sarkar, P.; Yarlagadda, V.; Ghosh, C.; Haldar, J. A Review on Cell Wall Synthesis Inhibitors with an Emphasis on Glycopeptide Antibiotics. Medchemcomm 2017, 8, 516–533. [Google Scholar] [CrossRef]
- Mccoy, L.S.; Xie, Y.; Tor, Y. Antibiotics That Target Protein Synthesis. Wiley Interdiscip. Rev. RNA 2011, 2, 209–232. [Google Scholar] [CrossRef]
- Kohanski, M.A.; Dwyer, D.J.; Collins, J.J. How Antibiotics Kill Bacteria: From Targets to Networks. Nat. Rev. Microbiol. 2010, 8, 423–435. [Google Scholar] [CrossRef]
- Santos, J.A.; Lamers, M.H. Novel Antibiotics Targeting Bacterial Replicative Dna Polymerases. Antibiotics 2020, 9, 776. [Google Scholar] [CrossRef]
- Bhattacharjee, M.K. Antimetabolites: Antibiotics That Inhibit Nucleotide Synthesis. In Chemistry of Antibiotics and Related Drugs; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Ledger, E.V.K.; Sabnis, A.; Edwards, A.M. Polymyxin and Lipopeptide Antibiotics: Membrane-Targeting Drugs of Last Resort. Microbiology 2022, 168, 001136. [Google Scholar] [CrossRef]
- Ling, L.L.; Schneider, T.; Peoples, A.J.; Spoering, A.L.; Engels, I.; Conlon, B.P.; Mueller, A.; Schäberle, T.F.; Hughes, D.E.; Epstein, S.; et al. A New Antibiotic Kills Pathogens without Detectable Resistance. Nature 2015, 517, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Imai, Y.; Meyer, K.J.; Iinishi, A.; Favre-Godal, Q.; Green, R.; Manuse, S.; Caboni, M.; Mori, M.; Niles, S.; Ghiglieri, M.; et al. A New Antibiotic Selectively Kills Gram-Negative Pathogens. Nature 2019, 576, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Jangra, M.; Travin, D.Y.; Aleksandrova, E.V.; Kaur, M.; Darwish, L.; Koteva, K.; Klepacki, D.; Wang, W.; Tiffany, M.; Sokaribo, A.; et al. A Broad-Spectrum Lasso Peptide Antibiotic Targeting the Bacterial Ribosome. Nature 2025, 640, 1022–1030. [Google Scholar] [CrossRef] [PubMed]
- Mosaka, T.B.M.; Unuofin, J.O.; Daramola, M.O.; Tizaoui, C.; Iwarere, S.A. Inactivation of Antibiotic-Resistant Bacteria and Antibiotic-Resistance Genes in Wastewater Streams: Current Challenges and Future Perspectives. Front. Microbiol. 2023, 13, 1100102. [Google Scholar] [CrossRef]
- Lambert, P.A. Bacterial Resistance to Antibiotics: Modified Target Sites. Adv. Drug Deliv. Rev. 2005, 57, 1471–1485. [Google Scholar] [CrossRef]
- Ghai, I.; Ghai, S. Understanding Antibiotic Resistance via Outer Membrane Permeability. Infect. Drug Resist. 2018, 11, 523–530. [Google Scholar] [CrossRef]
- Yang, N.J.; Hinner, M.J. Getting Across the Cell Membrane: An Overview for Small Molecules, Peptides, and Proteins. Methods Mol. Biol. 2015, 1266, 29–53. [Google Scholar] [CrossRef]
- Gaurav, A.; Bakht, P.; Saini, M.; Pandey, S.; Pathania, R. Role of Bacterial Efflux Pumps in Antibiotic Resistance, Virulence, and Strategies to Discover Novel Efflux Pump Inhibitors. Microbiology 2023, 169, 001333. [Google Scholar] [CrossRef]
- Faiz, S.; Irfan, M.; Farooq, S.; Khan, I.A.; Iqbal, H.; Wahab, A.-t.; Shakeel, M.; Gong, P.; Iftner, T.; Choudhary, M.I. Study of Drug Resistance-Associated Genetic Mutations, and Phylo-Genetic Analysis of HCV in the Province of Sindh, Pakistan. Sci. Rep. 2023, 13, 12213. [Google Scholar] [CrossRef]
- Martinez, J.L.; Baquero, F. Mutation Frequencies and Antibiotic Resistance. Antimicrob. Agents Chemother. 2000, 44, 1771–1777. [Google Scholar] [CrossRef]
- Wright, G.D. Bacterial Resistance to Antibiotics: Enzymatic Degradation and Modification. Adv. Drug Deliv. Rev. 2005, 57, 1451–1470. [Google Scholar] [CrossRef] [PubMed]
- Egorov, A.M.; Ulyashova, M.M.; Rubtsova, M.Y. Microbial Enzyme Production. J. Ferment. Technol. 1988, 66, 365–366. [Google Scholar] [CrossRef]
- Magiorakos, A.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F. Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Microbiology 2011, 18, 268–281. [Google Scholar]
- Aronson, J.K.; Green, A.R. Me-Too Pharmaceutical Products: History, Definitions, Examples, and Relevance to Drug Shortages and Essential Medicines Lists. Br. J. Clin. Pharmacol. 2020, 86, 2114–2122. [Google Scholar] [CrossRef]
- Parker, E.N.; Cain, B.N.; Hajian, B.; Ulrich, R.J.; Geddes, E.J.; Barkho, S.; Lee, H.Y.; Williams, J.D.; Raynor, M.; Caridha, D.; et al. An Iterative Approach Guides Discovery of the FabI Inhibitor Fabimycin, a Late-Stage Antibiotic Candidate with In Vivo Efficacy against Drug-Resistant Gram-Negative Infections. ACS Cent. Sci. 2022, 8, 1145–1158. [Google Scholar] [CrossRef]
- Heithoff, D.M.; Mahan, S.P.; Barnes, V.L.; Leyn, S.A.; George, C.X.; Zlamal, J.E.; Limwongyut, J.; Bazan, G.C.; Fried, J.C.; Fitzgibbons, L.N.; et al. A Broad-Spectrum Synthetic Antibiotic That Does Not Evoke Bacterial Resistance. eBioMedicine 2023, 89, 104461. [Google Scholar] [CrossRef]
- Rineh, A.; Dolla, N.K.; Ball, A.R.; Magana, M.; Bremner, J.B.; Hamblin, M.R.; Tegos, G.P.; Kelso, M.J. Attaching the NorA Efflux Pump Inhibitor INF55 to Methylene Blue Enhances Antimicrobial Photodynamic Inactivation of Methicillin-Resistant Staphylococcus aureus in Vitro and in Vivo. ACS Infect. Dis. 2017, 3, 756–766. [Google Scholar] [CrossRef]
- Samosorn, S.; Bremner, J.B.; Ball, A.; Lewis, K. Synthesis of Functionalised 2-Aryl-5-Nitro-1H-Indoles and Their Activity as Bacterial NorA Efflux Pump Inhibitors. Bioorg. Med. Chem. 2006, 14, 857–865. [Google Scholar] [CrossRef]
- Dolla, N.K.; Chen, C.; Larkins-Ford, J.; Rajamuthiah, R.; Jagadeesan, S.; Conery, A.L.; Ausubel, F.M.; Mylonakis, E.; Bremner, J.B.; Lewis, K.; et al. On the Mechanism of Berberine–INF55 (5-Nitro-2-Phenylindole) Hybrid Antibacterials. Aust. J. Chem. 2015, 67, 1471–1480. [Google Scholar] [CrossRef]
- Ball, A.R.; Casadei, G.; Samosorn, S.; Bremner, J.B.; Ausubel, F.M.; Moy, T.I.; Lewis, K. Conjugating Berberine to a Multidrug Resistance Pump Inhibitor Creates an Effective Antimicrobial. ACS Chem. Biol. 2006, 1, 594–600. [Google Scholar] [CrossRef]
- Samosorn, S.; Tanwirat, B.; Muhamad, N.; Casadei, G.; Tomkiewicz, D.; Lewis, K.; Suksamrarn, A.; Prammananan, T.; Gornall, K.C.; Beck, J.L.; et al. Antibacterial Activity of Berberine-NorA Pump Inhibitor Hybrids with a Methylene Ether Linking Group. Bioorg. Med. Chem. 2009, 17, 3866–3872. [Google Scholar] [CrossRef] [PubMed]
- Neag, M.A.; Mocan, A.; Echeverría, J.; Pop, R.M.; Bocsan, C.I.; Crişan, G.; Buzoianu, A.D. Berberine: Botanical Occurrence, Traditional Uses, Extraction Methods, and Relevance in Cardiovascular, Metabolic, Hepatic, and Renal Disorders. Front. Pharmacol. 2018, 9, 557. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Xu, J.; Peng, Y. Medicinal Crops. In Encyclopedia of Agriculture and Food Systems; Elsevier: Amsterdam, The Netherlands, 2014; pp. 223–230. [Google Scholar]
- Duda-Madej, A.; Viscardi, S.; Szewczyk, W.; Topola, E. Natural Alkaloids in Cancer Therapy: Berberine, Sanguinarine and Chelerythrine against Colorectal and Gastric Cancer. Int. J. Mol. Sci. 2024, 25, 8375. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Yang, K.; Hong, Y.; Gong, Y.; Ni, J.; Yang, N.; Ding, W. A New Perspective on the Antimicrobial Mechanism of Berberine Hydrochloride Against Staphylococcus aureus Revealed by Untargeted Metabolomic Studies. Front. Microbiol. 2022, 13, 917414. [Google Scholar] [CrossRef]
- Pacyga, K.; Pacyga, P.; Topola, E.; Viscardi, S.; Duda-Madej, A. Bioactive Compounds from Plant Origin as Natural Antimicrobial Agents for the Treatment of Wound Infections. Int. J. Mol. Sci. 2024, 25, 2100. [Google Scholar] [CrossRef]
- Li, Z.; Geng, Y.-N.; Jiang, J.-D.; Kong, W.-J. Antioxidant and Anti-Inflammatory Activities of Berberine in the Treatment of Diabetes Mellitus. Evid. Based Complement. Altern. Med. 2014, 2014, 289264. [Google Scholar] [CrossRef]
- Kheir, M.M.; Wang, Y.; Hua, L.; Hu, J.; Li, L.; Lei, F.; Du, L. Acute Toxicity of Berberine and Its Correlation with the Blood Concentration in Mice. Food Chem. Toxicol. 2010, 48, 1105–1110. [Google Scholar] [CrossRef]
- Wang, K.; Feng, X.; Chai, L.; Cao, S.; Qiu, F. The Metabolism of Berberine and Its Contribution to the Pharmacological Effects. Drug Metab. Rev. 2017, 49, 139–157. [Google Scholar] [CrossRef]
- Patel, P. A Bird’s Eye View on a Therapeutically ‘Wonder Molecule’: Berberine. Phytomedicine Plus 2021, 1, 100070. [Google Scholar] [CrossRef]
- Sun, P.; Wang, Z.; Ma, Y.; Liu, Y.; Xue, Y.; Li, Y.; Gao, X.; Wang, Y.; Chu, M. Advance in Identified Targets of Berberine. Front. Pharmacol. 2025, 16, 1500511. [Google Scholar] [CrossRef]
- Filli, M.S.; Ibrahim, A.A.; Kesse, S.; Aquib, M.; Boakye-Yiadom, K.O.; Farooq, M.A.; Raza, F.; Zhang, Y.; Wang, B. Synthetic Berberine Derivatives as Potential New Drugs. Braz. J. Pharm. Sci. 2022, 58, e18835. [Google Scholar] [CrossRef]
- Karimi, S.; Heidari, F.; Amraei, S. Nano Micro Biosystems Therapeutic Aspects of Berberine and Its Derivatives: Recent Advances and Challenges. Nano Micro Biosyst. 2023, 2023, 42–47. [Google Scholar]
- Fiamegos, Y.C.; Kastritis, P.L.; Exarchou, V.; Han, H.; Bonvin, A.M.J.J.; Vervoort, J.; Lewis, K.; Hamblin, M.R.; Tegos, G.P. Antimicrobial and Efflux Pump Inhibitory Activity of Caffeoylquinic Acids from Artemisia absinthium against Gram-Positive Pathogenic Bacteria. PLoS ONE 2011, 6, e18127. [Google Scholar] [CrossRef]
- Stermitz, F.R.; Lorenz, P.; Tawara, J.N.; Zenewicz, L.A.; Lewis, K. Synergy in a Medicinal Plant: Antimicrobial Action of Berberine Potentiated by 5′-Methoxyhydnocarpin, a Multidrug Pump Inhibitor. Proc. Natl. Acad. Sci. USA 2000, 97, 1433–1437. [Google Scholar] [CrossRef]
- Musumeci, R.; Speciale, A.; Costanzo, R.; Annino, A.; Ragusa, S.; Rapisarda, A.; Pappalardo, M.S.; Iauk, L. Berberis aetnensis C. Presl. Extracts: Antimicrobial Properties and Interaction with Ciprofloxacin. Int. J. Antimicrob. Agents 2003, 22, 48–53. [Google Scholar] [CrossRef]
- Ettefagh, K.; Burns, J.; Junio, H.; Kaatz, G.; Cech, N. Goldenseal (Hydrastis canadensis L.) Extracts Synergistically Enhance the Antibacterial Activity of Berberine via Efflux Pump Inhibition. Planta Med. 2011, 77, 835–840. [Google Scholar] [CrossRef]
- Mohtar, M.; Johari, S.A.; Li, A.R.; Isa, M.M.; Mustafa, S.; Ali, A.M.; Basri, D.F. Inhibitory and Resistance-Modifying Potential of Plant-Based Alkaloids Against Methicillin-Resistant Staphylococcus aureus (MRSA). Curr. Microbiol. 2009, 59, 181–186. [Google Scholar] [CrossRef]
- Li, Y.; Ge, X. Role of Berberine as a Potential Efflux Pump Inhibitor against MdfA from Escherichia coli: In Vitro and In Silico Studies. Microbiol. Spectr. 2023, 11, e03324-22. [Google Scholar] [CrossRef]
- Seo, Y.; Kim, M.; Kim, T.-J. Enhanced Efficacy of Ciprofloxacin and Tobramycin against Staphylococcus aureus When Combined with Corydalis Tuber and Berberine through Efflux Pump Inhibition. Antibiotics 2024, 13, 469. [Google Scholar] [CrossRef]
- Ahmadi, F.; Khalvati, B.; Eslami, S.; Mirzaii, M.; Roustaei, N.; Mazloomirad, F.; Khoramrooz, S.S. The Inhibitory Effect of Thioridazine on AdeB Efflux Pump Gene Expression in Multidrug-Resistant Acinetobacter Baumannii Isolates Using Real Time PCR. Avicenna J. Med. Biotechnol. 2022, 14, 132. [Google Scholar] [CrossRef]
- Morita, Y.; Nakashima, K.; Nishino, K.; Kotani, K.; Tomida, J.; Inoue, M.; Kawamura, Y. Berberine Is a Novel Type Efflux Inhibitor Which Attenuates the MexXY-Mediated Aminoglycoside Resistance in Pseudomonas aeruginosa. Front. Microbiol. 2016, 7, 1223. [Google Scholar] [CrossRef]
- Aghayan, S.S.; Kalalian Mogadam, H.; Fazli, M.; Darban-Sarokhalil, D.; Khoramrooz, S.S.; Jabalameli, F.; Yaslianifard, S.; Mirzaii, M. The Effects of Berberine and Palmatine on Efflux Pumps Inhibition with Different Gene Patterns in Pseudomonas aeruginosa Isolated from Burn Infections. Avicenna J. Med. Biotechnol. 2017, 9, 2–7. [Google Scholar] [PubMed]
- Su, F.; Wang, J. Berberine Inhibits the MexXY-OprM Efflux Pump to Reverse Imipenem Resistance in a Clinical Carbapenem-resistant Pseudomonas aeruginosa Isolate in a Planktonic State. Exp. Ther. Med. 2017, 15, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Laudadio, E.; Cedraro, N.; Mangiaterra, G.; Citterio, B.; Mobbili, G.; Minnelli, C.; Bizzaro, D.; Biavasco, F.; Galeazzi, R. Natural Alkaloid Berberine Activity against Pseudomonas aeruginosa MexXY-Mediated Aminoglycoside Resistance: In Silico and in Vitro Studies. J. Nat. Prod. 2019, 82, 1935–1944. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, M.; Yamasaki, S.; Morita, Y.; Nishino, K. Evaluation of Efflux Pump Inhibitors of MexAB- or MexXY-OprM in Pseudomonas aeruginosa Using Nucleic Acid Dyes. J. Infect. Chemother. 2022, 28, 595–601. [Google Scholar] [CrossRef]
- Giorgini, G.; Mangiaterra, G.; Cedraro, N.; Laudadio, E.; Sabbatini, G.; Cantarini, M.; Minnelli, C.; Mobbili, G.; Frangipani, E.; Biavasco, F.; et al. Berberine Derivatives as Pseudomonas aeruginosa MexXY-OprM Inhibitors: Activity and In Silico Insights. Molecules 2021, 26, 6644. [Google Scholar] [CrossRef]
- Giorgini, G.; Di Gregorio, A.; Mangiaterra, G.; Cedraro, N.; Minnelli, C.; Sabbatini, G.; Mobbili, G.; Simoni, S.; Vignaroli, C.; Galeazzi, R. Inhibition of Polymorphic MexXY-OprM Efflux System in Pseudomonas aeruginosa Clinical Isolates by Berberine Derivatives. ChemMedChem 2024, 19, e202300568. [Google Scholar] [CrossRef]
- Zhou, X.-Y.; Ye, X.-G.; He, L.-T.; Zhang, S.-R.; Wang, R.-L.; Zhou, J.; He, Z.-S. In Vitro Characterization and Inhibition of the Interaction between Ciprofloxacin and Berberine against Multidrug-Resistant Klebsiella pneumonia e. J. Antibiot. 2016, 69, 741–746. [Google Scholar] [CrossRef]
- Karaosmanoglu, K.; Sayar, N.A.; Kurnaz, I.A.; Akbulut, B.S. Assessment of Berberine as a Multi-Target Antimicrobial: A Multi-Omics Study for Drug Discovery and Repositioning. Omics J. Integr. Biol. 2014, 18, 42–53. [Google Scholar] [CrossRef]
- Budeyri Gokgoz, N.; Avci, F.G.; Yoneten, K.K.; Alaybeyoglu, B.; Ozkirimli, E.; Sayar, N.A.; Kazan, D.; Sariyar Akbulut, B. Response of Escherichia coli to Prolonged Berberine Exposure. Microb. Drug Resist. 2017, 23, 531–544. [Google Scholar] [CrossRef]
- Cui, X.; Liu, X.; Ma, X.; Li, S.; Zhang, J.; Han, R.; Yi, K.; Liu, J.; Pan, Y.; He, D.; et al. Restoring Colistin Sensitivity in Colistin-Resistant Salmonella and Escherichia coli: Combinatorial Use of Berberine and EDTA with Colistin. mSphere 2024, 9, e00182-24. [Google Scholar] [CrossRef] [PubMed]
- Menichini, M.; Lari, N.; Rindi, L. Effect of Efflux Pump Inhibitors on the Susceptibility of Mycobacterium avium Complex to Clarithromycin. J. Antibiot. 2020, 73, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Puk, K.; Guz, L. Effect of Alkaloid Berberine on the Susceptibility of Nontuberculous Mycobacteria to Antibiotics. Pol. J. Vet. Sci. 2022, 25, 479–481. [Google Scholar] [CrossRef]
- Schildkraut, J.A.; Coolen, J.P.M.; Ruesen, C.; van den Heuvel, J.J.M.W.; Aceña, L.E.; Wertheim, H.F.L.; Jansen, R.S.; Koenderink, J.B.; te Brake, L.H.M.; van Ingen, J. The Potential Role of Drug Transporters and Amikacin Modifying Enzymes in M. avium. J. Glob. Antimicrob. Resist. 2023, 34, 161–165. [Google Scholar] [CrossRef]
- Schwab, M.; Bergonzi, C.; Sakkos, J.; Staley, C.; Zhang, Q.; Sadowsky, M.J.; Aksan, A.; Elias, M. Signal Disruption Leads to Changes in Bacterial Community Population. Front. Microbiol. 2019, 10, 611. [Google Scholar] [CrossRef]
- Hraiech, S.; Hiblot, J.; Lafleur, J.; Lepidi, H.; Papazian, L.; Rolain, J.M.; Raoult, D.; Elias, M.; Silby, M.W.; Bzdrenga, J.; et al. Inhaled Lactonase Reduces Pseudomonas aeruginosa Quorum Sensing and Mortality in Rat Pneumonia. PLoS ONE 2014, 9, e107125. [Google Scholar] [CrossRef]
- Aswathanarayan, J.B.; Vittal, R.R. Inhibition of Biofilm Formation and Quorum Sensing Mediated Phenotypes by Berberine in: Pseudomonas aeruginosa and Salmonella typhimurium. RSC Adv. 2018, 8, 36133–36141. [Google Scholar] [CrossRef]
- Talaat, R.; Abu El-naga, M.N.; El-Bialy, H.A.A.; El-Fouly, M.Z.; Abouzeid, M.A. Quenching of Quorum Sensing in Multi-Drug Resistant Pseudomonas aeruginosa: Insights on Halo-Bacterial Metabolites and Gamma Irradiation as Channels Inhibitors. Ann. Clin. Microbiol. Antimicrob. 2024, 23, 31. [Google Scholar] [CrossRef]
- Yi, Y.; Zhou, Y.; Lin, S.; Shi, K.; Mei, J.; Ying, G.; Wu, S. Screening and Isolation of Quorum Sensing Inhibitors of Pseudomonas aeruginosa from Phellodendron amurense Extracts Using Bio-affinity Chromatography. J. Sep. Sci. 2024, 47, 2400222. [Google Scholar] [CrossRef]
- Li, Y.T.; Huang, J.R.; Li, L.J.; Liu, L.S. Synergistic Activity of Berberine with Azithromycin against Pseudomonas aeruginosa Isolated from Patients with Cystic Fibrosis of Lung in Vitro and In Vivo. Cell. Physiol. Biochem. 2017, 42, 1657–1669. [Google Scholar] [CrossRef]
- Tan, C.H.; Koh, K.S.; Xie, C.; Tay, M.; Zhou, Y.; Williams, R.; Ng, W.J.; Rice, S.A.; Kjelleberg, S. The Role of Quorum Sensing Signalling in EPS Production and the Assembly of a Sludge Community into Aerobic Granules. ISME J. 2014, 8, 1186–1197. [Google Scholar] [CrossRef] [PubMed]
- Inamuco, J.; Veenendaal, A.K.J.; Burt, S.A.; Post, J.A.; Tjeerdsma-van Bokhoven, J.L.M.; Haagsman, H.P.; Veldhuizen, E.J.A. Sub-Lethal Levels of Carvacrol Reduce Salmonella Typhimurium Motility and Invasion of Porcine Epithelial Cells. Vet. Microbiol. 2012, 157, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Wang, S.; Tao, J.; Wang, J.; Xue, Z.; Wang, R. Mechanism of Berberine Hydrochloride Interfering with Biofilm Formation of Hafnia alvei. Arch. Microbiol. 2022, 204, 126. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Li, X.D.; Hong, J.; Liu, C.; Zhang, X.L.; Zheng, J.P.; Xu, Y.J.; Ou, Z.Y.; Zheng, J.L.; Yu, D.J. Inhibitory Effect of Two Traditional Chinese Medicine Monomers, Berberine and Matrine, on the Quorum Sensing System of Antimicrobial-Resistant Escherichia coli. Front. Microbiol. 2019, 10, 2584. [Google Scholar] [CrossRef]
- Chu, M.; Zhang, M.B.; Liu, Y.C.; Kang, J.R.; Chu, Z.Y.; Yin, K.L.; Ding, L.Y.; Ding, R.; Xiao, R.X.; Yin, Y.N.; et al. Role of Berberine in the Treatment of Methicillin-Resistant Staphylococcus aureus Infections. Sci. Rep. 2016, 6, 24748. [Google Scholar] [CrossRef]
- Cech, N.; Junio, H.; Ackermann, L.; Kavanaugh, J.; Horswill, A. Quorum Quenching and Antimicrobial Activity of Goldenseal (Hydrastis canadensis) against Methicillin-Resistant Staphylococcus aureus (MRSA). Planta Med. 2012, 78, 1556–1561. [Google Scholar] [CrossRef]
- Novick, R.P. Autoinduction and Signal Transduction in the Regulation of Staphylococcal virulence. Mol. Microbiol. 2003, 48, 1429–1449. [Google Scholar] [CrossRef]
- Abd El-Hamid, M.I.; Ibrahim, D.; Elazab, S.T.; Gad, W.M.; Shalaby, M.; El-Neshwy, W.M.; Alshahrani, M.A.; Saif, A.; Algendy, R.M.; AlHarbi, M.; et al. Tackling Strong Biofilm and Multi-Virulent Vancomycin-Resistant Staphylococcus aureus via Natural Alkaloid-Based Porous Nanoparticles: Perspective towards near Future Eradication. Front. Cell. Infect. Microbiol. 2024, 13, 1287426. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, S.; Zhang, S. Enhanced in Vitro Antimicrobial Activity of Amphotericin B with Berberine against Dual-Species Biofilms of Candida albicans and Staphylococcus aureus. J. Appl. Microbiol. 2021, 130, 1154–1172. [Google Scholar] [CrossRef]
- Wang, J.D.; Levin, P.A. Metabolism, Cell Growth and the Bacterial Cell Cycle. Nat. Rev. Microbiol. 2009, 7, 822–827. [Google Scholar] [CrossRef]
- Barrows, J.M.; Goley, E.D. FtsZ Dynamics in Bacterial Division: What, How, and Why? Curr. Opin. Cell Biol. 2021, 68, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Domadia, P.N.; Bhunia, A.; Sivaraman, J.; Swarup, S.; Dasgupta, D. Berberine Targets Assembly of Escherichia coli Cell Division Protein FtsZ. Biochemistry 2008, 47, 3225–3234. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Chan, F.-Y.; Lu, Y.-J.; Neves, M.A.C.; Lui, H.-K.; Wang, Y.; Chow, K.-Y.; Chan, K.-F.; Yan, S.-C.; Leung, Y.-C.; et al. Rational Design of Berberine-Based FtsZ Inhibitors with Broad-Spectrum Antibacterial Activity. PLoS ONE 2014, 9, e97514. [Google Scholar] [CrossRef] [PubMed]
- Parhi, A.; Lu, S.; Kelley, C.; Kaul, M.; Pilch, D.S.; LaVoie, E.J. Antibacterial Activity of Substituted Dibenzo[a,g]Quinolizin-7-Ium Derivatives. Bioorg. Med. Chem. Lett. 2012, 22, 6962–6966. [Google Scholar] [CrossRef]
- Goh, S.; Boberek, J.M.; Nakashima, N.; Stach, J.; Good, L. Concurrent Growth Rate and Transcript Analyses Reveal Essential Gene Stringency in Escherichia coli. PLoS ONE 2009, 4, e6061. [Google Scholar] [CrossRef]
- Fan, T.; Wang, Y.; Tang, S.; Hu, X.; Zen, Q.; Pang, J.; Yang, Y.; You, X.; Song, D. Synthesis and Antibacterial Evaluation of 13-Substituted Cycloberberine Derivatives as a Novel Class of Anti-MRSA Agents. Eur. J. Med. Chem. 2018, 157, 877–886. [Google Scholar] [CrossRef]
- Olleik, H.; Yacoub, T.; Hoffer, L.; Gnansounou, S.M.; Benhaiem-Henry, K.; Nicoletti, C.; Mekhalfi, M.; Pique, V.; Perrier, J.; Hijazi, A.; et al. Synthesis and Evaluation of the Antibacterial Activities of 13-Substituted Berberine Derivatives. Antibiotics 2020, 9, 381. [Google Scholar] [CrossRef]
- Naz, F.; Kumar, M.; Koley, T.; Sharma, P.; Haque, M.A.; Kapil, A.; Kumar, M.; Kaur, P.; Ethayathulla, A.S. Screening of Plant-Based Natural Compounds as an Inhibitor of FtsZ from Salmonella Typhi Using the Computational, Biochemical and in Vitro Cell-Based Studies. Int. J. Biol. Macromol. 2022, 219, 428–437. [Google Scholar] [CrossRef]
- Chi, X.; Ding, J.; Zhang, Y.; Chen, Y.; Han, Y.; Lin, Y.; Jiang, J. Berberine Protects against Dysentery by Targeting Both Shigella Filamentous Temperature Sensitive Protein Z and Host Pyroptosis: Resolving in Vitro–Vivo Effect Discrepancy. Phytomedicine 2025, 139, 156517. [Google Scholar] [CrossRef]
- Di Somma, A.; Canè, C.; Rotondo, N.P.; Cavalluzzi, M.M.; Lentini, G.; Duilio, A. A Comparative Study of the Inhibitory Action of Berberine Derivatives on the Recombinant Protein FtsZ of E. coli. Int. J. Mol. Sci. 2023, 24, 5674. [Google Scholar] [CrossRef]
- Milani, G.; Cavalluzzi, M.M.; Solidoro, R.; Salvagno, L.; Quintieri, L.; Di Somma, A.; Rosato, A.; Corbo, F.; Franchini, C.; Duilio, A.; et al. Molecular Simplification of Natural Products: Synthesis, Antibacterial Activity, and Molecular Docking Studies of Berberine Open Models. Biomedicines 2021, 9, 452. [Google Scholar] [CrossRef] [PubMed]
- Akinpelu, O.I.; Kumalo, H.M.; Mhlongo, S.I.; Mhlongo, N.N. Identifying the Analogues of Berberine as Promising Antitubercular Drugs Targeting Mtb-FtsZ Polymerisation through Ligand-based Virtual Screening and Molecular Dynamics Simulations. J. Mol. Recognit. 2022, 35, e2940. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.K.; Poddar, S.M.; Chakraborty, J.; Nayak, B.S.; Kalathil, S.; Mitra, N.; Gayathri, P.; Srinivasan, R. A Mechanism of Salt Bridge–Mediated Resistance to FtsZ Inhibitor PC190723 Revealed by a Cell-Based Screen. Mol. Biol. Cell 2023, 34, ar16. [Google Scholar] [CrossRef]
- Pandey, N.; Cascella, M. Beta-Lactam Antibiotics. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Smith, H.Z.; Hollingshead, C.M.; Kendall, B. Carbapenem-Resistant Enterobacterales. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Hammoudi Halat, D.; Ayoub Moubareck, C. The Current Burden of Carbapenemases: Review of Significant Properties and Dissemination among Gram-Negative Bacteria. Antibiotics 2020, 9, 186. [Google Scholar] [CrossRef]
- Vrancianu, C.O.; Gheorghe, I.; Dobre, E.-G.; Barbu, I.C.; Cristian, R.E.; Popa, M.; Lee, S.H.; Limban, C.; Vlad, I.M.; Chifiriuc, M.C. Emerging Strategies to Combat β-Lactamase Producing ESKAPE Pathogens. Int. J. Mol. Sci. 2020, 21, 8527. [Google Scholar] [CrossRef]
- Mack, A.R.; Barnes, M.D.; Taracila, M.A.; Hujer, A.M.; Hujer, K.M.; Cabot, G.; Feldgarden, M.; Haft, D.H.; Klimke, W.; van den Akker, F.; et al. A Standard Numbering Scheme for Class C β-Lactamases. Antimicrob. Agents Chemother. 2020, 64, 10–128. [Google Scholar] [CrossRef]
- Liu, Y.; Li, R.; Xiao, X.; Wang, Z. Antibiotic Adjuvants: An Alternative Approach to Overcome Multi-Drug Resistant Gram-Negative Bacteria. Crit. Rev. Microbiol. 2019, 45, 301–314. [Google Scholar] [CrossRef]
- Zhong, C.; Lin, S.; Li, Z.; Yang, X. Characterization of Carbapenem-Resistant Klebsiella pneumoniae in Bloodstream Infections: Antibiotic Resistance, Virulence, and Treatment Strategies. Front. Cell. Infect. Microbiol. 2025, 15, 1541704. [Google Scholar] [CrossRef]
- Pallavi, T.; Raman, C.; Rajeev, G.; Shyam, G.S.; Namita, S.; Alka, N.; Rajesj, A.; Rakesh, S.K. Crystal Structure of New Delhi Metallo-Beta-Lactamase (NDM-1). J. Adv. Bioinforma. Appl. Res. 2011. Available online: https://www.wwpdb.org/pdb?id=pdb_00003s0z (accessed on 25 May 2025).
- Nahar, L.; Hagiya, H.; Gotoh, K.; Asaduzzaman, M.; Otsuka, F. New Delhi Metallo-Beta-Lactamase Inhibitors: A Systematic Scoping Review. J. Clin. Med. 2024, 13, 4199. [Google Scholar] [CrossRef]
- Sabah, D. Recherche Des Inhibiteurs Naturels de l’Enzyme Bêta-Lactamase (BlaC)À l’Origine de l’Antibiorésistance Chez Mycobacterium Tuberculosis, Agent Responsable de La Tuberculose: Approche Par Modélisation. Ph.D. Thesis, Université Ibn Khaldoun-Tiaret, Tiaret, Algeria, 2019. [Google Scholar]
- van Alen, I.; Aguirre García, M.A.; Maaskant, J.J.; Kuijl, C.P.; Bitter, W.; Meijer, A.H.; Ubbink, M. Mycobacterium tuberculosis β-Lactamase Variant Reduces Sensitivity to Ampicillin/Avibactam in a Zebrafish-Mycobacterium marinum Model of Tuberculosis. Sci. Rep. 2023, 13, 15406. [Google Scholar] [CrossRef]
- Sharma, H.K.; Gupta, P.; Nagpal, D.; Mukherjee, M.; Parmar, V.S.; Lather, V. Virtual Screening and Antimicrobial Evaluation for Identification of Natural Compounds as the Prospective Inhibitors of Antibacterial Drug Resistance Targets in Staphylococcus aureus. Fitoterapia 2023, 168, 105554. [Google Scholar] [CrossRef] [PubMed]
- Safi, A.N.; Behrad, M.S.; Mosawi, S.H.; Bayan, A.M. Integrating Molecular Docking and Molecular Dynamics Simulation Approaches for Investigation of the Affinity and Interactions of Berberine with Class C β-Lactamase. Afghan. J. Infect. Dis. 2024, 2, 17–24. [Google Scholar] [CrossRef]
- Ahmed, F.; Sharma, H.K.; Mukherjee, M.; Agarwal, P.; Kumar, A.; Pandita, D.; Lather, V. Exploring Synergistic Potential of Phytomolecules-Antibiotics Combination against Escherichia coli: An Integrated Approach Using Structure Based Drug Design. Pharmacol. Res.—Nat. Prod. 2025, 6, 100160. [Google Scholar] [CrossRef]
Bacterial Species | Molecular Effect | References |
---|---|---|
P. aeruginosa | inhibition of PqsA, violacein, lasl, lasR, rhlI and rhlR | [72,73] |
S. typhimurium | inhibition of EPS production | [70] |
S. aureus | inhibition of agr I, agr II, agr III systems | [79,81] |
E. coli | downregulation of luxS, pfS, hflX, ftsQ and ftsE | [77] |
H. alvei | reduction of C14-HSL production | [76] |
Ambler Class | Active Site Type | Examples | References |
---|---|---|---|
A | Serine-β-lactamase | KPC, TEM-1 | [100] |
B | Metallo-β-lactamase | NDM, VIM, IMP | [99] |
C | Serine-β-lactamase | AmpC, ADC | [101] |
D | OXA-23, OXA-48 | [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duda-Madej, A.; Viscardi, S.; Bazan, H.; Sobieraj, J. Exploring the Role of Berberine as a Molecular Disruptor in Antimicrobial Strategies. Pharmaceuticals 2025, 18, 947. https://doi.org/10.3390/ph18070947
Duda-Madej A, Viscardi S, Bazan H, Sobieraj J. Exploring the Role of Berberine as a Molecular Disruptor in Antimicrobial Strategies. Pharmaceuticals. 2025; 18(7):947. https://doi.org/10.3390/ph18070947
Chicago/Turabian StyleDuda-Madej, Anna, Szymon Viscardi, Hanna Bazan, and Jakub Sobieraj. 2025. "Exploring the Role of Berberine as a Molecular Disruptor in Antimicrobial Strategies" Pharmaceuticals 18, no. 7: 947. https://doi.org/10.3390/ph18070947
APA StyleDuda-Madej, A., Viscardi, S., Bazan, H., & Sobieraj, J. (2025). Exploring the Role of Berberine as a Molecular Disruptor in Antimicrobial Strategies. Pharmaceuticals, 18(7), 947. https://doi.org/10.3390/ph18070947