Synthesis and Cytotoxic Activity of a New Family of α-Hydroxyphosphonates with the Benzothiophene Scaffold
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis of the New α-Benzothiophenyl-α-hydroxy-ethylphosphonates
2.2. Spectroscopic Characterization
2.2.1. 13C NMR Spectroscopy
2.2.2. 1H NMR Spectroscopy
2.2.3. 31P NMR Spectroscopy
2.2.4. IR Spectroscopy
2.3. Single Crystal X-Ray Analysis of Diethyl α-(7-Chlorobenzothiophenyl-)α-hydroxy-methylphosphonate (2f)
2.4. Bioactivity Study of the α-Benzothiophenyl-α-hydroxy-methylphosphonates (2a–w)
3. Materials and Materials
3.1. General
3.2. General Procedure for the Synthesis of Diethyl [(1-Benzothiopen-2-yl)(hydroxy)methyl]phosphonates 2
3.2.1. Diethyl [(5-Fluoro-1-benzothiophen-2-yl)(hydroxy)methyl]phosphonate (2a)
3.2.2. Diethyl [(6-Fluoro-1-benzothiophen-2-yl)(hydroxy)methyl]phosphonate (2b)
3.2.3. Diethyl [(7-Fluoro-1-benzothiophen-2-yl)(hydroxy)methyl]phosphonate (2c)
3.2.4. Diethyl [(4-Chloro-1-benzothiophen-2-yl)(hydroxy)methyl]phosphonate (2d)
3.2.5. Diethyl [(5-Chloro-1-benzothiophen-2-yl)(hydroxy)methyl]phosphonate (2e)
3.2.6. Diethyl [(7-Chloro-1-benzothiophen-2-yl)(hydroxy)methyl]phosphonate (2f)
3.2.7. Diethyl [(5-Bromo-1-benzothiophen-2-yl)(hydroxy)methyl]phosphonate (2g)
3.2.8. Diethyl [Hydroxy(4-iodo-1-benzothiophen-2-yl]methyl]phosphonate (2h)
3.2.9. Diethyl [(Hydroxy(3-methyl-1-benzothiophen-2-yl)methyl]phosphonate (2i)
3.2.10. Diethyl {Hydroxy [4-(trifluoromethyl)-1-benzothiophen-2-yl]methyl}phosphonate (2J)
3.2.11. Diethyl [(4-Fluoro-3-methyl-1-benzothiophen-2-yl)(hydroxy)methyl]phosphonate (2k)
3.2.12. Diethyl [(5-Fluoro-3-methyl-1-benzothiophen-2-yl)(hydroxy)methyl]phosphonate (2l)
3.2.13. Diethyl [(6-Fluoro-3-methyl-1-benzothiophen-2-yl)(hydroxy)methyl]phosphonate (2m)
3.2.14. Diethyl [(7-Fluoro-3-methyl-1-benzothiophen-2-yl)(hydroxy)methyl]phosphonate (2n)
3.2.15. Diethyl [(5,7-Difluoro-3-methyl-1-benzothiophen-2-yl)(hydroxy)methyl]phosphonate (2o)
3.2.16. Diethyl [(6,7-Difluoro-3-methyl-1-benzothiophen-2-yl)(hydroxy)methyl]phosphonate (2p)
3.2.17. Diethyl [(5-Chloro-3-methyl-1-benzothiophen-2-yl)(hydroxy)methyl]phosphonate (2q)
3.2.18. Diethyl [(6-Chloro-3-methyl-1-benzothiophen-2-yl)(hydroxy)methyl]phosphonate (2r)
3.2.19. Diethyl {Hydroxy [3-methyl-5-(trifluoromethyl)-1-benzothiophen-2-yl]methyl}phosphonate (2s)
3.2.20. Diethyl {Hydroxy [3-methyl-6-(trifluoromethyl)-1-benzothiophen-2-yl]methyl}phosphonate (2t)
3.2.21. Diethyl {Hydroxy [3-methyl-7-(trifluoromethyl)-1-benzothiophen-2-yl]methyl}phosphonate (2u)
3.2.22. Diethyl [(3-Ethyl-5-trifluoromethyl-1-benzothiophen-2-yl)](hydroxy)methyl]phosphonate (2v)
3.2.23. Diethyl [(4-Fluoro-7-iodo-1-benzothiopen-2-yl)(hydroxy)methyl]phosphonate (2w)
3.3. X-Ray Experimental
Single Crystal X-Ray Diffraction Studies
3.4. Bioactivity Experimental
3.4.1. Cell Culturing
3.4.2. Cell Viability Assays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, X.B.; Shi, D.Q. Synthesis and biological activity of novel phosphonate derivatives containing of pyridyl and 1,2,3-triazole rings. Phosphorus Sulfur Silicon Relat. Elem. 2008, 183, 1134–1144. [Google Scholar] [CrossRef]
- Kolodiazhnyi, O.I. Chiral hydroxyl phosphonates: Synthesis, configuration and biological properties. Russ. Chem. Rev. 2006, 75, 227–253. [Google Scholar] [CrossRef]
- Song, H.; Mao, H.; Shi, D. Synthesis and Herbicidal Activity of α-Hydroxy Phosphonate Derivatives Containing Pyrimidine Moiety. Chin. J. Chem. 2010, 28, 2020–2024. [Google Scholar] [CrossRef]
- Wang, W.; Wang, L.P.; Ning, B.K.; Mao, M.Z.; Xue, C.; Wang, H.Y. Synthesis and insecticidal activities of O,O-dialkyl-2-[3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carbonyloxy] (aryl)methylphosphonates. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 1362–1367. [Google Scholar] [CrossRef]
- Lorenz, W.; Henglein, A.; Schrader, G. The New Insecticide O,O-Dimethyl 2,2,2-Trichloro-1-hydroxyethylphosphonate. J. Am. Chem. Soc. 1955, 77, 2554–2556. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, Y.; Peng, H.; He, H.W.; Lu, X.T. Synthesis and herbicidal activity of α-[(substituted phenoxybutyryloxy or valeryoxy)]alkylphosphonatesand 2-(substituted phenoxybutyryloxy)alkyl-5,5-dimethyl-1,3,2-dioxaphosphinan-2-one containing fluorine. J. Fluor. Chem. 2017, 193, 8–16. [Google Scholar] [CrossRef]
- Pokalwar, R.U.; Hangarge, R.V.; Maske, P.V.; Shingare, M.S. Synthesis and antibacterial activities of α-hydroxyphosphonates and α-acetyloxyphosphonates derived from 2-chloroquinoline-3-carbaldehyde. Arkivoc 2006, 11, 196–204. [Google Scholar] [CrossRef]
- Kategaonkar, A.H.; Pokalwar, R.U.; Sonar, S.S.; Gawali, V.U.; Shingate, B.B.; Shingare, M.S. Synthesis, in vitro antibacterial and antifungal evaluations of new α-hydroxyphosphonate and new α-acetoxyphosphonate derivatives of tetrazolo [1,5-a] quinoline. Eur. J. Med. Chem. 2010, 45, 1128–1132. [Google Scholar] [CrossRef]
- Reddy, G.S.; Sundar, C.S.; Prasad, S.S.; Dadapeer, E.D.; Raju, C.N.; Reddy, C.S. Synthesis, spectral characterization and antimicrobial activity of α-hydroxyphosphonates. Pharma Chem. 2012, 4, 2208–2213. Available online: https://www.derpharmachemica.com/pharma-chemica/synthesis-spectral-characterization-and-antimicrobial-activity-of-hydroxyphosphonates.pdf (accessed on 18 June 2025).
- Sampath, S.C.; Raju, N.C.; Rao, V. An efficient synthesis, spectral characterization, antimicrobial, and antioxidant activities of novel α-hydroxyphosphonates and α-hydroxyphosphinates. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 95–99. [Google Scholar] [CrossRef]
- Patil, N.S.; Deshmukh, G.B.; Patil, S.V.; Bholay, A.D.; Gaikwad, N.D. Synthesis and biological evaluation of novel N-aryl maleimide derivatives clubbed with α-hydroxyphosphonates. Eur. J. Med. Chem. 2014, 83, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Rao, K.U.M.; Sundar, C.S.; Prasad, S.S.; Rani, C.R.; Reddy, C.S. Neat Synthesis and Antioxidant Activity of α-Hydroxyphosphonates. Bull. Korean Chem. Soc. 2011, 32, 3343–3347. [Google Scholar] [CrossRef]
- Naidu, K.R.M.; Kumar, K.S.; Arulselvan, P.; Reddy, C.B.; Lasekan, O. Synthesis of α-Hydroxyphosphonates and Their Antioxidant Properties. Arch. Pharm. Chem. Life Sci. 2012, 345, 957–963. [Google Scholar] [CrossRef]
- Yang, J.; Ma, J.; Che, W.; Li, M.; Li, G.; Song, B. Microwave-assisted synthesis and antitumor activity of salicyl acyloxy phosphonate derivatives. Chin. J. Org. Chem. 2014, 34, 2566–2571. [Google Scholar] [CrossRef]
- Bagchi, S.; Rathee, P.; Jayaprakash, V.; Banerjee, S. Farnesyl Transferase Inhibitors as Potential Anticancer Agents. Mini-Rev. Med. Chem. 2018, 18, 1611–1623. [Google Scholar] [CrossRef]
- Al-Kali, A.; Gandhi, V.; Ayoubi, M.; Keating, M.; Ravandi, F. Forodesine: Review of Preclinical and Clinical Data. Future Oncol. 2010, 6, 1211–1217. [Google Scholar] [CrossRef] [PubMed]
- Yokomatsu, T.; Abe, H.; Sato, M.; Suemune, K.; Kihara, T.; Soeda, S.; Shimeno, H.; Shibuya, S. Synthesis of 1,1-difluoro-5-(1H-9-purinyl)-2-pentenylphosphonic acids and the related methano analogues. Remarkable effect of the nucleobases and the cyclopropane rings on inhibitory activity toward purine nucleoside phosphorylase. Bioorg. Med. Chem. 1998, 6, 2495–2505. [Google Scholar] [CrossRef] [PubMed]
- Kalla, R.M.N.; Lee, H.R.; Cao, J.; Yoo, J.W.; Kim, I. Phospho sulfonic acid: An efficient and recyclable solid acid catalyst for the solvent-free synthesis of α-hydroxyphosphonates and their anticancer properties. New J. Chem. 2015, 39, 3916–3922. [Google Scholar] [CrossRef]
- Patel, D.V.; Rielly-Gauvin, K.; Ryono, D.E.; Free, C.A.; Rogers, W.L.; Smith, S.A.; DeForrest, J.M.; Oehl, R.S.; Petrillo, E.W., Jr. α-Hydroxy Phosphinyl-Based Inhibitors of Human Renin. J. Med. Chem. 1995, 38, 4557–4569. [Google Scholar] [CrossRef]
- Stowasser, B.; Budt, K.-H.; Jian-Qi, L.; Peyman, A.; Ruppert, D. New hybrid transition state analog inhibitors of HIV protease with peripheric C2-symmetry. Tetrahedron Lett. 1992, 33, 6625–6628. [Google Scholar] [CrossRef]
- Prior, A.M.; Kim, Y.; Weerasekara, S.; Moroze, M.; Alliston, K.R.; Uy, R.A.; Groutas, W.C.; Chang, K.O.; Hua, D.H. Design, synthesis, and bioevaluation of viral 3C and 3C-like protease inhibitors. Bioorg. Med. Chem. Lett. 2013, 23, 6317–6320. [Google Scholar] [CrossRef]
- Pompliano, D.L.; Rands, E.; Schaber, M.D.; Mosser, S.D.; Anthony, N.J.; Gibbs, J.B. Steady-state kinetic mechanism of ras farnesyl:protein transferase. Biochemistry 1992, 31, 3800–3807. [Google Scholar] [CrossRef]
- Frechette, R.F.; Ackerman, C.; Beers, S.; Look, R.; Moore, J. Novel hydroxyphosphonate inhibitors of CD-45 tyrosine phosphatase. Bioorg. Med. Chem. Lett. 1997, 7, 2169–2172. [Google Scholar] [CrossRef]
- Desai, J.; Wang, Y.; Wang, K.; Malwal, S.R.; Oldfield, E. Isoprenoid Biosynthesis Inhibitors Targeting Bacterial Cell Growth. Chem. Med. Chem. 2016, 11, 2205–2215. [Google Scholar] [CrossRef] [PubMed]
- Forlani, G.; Occhipinti, A.; Berlicki, Ł.; Dziedzioła, G.; Wieczorek, A.; Kafarski, P. Tailoring the Structure of Aminobisphosphonates To Target Plant P5C Reductase. J. Agric. Food Chem. 2008, 56, 3193–3199. [Google Scholar] [CrossRef]
- Pudovik, A.N.; Zametaeva, G.A. New synthesis of esters of phosphonic and thiophosphonic acids. XIII. Addition of diethyl thiophosphite to ketones and aldehydes. Izv. Akad. Nauk. SSSR Ser. Khim. 1952, 1952, 932–939. [Google Scholar]
- Pudovik, A.N.; Konovalova, I.V. Addition reactions of esters of phosphorus(III) acids with unsaturated systems. Synthesis 1979, 2, 81–96. [Google Scholar] [CrossRef]
- Rádai, Z.; Keglevich, G. Synthesis and Reactions of α-Hydroxyphosphonates. Molecules 2018, 23, 1493. [Google Scholar] [CrossRef]
- Keglevich, G.; Tóth, V.R.; Drahos, L. Microwave-Assisted Synthesis of α-Hydroxybenzylphosphonates and -benzylphosphine Oxides. Heteroat. Chem. 2011, 22, 15–17. [Google Scholar] [CrossRef]
- Texier-Boullet, F.; Foucaud, A. Synthesis of 1-Hydroxyalkanephosphonic Esters on Alumina. Synthesis 1982, 916, 25. [Google Scholar] [CrossRef]
- Keglevich, G.; Rádai, Z.; Kiss, N.Z. To date the greenest method for the preparation of α-hydroxyphosphonates from substituted benzaldehydes and dialkyl phosphites. Green. Process Synth. 2017, 6, 197–201. [Google Scholar] [CrossRef]
- Keri, R.S.; Chand, K.; Budagumpi, S.; Somappa, S.B.; Patil, S.A.; Nagaraja, B.M. An overview of benzo[b]thiophene-based medicinal chemistry. Eur. J. Med. Chem. 2017, 138, 1002–1033. [Google Scholar] [CrossRef]
- Clemett, D.; Spencer, C.M. Raloxifene: A review of its use in postmenopausal osteoporosis. Drugs 2000, 60, 379–411. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, S.E.; Kamada, A.K. Zileuton: The first 5-lipoxygenase inhibitor for the treatment of asthma. Ann. Pharmacother. 1996, 30, 858–864. [Google Scholar] [CrossRef] [PubMed]
- Croxtall, J.D.; Plosker, G.L. Sertaconazole: A review of its use in the management of superficial mycoses in dermatology and gynaecology. Drugs 2009, 63, 339–359. [Google Scholar] [CrossRef]
- Eldehna, W.M.; Al-Ansary, G.H.; Al-Warhi, T.; Jaballah, M.Y.; Elaasser, M.; Rashed, M. Identification of novel ureido benzothiophenes as dual VEGFR-2/EGFR anticancer agents. Bioorg. Chem. 2024, 143, 107037. [Google Scholar] [CrossRef]
- Penthala, N.R.; Sonar, V.N.; Horn, J.; Leggas, M.; Yadlapalli, J.S.K.B.; Crooks, P.A. Synthesis and evaluation of a series of benzothiophene acrylonitrile analogs as anticancer agents. Med. Chem. Commun. 2013, 4, 1073–1078. [Google Scholar] [CrossRef]
- Mostafa, N.; Chen, P.-J.; Darwish, S.S.; Su, Y.-C.; Shiao, M.-H.; Piazza, G.A.; Abadi, A.H.; Engel, M.; Abdel-Halim, M. N-Benzylated 5-hydroxybenzothiophene-2-carboxamides as multi-targeted Clk/Dyrk inhibitors and potential anticancer agents. Cancers 2024, 16, 2033. [Google Scholar] [CrossRef]
- DIAMOND, version 3.2i; Crystal Impact GbR: Bonn, Germany, 2014.
- O’Connor, M.J.; Boblak, K.N.; Topinka, M.J.; Kindelin, P.J.; Briski, J.M.; Zheng, C.; Klumpp, D.A. Superelectrophiles and the effects of trifluoromethyl substituents. J. Am. Chem. Soc. 2010, 132, 3266–3267. [Google Scholar] [CrossRef]
- Nair, A.S.; Singh, A.K.; Kumar, A.; Kumar, S.; Sukumaran, S.; Koyiparambath, V.P.; Pappachen, L.K.; Rangarajan, T.M.; Kim, H.; Mathew, B. FDA-Approved Trifluoromethyl Group-Containing Drugs: A Review of 20 Years. Processes 2022, 10, 2054. [Google Scholar] [CrossRef]
- Pattanayak, P.; Nikhitha, S.; Halder, D.; Ghosh, B.; Chatterjee, T. Exploring the impact of trifluoromethyl (-CF3) functional group on the anti-cancer activity of isoxazole-based molecules: Design, synthesis, biological evaluation and molecular docking analysis. RSC Adv. 2024, 14, 18856–18870. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, N.; Kaku, T.; Itoh, F.; Tanaka, T.; Hara, T.; Miki, H.; Iwasaki, M.; Aono, T.; Yamaoka, M.; Kusaka, M.; et al. C17,20-Lyase inhibitors I. Structure-based de novo design and SAR study of C17,20-lyase inhibitors. Bioorg. Med. Chem. 2004, 12, 2251–2273. [Google Scholar] [CrossRef] [PubMed]
- Hur, W.; Rosen, H.; Gray, N.S. A benzo[b]thiophene-based selective type 4 S1P receptor agonist. Bioorg. Med. Chem. Lett. 2017, 27, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Shigeno, M.; Fujii, Y.; Kajima, A.; Nozawa-Kumada, K.; Kondo, Y. Catalytic Deprotonative α-Formylation of Heteroarenes by an Amide Base Generated in Situ from Tetramethylammonium Fluoride and Tris(trimethylsilyl)amine. Org. Process. Res. Dev. 2019, 23, 443–451. [Google Scholar] [CrossRef]
- Program Package ‘CrysAlisPro 1.171.40.82a’; Rigaku Oxford Diffraction: The Woodlands, TX, USA, 2020.
- Sheldrick, G.M. SHELXS-97: Program for Crystal Structure Solution; University of Göttingen: Göttingen, Germany, 1997. [Google Scholar]
- Sheldrick, G.M. SHELXL-97: Program for the Refinement of Crystal Structures; University of Göttingen: Göttingen, Germany, 1997. [Google Scholar]
- Spek, A.L. PLATON: A Multipurpose Crystallographic Tool; Utrecht University: Utrecht, The Netherlands, 1999. [Google Scholar]
- Szalai, Z.; Bednárik, J.; Tóth, B.S.; Takács, A.; Tekula, S.; Kőhidai, L.; Karaghiosoff, K.; Drahos, L.; Keglevich, G. Cytotoxic Activity of Bisphosphonic Derivatives Obtained by the Michaelis-Arbuzov or the Pudovik Reaction. Pharmaceuticals 2025, 18, 91. [Google Scholar] [CrossRef]
Entry | Product | R1 | R2 | R3 | R4 | R5 | Yield (%) |
---|---|---|---|---|---|---|---|
1 | 2a | H | H | F | H | H | 75 |
2 | 2b | H | H | H | F | H | 87 |
3 | 2c | H | H | H | H | F | 94 |
4 | 2d | H | Cl | H | H | H | 72 |
5 | 2e | H | H | Cl | H | H | 62 |
6 | 2f | H | H | H | H | Cl | 86 |
7 | 2g | H | H | Br | H | H | 73 |
8 | 2h | H | I | H | H | H | 66 |
9 | 2i | Me | H | H | H | H | 61 |
10 | 2j | H | CF3 | H | H | H | 79 |
11 | 2k | Me | F | H | H | H | 71 |
12 | 2l | Me | H | F | H | H | 79 |
13 | 2m | Me | H | H | F | H | 51 |
14 | 2n | Me | H | H | H | F | 79 |
15 | 2o | Me | H | F | H | F | 75 |
16 | 2p | Me | H | H | F | F | 56 |
17 | 2q | Me | H | Cl | H | H | 79 |
18 | 2r | Me | H | H | Cl | H | 66 |
19 | 2s | Me | H | CF3 | H | H | 66 |
20 | 2t | Me | H | H | CF3 | H | 69 |
21 | 2u | Me | H | H | H | CF3 | 78 |
22 | 2v | Et | H | CF3 | H | H | 77 |
23 | 2w | H | F | H | H | I | 68 |
Compounds | U266 | EBC-1 | A2058 | HT-29 |
---|---|---|---|---|
100 µM | ||||
Medium | 2.05 ± 0.21 *** | 0.92 ± 0.04 *** | 1.03 ± 0.04 | 0.87 ± 0.02 *** |
DMSO | 1.00 ± 0.05 | 1.00 ± 0.02 | 1.00 ± 0.07 | 1.00 ± 0.04 |
2a | 0.85 ± 0.07 *** | 0.93 ± 0.02 ** | 0.96 ± 0.06 ** | 0.90 ± 0.02 * |
2b | 0.76 ± 0.04 *** | 0.97 ± 0.01 | 0.97 ± 0.06 *** | 0.97 ± 0.02 |
2c | 0.78 ± 0.06 *** | 0.89 ± 0.02 *** | 0.93 ± 0.05 ** | 0.90 ± 0.01 ** |
2d | 0.55 ± 0.07 *** | 0.77 ± 0.01 *** | 0.82 ± 0.03 *** | 0.83 ± 0.03 *** |
2e | 0.52 ± 0.05 *** | 0.71 ± 0.02 *** | 0.90 ± 0.02 *** | 0.86 ± 0.02 *** |
2f | 0.51 ± 0.03 *** | 0.66 ± 0.03 *** | 0.78 ± 0.11 *** | 0.79 ± 0.03 *** |
2g | 0.46 ± 0.01 *** | 0.71 ± 0.01 *** | 0.92 ± 0.01 *** | 0.91 ± 0.06 ** |
2h | 0.51 ± 0.01 *** | 0.66 ± 0.04 *** | 0.76 ± 0.01 *** | 0.81 ± 0.04 *** |
2i | 0.94 ± 0.01 | 0.99 ± 0.03 * | 1.06 ± 0.01 | 0.98 ± 0.01 |
2j | 0.61 ± 0.02 *** | 0.76 ± 0.02 *** | 0.80 ± 0.02 *** | 0.78 ± 0.03 *** |
2k | 1.08 ± 0.05 | 0.78 ± 0.03 *** | 0.83 ± 0.03 *** | 0.83 ± 0.02 *** |
2l | 0.75 ± 0.08 *** | 0.93 ± 0.01 ** | 0.97 ± 0.05 * | 0.92 ± 0.03 * |
2m | 0.87 ± 0.01 ** | 0.89 ± 0.02 *** | 0.90 ± 0.04 *** | 0.95 ± 0.04 * |
2n | 0.81 ± 0.08 *** | 0.86 ± 0.03 *** | 0.90 ± 0.01 *** | 0.91 ± 0.02 * |
2o | 0.63 ± 0.02 *** | 0.93 ± 0.05 * | 0.98 ± 0.04* | 0.96 ± 0.02 |
2p | 0.69 ± 0.02 *** | 0.85 ± 0.01 *** | 0.82 ± 0.01 *** | 0.91 ± 0.02 ** |
2q | 0.52 ± 0.06 *** | 0.91 ± 0.04 *** | 0.92 ± 0.02 *** | 0.92 ± 0.02 ** |
2r | 0.51 ± 0.05 *** | 0.68 ± 0.02 *** | 0.89 ± 0.06 *** | 0.84 ± 0.04 *** |
2s | 0.30 ± 0.01 *** | 0.71 ± 0.01 *** | 1.02 ± 0.01 | 0.86 ± 0.03 *** |
2t | 0.09 ± 0.02 *** | 0.65 ± 0.01 *** | 0.95 ± 0.05 ** | 0.58 ± 0.14 *** |
2u | 0.55 ± 0.05 *** | 0.85 ± 0.01 *** | 0.82 ± 0.04 *** | 0.87 ± 0.02 *** |
2v | 0.77 ± 0.02 *** | 1.03 ± 0.01 | 1.05 ± 0.01 | 0.99 ± 0.01 |
2w | 0.33 ± 0.01 *** | 0.69 ± 0.01 *** | 0.71 ± 0.01 *** | 0.75 ± 0.01 *** |
2f | |
---|---|
Empirical formula | C13H16ClO4PS |
Formula mass | 334.74 |
T [K] | 123(2) |
Crystal size [mm] | 0.40 × 0.25 × 0.20 |
Crystal description | colorless block |
Crystal system | triclinic |
Space group | P-1 |
a [Ǻ] | 7.6579(4) |
b [Ǻ] | 7.8950(4) |
c [Ǻ] | 13.9491(6) |
α [°] | 78.234(4) |
β [°] | 85.603(4) |
γ [°] | 65.219(5) |
V [Ǻ3] | 749.57(7) |
Z | 2 |
ρcalcd. [g cm−3] | 1.483 |
μ [mm−1] | 0.509 |
F(000) | 348 |
Θ range [°] | 2.89–25.24 |
Index ranges | −10 ≤ h ≤ 10 |
−10 ≤ k ≤ 10 | |
−18 ≤ l ≤ 18 | |
Reflns. collected | 12,988 |
Reflns. obsd. | 3270 |
Reflns. unique | 3718 (Rint = 0.0204) |
R1, wR2 (2σ data) | 0.0405, 0.1050 |
R1, wR2 (all data) | 0.0471, 0.1111 |
GOOF on F2 | 1.029 |
Peak/hole [e Ǻ−3] | 0.754/−0.457 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milen, M.; John, T.M.; Kis, A.S.; Garádi, Z.; Szalai, Z.; Takács, A.; Kőhidai, L.; Karaghiosoff, K.; Keglevich, G. Synthesis and Cytotoxic Activity of a New Family of α-Hydroxyphosphonates with the Benzothiophene Scaffold. Pharmaceuticals 2025, 18, 949. https://doi.org/10.3390/ph18070949
Milen M, John TM, Kis AS, Garádi Z, Szalai Z, Takács A, Kőhidai L, Karaghiosoff K, Keglevich G. Synthesis and Cytotoxic Activity of a New Family of α-Hydroxyphosphonates with the Benzothiophene Scaffold. Pharmaceuticals. 2025; 18(7):949. https://doi.org/10.3390/ph18070949
Chicago/Turabian StyleMilen, Mátyás, Tamás Miklós John, Anna Sára Kis, Zsófia Garádi, Zsuzsanna Szalai, Angéla Takács, László Kőhidai, Konstantin Karaghiosoff, and György Keglevich. 2025. "Synthesis and Cytotoxic Activity of a New Family of α-Hydroxyphosphonates with the Benzothiophene Scaffold" Pharmaceuticals 18, no. 7: 949. https://doi.org/10.3390/ph18070949
APA StyleMilen, M., John, T. M., Kis, A. S., Garádi, Z., Szalai, Z., Takács, A., Kőhidai, L., Karaghiosoff, K., & Keglevich, G. (2025). Synthesis and Cytotoxic Activity of a New Family of α-Hydroxyphosphonates with the Benzothiophene Scaffold. Pharmaceuticals, 18(7), 949. https://doi.org/10.3390/ph18070949