The Effect of Metformin on Pituitary Function in Postmenopausal Women with Subclinical Hypothyroidism and Macroprolactinemia: A Single-Center Prospective Case–Control Study
Abstract
:1. Introduction
2. Results
3. Discussion
Advantages and Limitations of the Study
4. Materials and Methods
4.1. Study Design and Setting
4.2. Participants
4.3. Study Size
4.4. The Course of the Study
4.5. Outcome Variables and Measurements
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cappelli, C.; Rotondi, M.; Pirola, I.; Agosti, B.; Gandossi, E.; Valentini, U.; De Martino, E.; Cimino, A.; Chiovato, L.; Agabiti-Rosei, E.; et al. TSH-lowering effect of metformin in type 2 diabetic patients: Differences between euthyroid, untreated hypothyroid, and euthyroid on L-T4 therapy patients. Diabetes Care 2009, 32, 1589–1590. [Google Scholar] [CrossRef] [PubMed]
- Haroon, S.M.; Khan, K.; Maqsood, M.; Iqbal, S.; Aleem, M.; Khan, T.U. Exploring the effect of metformin to lower thyroid-stimulating hormone in euthyroid and hypothyroid type-2 diabetic patients. Cureus 2021, 13, e13283. [Google Scholar] [CrossRef]
- Cannarella, R.; Condorelli, R.A.; Barbagallo, F.; Aversa, A.; Calogero, A.E.; La Vignera, S. TSH lowering effects of metformin: A possible mechanism of action. J. Endocrinol. Investig. 2021, 44, 1547–1550. [Google Scholar] [CrossRef]
- Krysiak, R.; Szkróbka, W.; Okopień, B. The effect of metformin on serum gonadotropin levels in postmenopausal women with diabetes and prediabetes: A pilot study. Exp. Clin. Endocrinol. Diabetes 2018, 126, 645–650. [Google Scholar] [CrossRef]
- Zahra, M.; Shah, M.; Ali, A.; Rahim, R. Effects of metformin on endocrine and metabolic parameters in patients with polycystic ovary syndrome. Horm. Metab. Res. 2017, 49, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Krysiak, R.; Okrzesik, J.; Okopień, B. The effect of short-term metformin treatment on plasma prolactin levels in bromocriptine-treated patients with hyperprolactinaemia and impaired glucose tolerance: A pilot study. Endocrine 2015, 49, 242–249. [Google Scholar] [CrossRef]
- Bo, Q.J.; Wang, Z.M.; Li, X.B.; Ma, X.; Wang, C.Y.; de Leon, J. Adjunctive metformin for antipsychotic-induced hyperprolactinemia: A systematic review. Psychiatry Res. 2016, 237, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Krysiak, R.; Kowalcze, K.; Szkróbka, W.; Okopień, B. The effect of metformin on prolactin levels in patients with drug-induced hyperprolactinemia. Eur. J. Intern. Med. 2016, 30, 94–98. [Google Scholar] [CrossRef]
- Wu, R.R.; Jin, H.; Gao, K.; Twamley, E.W.; Ou, J.J.; Shao, P. Metformin for treatment of antipsychotic-induced amenorrhea and weight gain in women with worst-episode schizophrenia: A double-blind, randomized, placebo-controlled study. Am. J. Psychiatry 2012, 169, 813–821. [Google Scholar] [CrossRef]
- Labuzek, K.; Suchy, D.; Gabryel, B.; Bielecka, A.; Liber, S.; Okopień, B. Quantification of metformin by the HPLC method in brain regions, cerebrospinal fluid and plasma of rats treated with lipopolysaccharide. Pharmacol. Rep. 2010, 62, 956–965. [Google Scholar] [CrossRef]
- Ueno, M. Molecular anatomy of the brain endothelial barrier: An overview of the distributional features. Curr. Med. Chem. 2007, 14, 1199–1206. [Google Scholar] [CrossRef]
- Melmed, S.; Casanueva, F.F.; Hoffman, A.R.; Kleinberg, D.L.; Montori, V.M.; Schlechte, J.A.; Wass, J. A; Endocrine Society. Diagnosis and treatment of hyperprolactinemia: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 273–288. [Google Scholar] [CrossRef]
- Koniares, K.; Benadiva, C.; Engmann, L.; Nulsen, J.; Grow, D. Macroprolactinemia: A mini-review and update on clinical practice. F&S Rep. 2023, 4, 245–250. [Google Scholar]
- Fahie-Wilson, M.; Smith, T.P. Determination of prolactin: The macroprolactin problem. Best Pract. Res. Clin. Endocrinol. Metab. 2013, 27, 725–742. [Google Scholar] [CrossRef] [PubMed]
- Shimatsu, A.; Hattori, N. Macroprolactinemia: Diagnostic, clinical, and pathogenic significance. Clin. Dev. Immunol. 2012, 2012, 167132. [Google Scholar] [CrossRef]
- Samson, S.L.; Hamrahian, A.H.; Ezzat, S.; AACE Neuroendocrine and Pituitary Scientific Committee; American College of Endocrinology (ACE). American association of clinical endocrinologists, American College of Endocrinology disease state clinical review: Clinical relevance of macroprolactin in the absence or presence of true hyperprolactinemia. Endocr. Pract. 2015, 21, 1427–1435. [Google Scholar] [CrossRef] [PubMed]
- Hattori, N.; Ishihara, T.; Saiki, Y. Macroprolactinemia prevalence and aetiologies in a large group of hospital workers. Clin. Endocrinol. 2009, 71, 702–708. [Google Scholar] [CrossRef]
- Vallette-Kasic, S.; Morange-Ramos, I.; Selim, A.; Gunz, G.; Morange, S.; Enjalbert, A.; Martin, P.M.; Jaquet, P.; Brue, T. Macroprolactinemia revisited: A study on 106 patients. J. Clin. Endocrinol. Metab. 2002, 87, 581–588. [Google Scholar] [CrossRef]
- Gibney, J.; Smith, T.P.; McKenna, T.J. Clinical relevance of macroprolactin. Clin. Endocrinol. 2005, 62, 633–643. [Google Scholar] [CrossRef]
- Krysiak, R.; Drosdzol-Cop, A.; Skrzypulec-Plinta, V.; Okopień, B. Sexual function and depressive symptoms in young women with elevated macroprolactin content: A pilot study. Endocrine 2016, 53, 291–298. [Google Scholar] [CrossRef]
- Krysiak, R.; Marek, B.; Okopień, B. Cardiometabolic risk factors in young women with macroprolactinaemia. Endokrynol. Pol. 2019, 70, 336–341. [Google Scholar] [CrossRef]
- Krysiak, R.; Kowalcze, K.; Okopień, B. Impact of macroprolactinemia on cardiometabolic effects of atorvastatin in women with hypercholesterolemia. Am. J. Cardiol. 2019, 124, 1207–1212. [Google Scholar] [CrossRef] [PubMed]
- Krysiak, R.; Kowalcze, K.; Okopień, B. Macroprolactinemia attenuates the impact of levothyroxine on hypothalamic-pituitary-thyroid axis activity and thyroid autoimmunity in women with autoimmune hypothyroidism. J. Clin. Pharmacol. 2020, 60, 1496–1501. [Google Scholar] [CrossRef]
- Krysiak, R.; Szkróbka, W.; Okopień, B. A neutral effect of metformin treatment on macroprolactin content in women with macroprolactinemia. Exp. Clin. Endocrinol. Diabetes 2016, 125, 223–228. [Google Scholar] [CrossRef]
- Nicholls, A.R.; Holt, R.I. Growth hormone and insulin-like growth factor-1. Front. Horm. Res. 2016, 47, 101–114. [Google Scholar] [PubMed]
- Kim, S.M.; Sultana, F.; Korkmaz, F.; Rojekar, S.; Pallapati, A.; Ryu, V.; Lizneva, D.; Yuen, T.; Rosen, C.J.; Zaidi, M. Neuroendocrinology of bone. Pituitary 2024, 27, 761–777. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, M.T. Hooking FSH as a potential target for Alzheimer disease. Nat. Rev. Drug Discov. 2022, 21, 259. [Google Scholar] [CrossRef]
- Ji, S.; Gao, R.; Gao, Q.; Leng, L.; Gai, N. Metformin ameliorates insulin resistance, thyroid nodules and thyroid function. Am. J. Transl. Res. 2023, 15, 6180–6188. [Google Scholar]
- Hattori, N.; Adachi, T.; Ishihara, T.; Shimatsu, A. The natural history of macroprolactinaemia. Eur. J. Endocrinol. 2012, 166, 625–629. [Google Scholar] [CrossRef]
- Krysiak, R.; Kowalska, B.; Szkróbka, W.; Okopień, B. The association between macroprolactin levels and vitamin D status in premenopausal women with macroprolactinemia: A pilot study. Exp. Clin. Endocrinol. Diabetes 2015, 123, 446–450. [Google Scholar] [CrossRef]
- Ohnami, S.; Eto, S.; Ohnami, S.; Soejima, T.; Nakata, H. Characterization of big big prolactin in serum and tumor extract in patients with PRL-secreting tumor. Endocrinol. Jpn. 1987, 34, 325. [Google Scholar] [CrossRef] [PubMed]
- Krysiak, R.; Kowalska, B.; Szkróbka, W.; Okopień, B. The effect of oral contraception on macroprolactin levels in women with macroprolactinemia: A pilot study. Pharmacol. Rep. 2015, 67, 854–857. [Google Scholar] [CrossRef]
- Gulcelik, N.E.; Usman, A. Macroprolactinaemia in diabetic patients. Neuro Endocrinol. Lett. 2010, 31, 270–274. [Google Scholar]
- Olukoga, A.O. Macroprolactinemia is clinically important. J. Clin. Endocrinol. Metab. 2002, 87, 4830–4834. [Google Scholar] [CrossRef]
- Tosca, L.; Froment, P.; Rame, C.; McNeilly, J.R.; McNeilly, A.S.; Maillard, V.; Dupont, J. Metformin decreases GnRH- and activin-induced gonadotropin secretion in rat pituitary cells: Potential involvement of adenosine 5’ monophosphate-activated protein kinase (PRKA). Biol. Reprod. 2011, 84, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Le, J.A.; Wilson, H.M.; Shehu, A.; Devi, Y.S.; Aguilar, T.; Gibori, G. Prolactin activation of the long form of its cognate receptor causes increased visceral fat and obesity in males as shown in transgenic mice expressing only this receptor subtype. Horm. Metab. Res. 2011, 43, 931–937. [Google Scholar] [CrossRef]
- Foretz, M.; Guigas, B.; Bertrand, L.; Pollak, M.; Viollet, B. Metformin: From mechanisms of action to therapies. Cell Metab. 2014, 20, 953–966. [Google Scholar] [CrossRef]
- Qi-Lytle, X.; Sayers, S.; Wagner, E.J. Current review of the function and regulation of tuberoinfundibular dopamine neurons. Int. J. Mol. Sci. 2023, 25, 110. [Google Scholar] [CrossRef] [PubMed]
- Grattan, D.R. 60 years of neuroendocrinology: The hypothalamo-prolactin axis. J. Endocrinol. 2015, 226, T101–T122. [Google Scholar] [CrossRef]
- Lopez Vicchi, F.; Luque, G.M.; Brie, B.; Nogueira, J.P.; Garcia Tornadu, I.; Becu-Villalobos, D. Dopaminergic drugs in type 2 diabetes and glucose homeostasis. Pharmacol. Res. 2016, 109, 74–80. [Google Scholar] [CrossRef]
- Ortega-González, C.; Cardoza, L.; Coutiño, B.; Hidalgo, R.; Arteaga-Troncoso, G.; Parra, A. Insulin sensitizing drugs increase the endogenous dopaminergic tone in obese insulin-resistant women with polycystic ovary syndrome. J. Endocrinol. 2005, 184, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Krysiak, R.; Okopień, B. The effect of metformin on the hypothalamic-pituitary-thyroid axis in women with polycystic ovary syndrome and subclinical hypothyroidism. J. Clin. Pharmacol. 2015, 55, 45–49. [Google Scholar] [CrossRef]
- Lachelin, G.C.; Leblanc, H.; Yen, S.S. The inhibitory effect of dopamine agonists on LH release in women. J. Clin. Endocrinol. Metab. 1977, 44, 728–732. [Google Scholar] [CrossRef] [PubMed]
- Haugen, B.R. Drugs that suppress TSH or cause central hypothyroidism. Best Pract. Res. Clin. Endocrinol. Metab. 2009, 23, 793–800. [Google Scholar] [CrossRef]
- Romijn, J.A. Hyperprolactinemia and prolactinoma. Handb. Clin. Neurol. 2014, 124, 185–195. [Google Scholar] [PubMed]
- Kavanagh, L.; McKenna, T.J.; Fahie-Wilson, M.N.; Gibney, J.; Smith, T.P. Specificity and clinical utility of methods for the detection of macroprolactin. Clin. Chem. 2006, 52, 1366–1372. [Google Scholar] [CrossRef]
- Kłapcińska, B.; Poprzecki, S.; Danch, A.; Sobczak, A.; Kempa, K. Selenium levels in blood of Upper Silesian population: Evidence of suboptimal selenium status in a significant percentage of the population. Biol. Trace Elem. Res. 2005, 108, 1–15. [Google Scholar] [CrossRef]
- Trofimiuk-Müldner, M.; Konopka, J.; Sokołowski, G.; Dubiel, A.; Kieć-Klimczak, M.; Kluczyński, Ł.; Motyka, M.; Rzepka, E.; Walczyk, J.; Sokołowska, M.; et al. Current iodine nutrition status in Poland (2017): Is the Polish model of obligatory iodine prophylaxis able to eliminate iodine deficiency in the population? Public Health Nutr. 2020, 23, 2467–2477. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. Diagnosis and classification of diabetes: Standards of care in diabetes-2024. Diabetes Care 2024, 47 (Suppl. 1), S20–S42. [Google Scholar] [CrossRef]
- Food and Drug Administration. Guidance for Clinical Investigators, Sponsors, and IRBs Adverse Effect Reporting to IRBs–Improving Human Subject Protection; Food and Drug Administration: Washington, DC, USA, 2009.
- Wilkinson, T.; Li, B.; Soule, S.; Hunt, P. The utility of rested prolactin sampling in the evaluation of hyperprolactinaemia. Intern. Med. J. 2024, 54, 307–311. [Google Scholar] [CrossRef]
- Park, S.Y.; Gautier, J.F.; Chon, S. Assessment of insulin secretion and insulin resistance in human. Diabetes Metab. J. 2021, 45, 641–654. [Google Scholar] [CrossRef] [PubMed]
Variable | Group A | Group B | p-Value |
---|---|---|---|
Number (n) | 26 | 26 | - |
Age (years) | 65 ± 9 | 66 ± 8 | 0.6738 |
Smokers (%)/number of cigarettes a day (n)/duration of smoking (years) | 42/10 ± 6/32 ± 16 | 46/9 ± 6/35 ± 17 | 0.6015 |
Diabetes/prediabetes (%) | 54/46/50 | 54/46 | 1.0000 |
Body mass index (kg/m2) | 25.0 ± 5.0 | 24.7 ± 5.1 | 0.8312 |
Systolic blood pressure (mmHg) | 132 ± 15 | 130 ± 17 | 0.6548 |
Diastolic blood pressure (mmHg) | 86 ± 8 | 85 ± 7 | 0.6440 |
Fasting glucose (mg/dL) [70–99] | 120 ± 15 | 122 ± 16 | 0.6438 |
HbA1c (%) [<5.7] | 6.7 ± 0.5 | 6.7 ± 0.6 | 1.0000 |
HOMA1-IR [<2.0] | 4.6 ± 1.9 | 4.4 ± 1.7 | 0.6908 |
FSH (U/L) [>30] | 78 ± 25 | 82 ± 30 | 0.6038 |
LH (U/L) [>15] | 49 ± 21 | 51 ± 23 | 0.7447 |
TSH (mU/L) [0.4–4.5] | 7.5 ± 1.2 | 7.4 ± 1.3 | 0.7751 |
Total prolactin (ng/mL) [5–25] | 15.0 ± 6.5 | 84.0 ± 21.3 | <0.0001 |
Monomeric prolactin (ng/mL) [3.5–23.5] | 12.8 ± 5.7 | 13.0 ± 6.0 | 0.9024 |
Macroprolactin (ng/mL) [<3.0] | 2.2 ± 0.9 | 71.0 ± 20.8 | <0.0001 |
ACTH (pg/mL) [14–70] | 38 ± 15 | 36 ± 16 | 0.6440 |
Estradiol (pg/mL) [<30] | 18 ± 6 | 17 ± 8 | 0.6124 |
Free thyroxine (pmol/L) [10.5–21.8] | 13.8 ± 2.4 | 14.9 ± 2.8 | 0.1346 |
Free triiodothyronine (pmol/L) [2.2–6.6] | 3.5 ± 0.7 | 3.4 ± 0.7 | 0.6088 |
IGF-1 (ng/mL) [75–180] | 130 ± 34 | 128 ± 42 | 0.8511 |
Variable | Group A | Group B | p-Value |
---|---|---|---|
Alkaline Phosphatase (U/L) [30–120] | |||
Before treatment | 65 ± 20 | 71 ± 29 | 0.3894 |
After treatment/at dropout | 68 ± 27 | 69 ± 31 | 0.9018 |
p-value (before vs. after treatment/at dropout) | 0.6510 | 0.8111 | - |
Alanine transaminase (U/L) [<35] | |||
Before treatment | 17 ± 12 | 15 ± 12 | 0.5506 |
After treatment/at dropout | 20 ± 13 | 19 ± 14 | 0.7906 |
p-value (before vs. after treatment/at dropout) | 0.3914 | 0.2740 | - |
Aspartate transaminase (U/L) [<35] | |||
Before treatment | 21 ± 14 | 20 ± 12 | 0.7832 |
After treatment/at dropout | 23 ± 12 | 25 ± 14 | 0.5827 |
p-value (before vs. after treatment/at dropout) | 0.5827 | 0.1729 | - |
Bilirubin (μmol/L) [5–20] | |||
Before treatment | 11 ± 4 | 12 ± 5 | 0.4296 |
After treatment/at dropout | 11 ± 4 | 11 ± 3 | 1.0000 |
p-value (before vs. after treatment/at dropout) | 1.0000 | 0.3860 | - |
Creatine kinase [25–200] | |||
Before treatment | 72 ± 25 | 80 ± 28 | 0.2824 |
After treatment/at dropout | 79 ± 26 | 88 ± 32 | 0.2710 |
p-value (before vs. after treatment/at dropout) | 0.3271 | 0.3420 | - |
Estimated glomerular filtration rate (mL/min/1.73 m2) [>90] | |||
Before treatment | 93 ± 16 | 92 ± 15 | 0.8110 |
After treatment/at dropout | 91 ± 14 | 94 ± 17 | 0.4905 |
p-value (before vs. after treatment/at dropout) | 0.6340 | 0.6548 | - |
Glucose (mg/dL) [70–99] | |||
Before treatment | 120 ± 15 | 122 ± 16 | 0.6440 |
After treatment/at dropout | 100 ± 12 | 109 ± 13 | 0.0124 |
p-value (before vs. after treatment/at dropout) | <0.0001 | 0.0023 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krysiak, R.; Szkróbka, W.; Kowalcze, K.; Okopień, B. The Effect of Metformin on Pituitary Function in Postmenopausal Women with Subclinical Hypothyroidism and Macroprolactinemia: A Single-Center Prospective Case–Control Study. Pharmaceuticals 2025, 18, 834. https://doi.org/10.3390/ph18060834
Krysiak R, Szkróbka W, Kowalcze K, Okopień B. The Effect of Metformin on Pituitary Function in Postmenopausal Women with Subclinical Hypothyroidism and Macroprolactinemia: A Single-Center Prospective Case–Control Study. Pharmaceuticals. 2025; 18(6):834. https://doi.org/10.3390/ph18060834
Chicago/Turabian StyleKrysiak, Robert, Witold Szkróbka, Karolina Kowalcze, and Bogusław Okopień. 2025. "The Effect of Metformin on Pituitary Function in Postmenopausal Women with Subclinical Hypothyroidism and Macroprolactinemia: A Single-Center Prospective Case–Control Study" Pharmaceuticals 18, no. 6: 834. https://doi.org/10.3390/ph18060834
APA StyleKrysiak, R., Szkróbka, W., Kowalcze, K., & Okopień, B. (2025). The Effect of Metformin on Pituitary Function in Postmenopausal Women with Subclinical Hypothyroidism and Macroprolactinemia: A Single-Center Prospective Case–Control Study. Pharmaceuticals, 18(6), 834. https://doi.org/10.3390/ph18060834