Amphiphilic Bioactives of Freshwater Aquatic Plants Nelumbo nucifera (Indian Lotus) and Lemna sp. with Antioxidant, Anti-Inflammatory and Antithrombotic Activities: In Vitro Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Evaluation of the Extraction Efficiency for the Different Samples
2.2. Analysis of the Anti-Inflammatory and Antithrombotic Activity of Extracted Polar Lipids and Neutral Fats
2.3. FT-IR Analysis for Identification of Classes of Bioactive Compounds Present in the TAC Extracts of Both Plants
2.4. Analysis of the Fatty Acid Composition of the TAC Extracts from the Plants
2.5. LC-MS Analysis and Structural Elucidation of PL Bioactives Present in the TAC Extracts of Freshwater Aquatic Plants N. nucifera and Lemna sp.
2.6. Analysis of Total Phenolics in TAC, TLC and TL Extracts from Lemna sp. and N. nucifera
2.7. Analysis of Total Carotenoids in TAC, TLC and TL Extracts from Lemna sp. and N. nucifera
2.8. Antioxidant Activities of TAC, TLC and TL Extracts from Lemna sp. and N. nucifera
3. Materials and Methods
3.1. Sample Preparation and Extraction of Bioactive Compounds from the Aquatic Plants
3.1.1. Materials—Instrumentation
3.1.2. Sample Preparation and Extraction of Bioactive Amphiphilic Compounds
3.2. FT-IR-Based Structural Analysis of TAC Extracts from Lemna sp. and N. nucifera
3.3. Evaluation of Antithrombotic and Anti-Inflammatory Properties of the Extracts
3.4. Evaluation of Fatty Acid Composition by LC-MS
3.5. Assesment of Total Phenolic and Carotenoid Content and Antioxidant Activity
3.5.1. Preparation of Samples for Further Analysis
3.5.2. Total Phenolic Content (TPC) Analysis
3.5.3. Analysis of Total Carotenoid Content (TCC)
3.5.4. Analysis of Total Antioxidant Activity
3.6. Statistical Analysis of Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsoupras, A.; Lordan, R.; Zabetakis, I. Inflammation, Not Cholesterol, Is a Cause of Chronic Disease. Nutrients 2018, 10, 604. [Google Scholar] [CrossRef] [PubMed]
- Tsoupras, A.; Adamantidi, T.; Finos, M.A.; Philippopoulos, A.; Detopoulou, P.; Tsopoki, I.; Kynatidou, M.; Demopoulos, C.A. Re-Assessing the Role of Platelet Activating Factor and Its Inflammatory Signaling and Inhibitors in Cancer and Anti-Cancer Strategies. FBL 2024, 29, 345. [Google Scholar] [CrossRef] [PubMed]
- Adamantidi, T.; Tsoupras, A.; Grabrucker, A.M. Targeting the Platelet Activating Factor Signaling for Health Benefits against Neurodegenerative Disorders. Front. Biosci. (Landmark Ed.) 2025, 30, 38300. [Google Scholar] [CrossRef] [PubMed]
- Osama, M.; Wei, C.R.; Saleem, R.; Unar, A.A.; Unar, K.; Siyal, F.J.; Shaikh, B.; Baig, S.G.; Siddiq, A. Aquatic Plants with Anti-Inflammatory and Anti-Oxidant Activities. SFS 2023, 10, 3802–3806. [Google Scholar] [CrossRef]
- Seferli, M.; Kotanidou, C.; Lefkaki, M.; Adamantidi, T.; Panoutsopoulou, E.; Finos, M.A.; Krey, G.; Kamidis, N.; Stamatis, N.; Anastasiadou, C.; et al. Bioactives of the Freshwater Aquatic Plants, Nelumbo nucifera and Lemna minor, for Functional Foods, Cosmetics and Pharmaceutical Applications, with Antioxidant, Anti-Inflammatory and Antithrombotic Health Promoting Properties. Appl. Sci. 2024, 14, 6634. [Google Scholar] [CrossRef]
- Acosta, K.; Appenroth, K.J.; Borisjuk, L.; Edelman, M.; Heinig, U.; Jansen, M.A.K.; Oyama, T.; Pasaribu, B.; Schubert, I.; Sorrels, S.; et al. Return of the Lemnaceae: Duckweed as a Model Plant System in the Genomics and Postgenomics Era. Plant Cell 2021, 33, 3207–3234. [Google Scholar] [CrossRef]
- Punia Bangar, S.; Dunno, K.; Kumar, M.; Mostafa, H.; Maqsood, S. A Comprehensive Review on Lotus Seeds (Nelumbo nucifera Gaertn.): Nutritional Composition, Health-Related Bioactive Properties, and Industrial Applications. J. Funct. Foods 2022, 89, 104937. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Balasubramanian, R.; Saha, K.; Saha, B.P.; Pal, M. A Review on Nelumbo nucifera Gaertn. Anc. Sci. Life 1996, 15, 268. [Google Scholar]
- Gülçin, İ.; Kireçci, E.; Akkemik, E.; Topal, F.; Hisar, O. Antioxidant and Antimicrobial Activities of an Aquatic Plant: Duckweed (Lemna minor L.). Turk. J. Biol. 2010, 34, 10. [Google Scholar] [CrossRef]
- Xu, J.; Shen, Y.; Zheng, Y.; Smith, G.; Sun, X.S.; Wang, D.; Zhao, Y.; Zhang, W.; Li, Y. Duckweed (Lemnaceae) for Potentially Nutritious Human Food: A Review. Food Rev. Int. 2023, 39, 3620–3634. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Galanos, D.S.; Kapoulas, V.M. Isolation of Polar Lipids from Triglyceride Mixtures. J. Lipid Res. 1962, 3, 134–136. [Google Scholar] [CrossRef]
- Tsoupras, A.; Cholidis, P.; Kranas, D.; Galouni, E.A.; Ofrydopoulou, A.; Efthymiopoulos, P.; Shiels, K.; Saha, S.K.; Kyzas, G.Z.; Anastasiadou, C. Anti-Inflammatory, Antithrombotic, and Antioxidant Properties of Amphiphilic Lipid Bioactives from Shrimp. Pharmaceuticals 2025, 18, 25. [Google Scholar] [CrossRef] [PubMed]
- Vandorou, M.; Plakidis, C.; Tsompanidou, I.M.; Ofrydopoulou, A.; Shiels, K.; Saha, S.K.; Tsoupras, A. In Vitro Antioxidant, Antithrombotic and Anti-Inflammatory Properties of the Amphiphilic Bioactives from Greek Organic Starking Apple Juice and Its By-Products (Apple Pomace). Appl. Sci. 2025, 15, 2807. [Google Scholar] [CrossRef]
- Marra, A.; Manousakis, V.; Koutis, N.; Zervas, G.P.; Ofrydopoulou, A.; Shiels, K.; Saha, S.K.; Tsoupras, A. In Vitro Antioxidant, Antithrombotic and Anti-Inflammatory Activities of the Amphiphilic Bioactives Extracted from Avocado and Its By-Products. Antioxidants 2025, 14, 146. [Google Scholar] [CrossRef]
- Manirakiza, P.; Covaci, A.; Schepens, P. Comparative Study on Total Lipid Determination Using Soxhlet, Roese-Gottlieb, Bligh & Dyer, and Modified Bligh & Dyer Extraction Methods. J. Food Compos. Anal. 2001, 14, 93–100. [Google Scholar]
- Smyatskaya, Y.; Politaeva, N.; Toumi, A.; Olshanskaya, L. Influence of Extraction Conditions on the Recovery Lipids Ex-tracted from the Dry Biomass of Duckweed Lemna minor. MATEC Web Conf. 2018, 245, 18004. [Google Scholar] [CrossRef]
- Kim, K.-S.; Shin, M.-K.; Kim, H.-Y. Nutritional Composition and Antioxidant Activity of the White Lotus (Nelumbo nucifera Gaertn) Leaf. J. East Asian Soc. Diet. Life 2008, 18, 499–506. [Google Scholar]
- Durairaj, B.; Dorai, A. Antiplatelet Activity of White and Pink Nelumbo nucifera Gaertn Flowers. Braz. J. Pharm. Sci. 2010, 46, 579–583. [Google Scholar] [CrossRef]
- Mehta, N.; Ekta, P.; Patani, P.; Patani, V.; Shah, B. Nelumbo nucifera (Lotus): A Review on Ethanobotany, Phytochemistry and Pharmacology. Indian J. Pharm. Biol. Res. 2013, 1, 152–167. [Google Scholar] [CrossRef]
- Jantan, I.; Rafi, I.A.A.; Jalil, J. Platelet-Activating Factor (PAF) Receptor-Binding Antagonist Activity of Malaysian Medicinal Plants. Phytomedicine 2005, 12, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Chrubasik, J.E.; Roufogalis, B.D.; Wagner, H.; Chrubasik, S.A. A Comprehensive Review on Nettle Effect and Efficacy Profiles, Part I: Herba Urticae. Phytomedicine 2007, 14, 423–435. [Google Scholar] [CrossRef] [PubMed]
- Imron, M.F.; Ananta, A.R.; Ramadhani, I.S.; Kurniawan, S.B.; Abdullah, S.R.S. Potential of Lemna minor for Removal of Methylene Blue in Aqueous Solution: Kinetics, Adsorption Mechanism, and Degradation Pathway. Environ. Technol. Innov. 2021, 24, 101921. [Google Scholar] [CrossRef]
- Lakshmi, P. Analysis of IR—Spectroscopy by Using Different Nelumbo nucifera Samples. Int. J. Pharm. Res. Anal. 2014, 4, 14–19. [Google Scholar]
- Liu, D.; Han, G.; Huang, J.; Zhang, Y. Composition and Structure Study of Natural Nelumbo nucifera Fiber. Carbohydr. Polym. 2009, 75, 39–43. [Google Scholar] [CrossRef]
- Aghababaei, F.; Hadidi, M. Recent Advances in Potential Health Benefits of Quercetin. Pharmaceuticals 2023, 16, 1020. [Google Scholar] [CrossRef]
- Tufail, T.; Bader Ul Ain, H.; Noreen, S.; Ikram, A.; Arshad, M.T.; Abdullahi, M.A. Nutritional Benefits of Lycopene and Beta-Carotene: A Comprehensive Overview. Food Sci. Nutr. 2024, 12, 8715–8741. [Google Scholar] [CrossRef]
- Bae, J.; Kim, N.; Shin, Y.; Kim, S.-Y.; Kim, Y.-J. Activity of Catechins and Their Applications. Biomed. Dermatol. 2020, 4, 8. [Google Scholar] [CrossRef]
- Papadopoulou, D.; Chrysikopoulou, V.; Rampaouni, A.; Plakidis, C.; Ofrydopoulou, A.; Shiels, K.; Saha, S.K.; Tsoupras, A. Antioxidant, Antithrombotic and Anti-Inflammatory Properties of Amphiphilic Bioactives from Water Kefir Grains and Its Apple Pomace-Based Fermented Beverage. Antioxidants 2025, 14, 164. [Google Scholar] [CrossRef]
- Yan, Y.; Candreva, J.; Shi, H.; Ernst, E.; Martienssen, R.; Schwender, J.; Shanklin, J. Survey of the Total Fatty Acid and Triacylglycerol Composition and Content of 30 Duckweed Species and Cloning of a Δ6-Desaturase Responsible for the Production of γ-Linolenic and Stearidonic Acids in Lemna gibba. BMC Plant Biol. 2013, 13, 201. [Google Scholar] [CrossRef]
- Vandorou, M.; Plakidis, C.; Tsompanidou, I.M.; Adamantidi, T.; Panagopoulou, E.A.; Tsoupras, A. A Review on Apple Pomace Bioactives for Natural Functional Food and Cosmetic Products with Therapeutic Health-Promoting Properties. Int. J. Mol. Sci. 2024, 25, 10856. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. The Importance of the Omega-6/Omega-3 Fatty Acid Ratio in Cardiovascular Disease and Other Chronic Diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Fleith, M.; Giuffrida, F.; O’Neill, B.V.; Schneider, N. Dietary Polar Lipids and Cognitive Development: A Narrative Review. Adv. Nutr. 2019, 10, 1163–1176. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, R.; Clark, W.D.; Sharma, J.G.; Goswami, R.K.; Shrivastav, A.K.; Tocher, D.R. Mass Production of Lemna minor and Its Amino Acid and Fatty Acid Profiles. Front. Chem. 2018, 6, 479. [Google Scholar] [CrossRef]
- Liao, C.-H.; Lin, J.-Y. Lotus (Nelumbo nucifera Gaertn) Plumule Polysaccharide Ameliorates Pancreatic Islets Loss and Serum Lipid Profiles in Non-Obese Diabetic Mice. Food Chem. Toxicol. 2013, 58, 416–422. [Google Scholar] [CrossRef]
- Achoki, J.; Orina, P.; Kaingu, C.; Oduma, J.; Olale, K.; Chepkirui, M.; Getabu, A. Comparative Study on Fatty Acids Composition of Lemna minor (Duckweed) Cultured in Indoor Plastic Tanks and Outdoor Earthen Ponds. Aquac. Res. 2024, 2024, 5563513. [Google Scholar] [CrossRef]
- Castro-Gómez, P.; Garcia-Serrano, A.; Visioli, F.; Fontecha, J. Relevance of Dietary Glycerophospholipids and Sphingolipids to Human Health. Prostaglandins Leukot. Essent. Fat. Acids 2015, 101, 41–51. [Google Scholar] [CrossRef]
- Heaver, S.L.; Johnson, E.L.; Ley, R.E. Sphingolipids in Host-Microbial Interactions. Curr. Opin. Microbiol. 2018, 43, 92–99. [Google Scholar] [CrossRef]
- Gao, Q.-M.; Yu, K.; Xia, Y.; Shine, M.B.; Wang, C.; Navarre, D.; Kachroo, A.; Kachroo, P. Mono- and Digalactosyldiacylglycerol Lipids Function Nonredundantly to Regulate Systemic Acquired Resistance in Plants. Cell Rep. 2014, 9, 1681–1691. [Google Scholar] [CrossRef]
- Koukouraki, P.; Tsoupras, A.; Sotiroudis, G.; Demopoulos, C.A.; Sotiroudis, T.G. Antithrombotic Properties of Spirulina Extracts against Platelet-Activating Factor and Thrombin. Food Biosci. 2020, 37, 100686. [Google Scholar] [CrossRef]
- Temviriyanukul, P.; Sritalahareuthai, V.; Promyos, N.; Thangsiri, S.; Pruesapan, K.; Srinuanchai, W.; Nuchuchua, O.; Siriwan, D.; On-nom, N.; Suttisansanee, U. The Effect of Sacred Lotus (Nelumbo nucifera) and Its Mixtures on Phenolic Profiles, Antioxidant Activities, and Inhibitions of the Key Enzymes Relevant to Alzheimer’s Disease. Molecules 2020, 25, 3713. [Google Scholar] [CrossRef] [PubMed]
- You, J.S.; Lee, Y.J.; Kim, K.S.; Kim, S.H.; Chang, K.J. Ethanol Extract of Lotus (Nelumbo nucifera) Root Exhibits an Anti-Adipogenic Effect in Human Pre-Adipocytes and Anti-Obesity and Anti-Oxidant Effects in Rats Fed a High-Fat Diet. Nutr. Res. 2014, 34, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Yiyit Doğan, S.; Atasagun, S.; Ergönül, M.B. Determination of Chemical Content of Lemna minor L. by GC-MS and Investigation of Antioxidant Activity. Commun. Fac. Sci. Univ. Ank. Ser. C 2022, 31, 53–64. [Google Scholar] [CrossRef]
- Adamantidi, T.; Lafara, M.-P.; Venetikidou, M.; Likartsi, E.; Toganidou, I.; Tsoupras, A. Utilization and Bio-Efficacy of Carotenoids, Vitamin A and Its Vitaminoids in Nutricosmetics, Cosmeceuticals, and Cosmetics’ Applications with Skin-Health Promoting Properties. Appl. Sci. 2025, 15, 1657. [Google Scholar] [CrossRef]
- Wong, K.W.A. Antioxidant Properties of Wild Nelumbo nucifera (Lotus Plant) Grown. Bachelor’s Thesis, Universiti Tunku Abdul Rahman, Kampar, Malaysia, 2017. [Google Scholar]
- Yuan, L.; Gu, X.; Yin, Z.; Kang, W. Antioxidantactivities In Vitro and Hepatoprotective Effects of Nelumbo nucifera Leaves In Vivo. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 85–91. [Google Scholar] [CrossRef]
- Saritha, K.; Saraswathi, U. Antioxidant Activity of Gold Nanoparticles Synthesized Using Lemna minor. World J. Pharm. Sci. 2014, 2, 1545–1551. [Google Scholar]
- Vordos, N.; Giannakopoulos, S.; Vansant, E.F.; Kalaitzis, C.; Nolan, J.W.; Bandekas, D.V.; Karavasilis, I.; Mitropoulos, A.C.; Touloupidis, S. Small-Angle X-Ray Scattering (SAXS) and Nitrogen Porosimetry (NP): Two Novel Techniques for the Evaluation of Urinary Stone Hardness. Int. Urol. Nephrol. 2018, 50, 1779–1785. [Google Scholar] [CrossRef]
Sample | TAC * | TLC * | TL * |
---|---|---|---|
Lemna sp. | 0.0502 ± 0.0101 | 0.0281 ± 0.0089 | 0.0783 ± 0.0190 |
N. nucifera | 0.0513 ± 0.0317 | 0.0278 ± 0.0277 | 0.0791 ± 0.0586 |
Number of Peaks | Transmittance Τ% | Wavenumber (cm−1) | IR Vibration | Similarities with Standard Solutions |
---|---|---|---|---|
1 | 86.19 | 3300–3400 | OH stretching | Galic Acid, Quercetin, Catechin |
2 | 77.39 | 2800–2900 | C-H stretching | b-Carotene, Polar Lipids |
3 | 84.92 | 1450–1500 | -Ph ring | Galic Acid, Quercetin, Catechin |
4 | 81.04 | 1300–1450 | C-H bending | b-Carotene, Polar Lipids |
5 | 79.54 | 1087–1124 | C-O-C stretching | Quercetin, Catechin |
6 | 78.76 | 900–950 | =C-H bending | b-Carotene |
7 | 87.18 | 800–850 | C-H bending | Catechin |
Number of Peaks | Transmittance Τ% | Wavenumber (cm−1) | IR Vibration | Similarities with Standard Solutions |
---|---|---|---|---|
1 | 89.11 | 2924 | C-H stretching | b-Carotene, Polar Lipids |
2 | 87.77 | 1726–1728 | C=O stretching of phenolic group | Galic Acid, Quercetin |
3 | 86.6 | 1440–1442 | C-H bending | b-Carotene, Polar Lipids |
4 | 84.52 | 1228–1234 | C-O stretching | Galic Acid, Quercetin, Catechin |
5 | 77.95 | 1060 | C-O-C bending | Catechin |
Fatty Acid Empirical Name | Fatty Acid Name | Lemna sp. | N. nucifera |
---|---|---|---|
Caprylic | C8:0 | ND | ND |
Pelargonic | C9:0 | 0.09 ± 0.02 | 0.12 ± 0.01 |
Capric | C10:0 | ND | ND |
Lauric | C12:0 | 0.13 ± 0.01 | 0.06 ± 0.0 |
Tridecylic | C13:0 | ND | ND |
Myristic | C14:0 | 0.61 ± 0.01 | 0.46 ± 0.02 |
Pentadecylic | C15:0 | 0.46 ± 0.08 | 0.64 ± 0.01 |
Palmitic | C16:0 | 20.74 ± 4.23 | 22.01 ± 0.46 |
Palmitoleic | C16:1 c9 (n7 MUFA) | 2.16 ± 0.15 | 2.51 ± 0.02 |
Margaric | C17:0 | 0.66 ± 0.25 | 0.62 ± 0.03 |
Stearic | C18:0 | 12.21 ± 2.32 | 9.17 ± 0.63 |
Oleic | C18:1 c9 (n9 MUFA) | 7.07 ± 2.01 | 5.86 ± 0.23 |
Linoleic | C18:2 c9,12 (n6 PUFA) | 11.17 ± 1.21 | 14.87 ± 0.21 |
Linolenic (α + γ) | C18:3 c9,12,15 (n3 PUFA) | 33.75 ± 4.76 | 40.90 ± 0.40 |
Stearidonic | C18:4 c6,9,12,15 (n3 PUFA) | 2.32 ± 0.21 | 0.27 ± 0.0 |
Nonadecylic | C19:0 | ND | ND |
Arachidic | C20:0 | ND | ND |
Gadoleic | C20:1 c9 (n11 MUFA) | 0.42 ± 0.10 | 0.37 ± 0.01 |
DihomoLinoleic | C18:2 c10,12 (n6 PUFA) | 0.86 ± 0.24 | 0.27 ± 0.01 |
Dihomolinolenic | C20:3 c8,11,14 (n6 PUFA) | 0.40 ± 0.08 | 0.25 ± 0.01 |
Arachidonic | C20:4 c5,8,11,14 (n6 PUFA) | 0.79 ± 0.04 | 0.65 ± 0.01 |
EPA | C20:5 c5,8,11,14,17 (n3 PUFA) | 2.50 ± 0.35 | 0.53 ± 0.01 |
Docosadienoic | C22:2 c13,16 (n6 PUFA) | ND | ND |
Eranthic | C22:3 c5,13,16 (n6 PUFA) | 0.25 ± 0.10 | ND |
Adrenic | C22:4 c7,10,13,16 (n6 PUFA) | ND | 0.10 ± 0.01 |
DPA | C22:5 c7,10,13,16,19 (n3 PUFA) | 0.26 ± 0.04 | 0.18 ± 0.0 |
DHA | C22:6 c4,7,10,13,16,19 (n3 PUFA) | 3.14 ± 0.62 | 0.17 ± 0.0 |
SFA | 34.91 ± 2.30 | 33.08 ± 0.66 | |
UFA | 65.09 ± 2.30 * | 66.92 ± 0.66 * | |
MUFA | 9.65 ± 2.05 | 8.74 ± 0.24 | |
PUFA | 55.44 ± 4.32 ** | 58.18 ± 0.64 ** | |
n3PUFA | 41.97 ± 5.89 | 42.04 ± 0.41 | |
n6PUFA | 13.47 ± 1.59 | 16.14 ± 0.23 | |
n6/n3 | 0.33 ± 0.08 | 0.38 ± 0.0 |
Fatty Acid Empirical Name | Fatty Acid Name | Lemna sp. | N. nucifera |
---|---|---|---|
Caprylic | C8:0 | ND | ND |
Pelargonic | C9:0 | 0.36 ± 0.01 | 0.51 ± 0.03 |
Lauric | C12:0 | ND | ND |
Tridecylic | C13:0 | ND | ND |
Myristic | C14:0 | 1.31 ± 0.03 | 1.04 ± 0.12 |
Pentadecylic | C15:0 | 0.92 ± 0.11 | 1.10 ± 0.18 |
Palmitic | C16:0 | 25.65 ± 1.14 | 37.94 ± 1.40 |
Palmitoleic | C16:1 c9 (n7 MUFA) | 2.71 ± 0.09 | 2.78 ± 0.14 |
Margaric | C17:0 | 1.75 ± 0.02 | ND |
Stearic | C18:0 | 44.23 ± 1.32 | 43.55 ± 2.50 |
Oleic | C18:1 c9 (n9 MUFA) | 7.02 ± 0.35 | 7.11 ± 0.62 |
Linoleic | C18:2 c9,12 (n6 PUFA) | 6.76 ± 0.11 | 3.19 ± 0.21 |
Linolenic (α + γ) | C18:3 c9,12,15 (n3 PUFA) | 4.56 ± 0.12 | 2.53 ± 0.25 |
Stearidonic | C18:4 c6,9,12,15 (n3 PUFA) | 0.43 ± 0.02 | ND |
Nonadecylic | C19:0 | ND | ND |
Gadoleic | C20:1 c9 (n11 MUFA) | ND | ND |
Dihomolinoleic | C18:2 c10,12 (n6 PUFA) | 0.8 ± 0.02 | ND |
Dihomolinolenic | C20:3 c8,11,14 (n6 PUFA) | 0.31 ± 0.02 | ND |
Arachidonic | C20:4 c5,8,11,14 (n6 PUFA) | 0.42 ± 0.0 | ND |
EPA | C20:5 c5,8,11,14,17 (n3 PUFA) | 1.21 ± 0.04 | 0.25 ± 0.08 |
Docosadienoic | C22:2 c13,16 (n6 PUFA) | ND | ND |
Eranthic | C22:3 c5,13,16 (n6 PUFA) | ND | ND |
Adrenic | C22:4 c7,10,13,16 (n6 PUFA) | ND | ND |
DPA | C22:5 c7,10,13,16,19 (n3 PUFA) | ND | ND |
DHA | C22:6 c4,7,10,13,16,19 (n3 PUFA) | 1.54 ± 0.05 | ND |
SFA | 74.23 ± 2.63 * | 84.14 ± 4.24 * | |
UFA | 25.77 ± 0.82 ** | 15.86 ± 1.31 ** | |
MUFA | 9.73 ± 0.44 | 9.89 ± 0.77 | |
PUFA | 16.04 ± 0.38 | 5.97 ± 0.54 | |
n3PUFA | 7.75 ± 0.23 | 2.78 ± 0.33 | |
n6PUFA | 8.29 ± 0.15 | 3.19 ± 0.21 | |
n6/n3 | 1.07 ± 0.65 | 1.15 ± 0.65 |
Lemna sp. | N. nucifera | |||||||
---|---|---|---|---|---|---|---|---|
Elution Time (min) | MS | Species | Representative Examples | Elution Time (min) | MS | Species | Representative Examples | |
PC | 12.5–13.5 | 792.8612 | PC 38:5 | [i.e., PC 18:0 + 20:5 or PC 18:1 + 20:4] | ||||
12.5–13.5 | 792.8612 | PC O-38:6; O | [i.e., PC O- 16:0 + 22:6; O or PC O- 18:1 + 20:5; O or PC O- 18:2 + 20:4; O] | |||||
PA | 2–3 | 675.3589 | PA O-36:7 | [i.e., PA O-18:3 + 18:4] | ||||
2–3 | 675.3589 | PA 34:0 | [i.e., PA 18:0 + 16:0] | |||||
2–3 | 675.3589 | PA O-34:1; O | [i.e., PA O- 18:1 + 16:0; O or PA O- 18:0 + 16:1; O] | |||||
PG | 11.5–12-5 | 815.4935 | PG 40:9 | [i.e., PG 20:4 + 20:5] | 12–13 | 815.4953 | PG 40:9 | [i.e., PG 20:4 + 20:5;] |
PI | 11.5–12.5 | 815.4935 | PI O-34:4 | [i.e., PI O-18:3 + 16:1 or PI O-18:4 + 16:0] | 12–13 | 815.4953 | PI O-34:4 | [i.e., PI O-18:3 + 16:1; or PI O-18:4 + 16:0;] |
PE | 10–11 10–11 10–11 | 744.4135 744.4135 744.4135 | PE O-38:8 PE 36:1 PE O-36:2; O | [i.e., PE O-18:3 + 20:5; or PE O-18:4 + 20:4;] [i.e., PE 18:1 + 18:0;] [i.e., PE O-18:2 + 18:0; O or PE O- 18:1 + 18:1; O] | ||||
PS | 12.5–13.5 7.8–9.3 | 792.8612 792.8509 | PS O-36:0; O PS O-38:6 | [i.e., PS O-18:0 + 18:0; O] [i.e., PS O-16:0 + 22:6; or PS O-18:1 + 20:5; O or PS O- 18:2 + 20:4; O] | 10–11 | 828.3959 | PS 40:9 | [i.e., PS 20:4 + 20:5;] |
ICP | 7.8–9.3 | 792.8509 | IPC 34:2; O3 | [i.e., IPC 18:1 + 16:1; O3 or IPC 18:2 + 16:0; O3] | 10–11 10–11 | 828.3959 828.3959 | IPC 36:6; O4 IPC 34:0;O5 | [i.e., IPC 18:4 + 18:2; O4 or IPC 16:1 + 20:5; O4] [i.e., IPC18:0 + 16:0; O5] |
DGDG | 8.5–9.5 8.5–9.5 | 933.6881 966.0005 | DGDG 36:7 DGDG 38:5 | [i.e., DGDG 18:3 + 18:4;] [i.e., DGDG 18:0 + 20:5; or DGDG 18:1 + 20:4;] | ||||
CerPE | 2–3 | 675.3589 | CerPE 34:1; O3 | [i.e., CerPE 18:1 + 16:0; O3 or CerPE 18:0 + 16:1; O3] | 2–3 | 721.3534 | CerPE 34:2; O6 | [i.e., CerPE 18:1 + 16:1; O6 or CerPE 18:2 + 16:0; O6] |
Cer | 10–11 | 520.908 | Cer 34:1; O | [i.e., Cer 18:1 + 16:0; O or Cer 18:0 + 16:1; O] | 10–11 | 555.9965 | Cer 36:5; O2 | [i.e., Cer 18:3 + 18:2; O2 or Cer 18:4 + 18:1; O2 or Cer 16:0 + 20:5; O2 or Cer 16:1 + 20:4; O2] |
CerP | 1–2 | 656.8805 | CerP 36:3; O3 | [i.e., CerP 18:3 + 18:0; O3 or CerP 18:2 + 18:1; O3] | 1–2 | 666.0196 | CerP 36:6; O4 | [i.e., CerP 18:4 + 18:2; O4 or CerP 16:1 + 20:5; O4] |
SM | 2–3 | 675.3589 | SM 32:1; O3 | [i.e., SM 16:0 + 16:1; O3] | 6–6.5 12–13 | 734.0131 761.5929 | SM 36:0; O3 SM 36:2; O5 | [i.e., SM 18:0 + 18:0; O3] [i.e., SM 18:2 + 18:0; O5 or SM 18:1 + 18:1; O5] |
SQDG | 11.5–12.5 | 815.4935 | SQDG 34:3 | [i.e., SQDG 18:3 + 16:0; or SQDG 18:2 + 16:1;] | 12–13 | 815.4953 | SQDG 34:3 | [i.e., SQDG 18:3 + 16:0; or SQDG 18:2 + 16;] |
MIPC | 7.8–9.3 | 928.8225 | MIPC 32:1; O3 | [i.e., MIPC 16:0 + 16:1; O3] | ||||
HexCer | 10–11 | 792.8567 | HexCer 36:0; O6 | [i.e., HexCer 18:0 + 18:0; O6] | 10–11 | 744.4135 | HexCer 34:2; O5 | [i.e., HexCer 18:1 + 16:1; O5 or HexCer 18:2 + 16:0; O5] |
SHexCer | 12.5–13.5 | 792.8509 | SHexCer 34:2; O3 | [i.e., SHexCer 18:1 + 16:1; O3 or SHexCer 18:2 + 16:0; O3] | 10–11 | 828.3959 | SHexCer 36:6; O4 | [i.e., SHexCer 18:4 + 18:2; O4 or SHexCer 16:1 + 20:5; O4] |
Lemna sp. | Median | Min | Max |
---|---|---|---|
TAC | 16.476 * | 12.656 | 18.294 |
TLC | 5.085 | 3.935 | 5.557 |
TL | 21.561 | 16.592 | 23.851 |
N. nucifera | Median | Min | Max |
TAC | 46.002 ** | 29.776 | 93.879 |
TLC | 56.170 | 10.557 | 73.524 |
TL | 102.172 | 40.333 | 167.403 |
Lemna sp. | Median | Min | Max |
---|---|---|---|
TAC | 27.031 * | 13.791 | 37.811 |
TLC | 78.104 * | 33.430 | 121.820 |
TL | 115.915 * | 47.221 | 148.851 |
N. nucifera | Median | Min | Max |
TAC | 5.624 * | 3.782 | 15.735 |
TLC | 7.593 * | 6.388 | 22.115 |
TL | 13.217 * | 10.171 | 37.851 |
Lemna sp. | Median | Min | Max |
---|---|---|---|
TAC | 0.780 | 0.294 | 1.664 |
TLC | ND | ||
TL | 0.780 | 0.294 | 1.664 |
N. nucifera | Median | Min | Max |
TAC | 1.090 | 0.237 | 2.085 |
TLC | ND | ||
TL | 1.090 | 0.237 | 2.085 |
Lemna sp. | Median | Min | Max |
---|---|---|---|
TAC | ND | ||
TLC | 2.568 | 1.906 | 3.948 |
TL | 2.568 | 1.906 | 3.948 |
N. nucifera | Median | Min | Max |
TAC | 6.560 | 0.042 | 12.124 |
TLC | 15.290 | 1.439 | 19.514 |
TL | 26.074 | 1.481 | 27.414 |
Lemna sp. | Median | Min | Max |
---|---|---|---|
TAC | ND | ||
TLC | ND | ||
TL | ND | ||
N. nucifera | Median | Min | Max |
TAC | 60.991 | 35.205 | 94.936 |
TLC | 11.109 | 1.707 | 70.302 |
TL | 72.100 | 36.912 | 165.238 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seferli, M.; Lefkaki, M.; Manousakis, V.; Ofrydopoulou, A.; Shiels, K.; Saha, S.K.; Krey, G.; Kamidis, N.; Stamatis, N.; Anastasiadou, C.; et al. Amphiphilic Bioactives of Freshwater Aquatic Plants Nelumbo nucifera (Indian Lotus) and Lemna sp. with Antioxidant, Anti-Inflammatory and Antithrombotic Activities: In Vitro Study. Pharmaceuticals 2025, 18, 835. https://doi.org/10.3390/ph18060835
Seferli M, Lefkaki M, Manousakis V, Ofrydopoulou A, Shiels K, Saha SK, Krey G, Kamidis N, Stamatis N, Anastasiadou C, et al. Amphiphilic Bioactives of Freshwater Aquatic Plants Nelumbo nucifera (Indian Lotus) and Lemna sp. with Antioxidant, Anti-Inflammatory and Antithrombotic Activities: In Vitro Study. Pharmaceuticals. 2025; 18(6):835. https://doi.org/10.3390/ph18060835
Chicago/Turabian StyleSeferli, Marina, Melina Lefkaki, Vasileios Manousakis, Anna Ofrydopoulou, Katie Shiels, Sushanta Kumar Saha, Grigorios Krey, Nikolaos Kamidis, Nikolaos Stamatis, Chryssa Anastasiadou, and et al. 2025. "Amphiphilic Bioactives of Freshwater Aquatic Plants Nelumbo nucifera (Indian Lotus) and Lemna sp. with Antioxidant, Anti-Inflammatory and Antithrombotic Activities: In Vitro Study" Pharmaceuticals 18, no. 6: 835. https://doi.org/10.3390/ph18060835
APA StyleSeferli, M., Lefkaki, M., Manousakis, V., Ofrydopoulou, A., Shiels, K., Saha, S. K., Krey, G., Kamidis, N., Stamatis, N., Anastasiadou, C., & Tsoupras, A. (2025). Amphiphilic Bioactives of Freshwater Aquatic Plants Nelumbo nucifera (Indian Lotus) and Lemna sp. with Antioxidant, Anti-Inflammatory and Antithrombotic Activities: In Vitro Study. Pharmaceuticals, 18(6), 835. https://doi.org/10.3390/ph18060835