Cognitive Safety and Outcomes of Pharmacological Management in Heart Failure: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Review
2.2. Eligibility Criteria
- Population: Adult patients (≥18 years) with diagnosed heart failure or at high cardiovascular risk.
- Intervention: Pharmacological treatment for heart failure or cardiovascular conditions (e.g., antihypertensives, RAAS inhibitors, beta-blockers, sacubitril/valsartan, statins, or other agents).
- Comparison: Usual care, placebo, or alternative pharmacological regimens.
- Outcomes: Cognitive function measured using standardized tools (e.g., MMSE, MoCA) or clinical cognitive endpoints (e.g., diagnosis of dementia, cognitive decline).
- Study design: Randomized controlled trials (RCTs), observational cohort studies.
- Did not report cognitive outcomes;
- Focused exclusively on non-pharmacological interventions;
- Included populations not relevant to heart failure or cardiovascular risk;
- Lacked sufficient detail on patient characteristics (e.g., no clear information on post-myocardial infarction status or cardiovascular comorbidities);
- Publication types other than original research (e.g., reviews, meta-analyses, editorials, commentaries, case reports);
- Studies published before 2010.
2.3. Data Extraction
2.4. Synthesis, Risk of Bias, and Certainty of Evidence
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Synthesis of Findings
3.4. Risk of Bias and Certainty of Evidence
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| ACEI | Angiotensin-Converting Enzyme Inhibitor |
| ARB | Angiotensin Receptor Blocker |
| ARR | Absolute Risk Reduction |
| BP | Blood Pressure |
| CANTAB | Cambridge Neuropsychological Test Automated Battery |
| CDR | Clinical Dementia Rating |
| CI | Cognitive Impairment/Confidence Interval |
| DICI | Drug-induced cognitive impairment |
| DSC | Digit Symbol Coding |
| GDMT | Guideline-Directed Medical Therapy |
| HF | Heart Failure |
| HFmrEF | Heart Failure with Mildly Reduced Ejection Fraction |
| HFpEF | Heart Failure with Preserved Ejection Fraction |
| HFrEF | Heart Failure with Reduced Ejection Fraction |
| HR | Hazard Ratio |
| LVEF | Left Ventricular Ejection Fraction |
| MCI | Mild Cognitive Impairment |
| MMSE | Mini-Mental State Examination |
| MoCA | Montreal Cognitive Assessment |
| MRA | Mineralocorticoid Receptor Antagonist |
| NYHA | New York Heart Association |
| OR | Odds Ratio |
| RAAS | Renin–Angiotensin–Aldosterone System |
| RCT | Randomized Controlled Trial |
| TICS-m | Modified Telephone Interview for Cognitive Status |
References
- Khan, M.S.; Shahid, I.; Bennis, A.; Rakisheva, A.; Metra, M.; Butler, J. Global epidemiology of heart failure. Nat. Rev. Cardiol. 2024, 21, 717–734. [Google Scholar] [CrossRef]
- Roth, G.A.; Dorsey, H.; Decleene, N.; Razo, C.; Stark, B.; Johnson, C.; The Global Burden of Disease Study Collaborators. The global burden of heart failure: A systematic analysis for the Global Burden of Disease Study 2021. Eur. Heart J. 2023, 44 (Suppl. 2), ehad655.876. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2023 Focused Update of the 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure: Developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2023, 44, 3627–3639, Erratum in Eur. Heart J. 2024, 45, 53. [Google Scholar] [CrossRef] [PubMed]
- Mueller, K.; Thiel, F.; Beutner, F.; Teren, A.; Frisch, S.; Ballarini, T.; Möller, H.E.; Ihle, K.; Thiery, J.; Schuler, G.; et al. Brain Damage with Heart Failure: Cardiac Biomarker Alterations and Gray Matter Decline. Circ. Res. 2020, 126, 750–764. [Google Scholar] [CrossRef] [PubMed]
- Testai, F.D.; Gorelick, P.B.; Chuang, P.-Y.; Dai, X.; Furie, K.L.; Gottesman, R.F.; Iturrizaga, J.C.; Lazar, R.M.; Russo, A.M.; Seshadri, S.; et al. Cardiac Contributions to Brain Health: A Scientific Statement from the American Heart Association. Stroke 2024, 55, e425–e438. [Google Scholar] [CrossRef]
- Forte, G.; Casagrande, M. The Intricate Brain–Heart Connection: The Relationship between Heart Rate Variability and Cognitive Functioning. Neuroscience 2025, 565, 369–376. [Google Scholar] [CrossRef]
- Goh, F.Q.; Kong, W.K.F.; Wong, R.C.C.; Chong, Y.F.; Chew, N.W.S.; Yeo, T.-C.; Sharma, V.K.; Poh, K.K.; Sia, C.-H. Cognitive Impairment in Heart Failure—A Review. Biology 2022, 11, 179. [Google Scholar] [CrossRef]
- Massussi, M.; Bellicini, M.G.; Adamo, M.; Pilotto, A.; Metra, M.; Padovani, A.; Proietti, R. Connecting the Dots: A Narrative Review of the Relationship between Heart Failure and Cognitive Impairment. ESC Heart Fail. 2025, 12, 1119–1131. [Google Scholar] [CrossRef] [PubMed]
- Athilingam, P.; Moynihan, J.; Chen, L.; D’Aoust, R.; Groer, M.; Kip, K. Elevated Levels of Interleukin 6 and C-Reactive Protein Associated with Cognitive Impairment in Heart Failure. Congest. Heart Fail. 2013, 19, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Cameron, J.; Worrall-Carter, L.; Page, K.; Stewart, S.; Ski, C.F. Screening for Mild Cognitive Impairment in Patients with Heart Failure: Montreal Cognitive Assessment versus Mini Mental State Exam. Eur. J. Cardiovasc. Nurs. 2013, 12, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Connors, E.J.; Hauson, A.O.; Barlet, B.D.; Sarkissians, S.; Stelmach, N.P.; Walker, A.D.; Nemanim, N.M.; Greenwood, K.L.; Chesher, N.J.; Wollman, S.C.; et al. Neuropsychological Assessment and Screening in Heart Failure: A Meta-Analysis and Systematic Review. Neuropsychol. Rev. 2021, 31, 312–330. [Google Scholar] [CrossRef] [PubMed]
- Hajduk, A.M.; Lemon, S.C.; McManus, D.D.; Lessard, D.M.; Gurwitz, J.H.; Spencer, F.A.; Goldberg, R.J.; Saczynski, J.S. Cognitive Impairment and Self-Care in Heart Failure. Clin. Epidemiol. 2013, 5, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Mapelli, D.; Bardi, L.; Mojoli, M.; Volpe, B.; Gerosa, G.; Amodio, P.; Daliento, L. Neuropsychological Profile in a Large Group of Heart Transplant Candidates. PLoS ONE 2011, 6, e28313. [Google Scholar] [CrossRef]
- Foster, E.R.; Cunnane, K.B.; Edwards, D.F.; Morrison, M.T.; Ewald, G.A.; Geltman, E.M.; Zazulia, A.R. Executive Dysfunction and Depressive Symptoms Associated with Reduced Participation of People with Severe Congestive Heart Failure. Am. J. Occup. Ther. 2011, 65, 306–313. [Google Scholar] [CrossRef]
- Čelutkienė, J.; Vaitkevičius, A.; Jakštienė, S.; Jatužis, D. Cognitive Decline in Heart Failure: More Attention Is Needed. Card. Fail. Rev. 2016, 2, 106–109. [Google Scholar] [CrossRef]
- Alosco, M.L.; Spitznagel, M.B.; Raz, N.; Cohen, R.; Sweet, L.H.; Colbert, L.H.; Josephson, R.; van Dulmen, M.; Hughes, J.; Rosneck, J.; et al. Executive Dysfunction Is Independently Associated with Reduced Functional Independence in Heart Failure. J. Clin. Nurs. 2014, 23, 829–836. [Google Scholar] [CrossRef]
- Goyal, P.; DiDomenico, R.J.; Pressler, S.J.; Ibeh, C.; White-Williams, C.; Allen, L.A.; Gorodeski, E.Z.; Albert, N.; Fudim, M.; Lekavich, C.; et al. Cognitive Impairment in Heart Failure: A Heart Failure Society of America Scientific Statement. J. Card. Fail. 2024, 30, 488–504. [Google Scholar] [CrossRef]
- McAinsh, J.; Cruickshank, J.M. Beta-Blockers and Central Nervous System Side Effects. Pharmacol. Ther. 1990, 46, 163–197. [Google Scholar] [CrossRef]
- Wright, J.W.; Harding, J.W. The Brain Renin–Angiotensin System: A Diversity of Functions and Implications for CNS Diseases. Pflugers Arch. 2013, 465, 133–151. [Google Scholar] [CrossRef]
- DeLoach, T.; Beall, J. Diuretics: A Possible Keystone in Upholding Cognitive Health. Ment. Health Clin. 2018, 8, 33–40. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Haney, D.; Ma, Y.; Dalmacy, D.; Pajewski, N.M.; Hajjar, I.; de Lemos, J.A.; Zhang, W.; Soliman, E.Z.; Ballantyne, C.M.; Nambi, V.; et al. High-Sensitivity Troponin T, NT-proBNP, and Cognitive Outcomes in SPRINT. Hypertension 2024, 81, 1956–1965. [Google Scholar] [CrossRef]
- Dewan, P.; Shen, L.; Ferreira, J.P.; Jhund, P.S.; Anand, I.S.; Chandra, A.; Chiang, L.-M.; Claggett, B.; Desai, A.S.; Gong, J.; et al. Effect of Sacubitril/Valsartan on Cognitive Function in Patients with Heart Failure with Preserved Ejection Fraction: A Prespecified Analysis of PARAGON-HF. Circulation 2024, 150, 272–282. [Google Scholar] [CrossRef]
- Palau, P.; Seller, J.; Domínguez, E.; Sastre, C.; Ramón, J.M.; de la Espriella, R.; Santas, E.; Miñana, G.; Bodí, V.; Sanchis, J.; et al. Effect of β-Blocker Withdrawal on Functional Capacity in Heart Failure with Preserved Ejection Fraction. J. Am. Coll. Cardiol. 2021, 78, 2042–2056. [Google Scholar] [CrossRef]
- Offer, A.; Arnold, M.; Clarke, R.; Bennett, D.; Bowman, L.; Bulbulia, R.; Haynes, R.; Li, J.; Hopewell, J.C.; Landray, M.; et al. Assessment of Vascular Event Prevention and Cognitive Function among Older Adults with Preexisting Vascular Disease or Diabetes: A Secondary Analysis of Three Randomized Clinical Trials. JAMA Netw. Open 2019, 2, e190223. [Google Scholar] [CrossRef] [PubMed]
- Bratzke, L.C.; Moser, D.K.; Pelter, M.M.; Paul, S.M.; Nesbitt, T.S.; Cooper, L.S.; Dracup, K.A. Evidence-Based Heart Failure Medications and Cognition. J. Cardiovasc. Nurs. 2016, 31, 62–68. [Google Scholar] [CrossRef][Green Version]
- Hildreth, K.L.; Van Pelt, R.E.; Moreau, K.L.; Grigsby, J.; Hoth, K.F.; Pelak, V.; Anderson, C.A.; Parnes, B.; Kittelson, J.; Wolfe, P.; et al. Effects of Pioglitazone or Exercise in Older Adults with Mild Cognitive Impairment and Insulin Resistance: A Pilot Study. Dement. Geriatr. Cogn. Dis. Extra 2015, 5, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.J.; Cockayne, S.; Currow, D.C.; Bell, K.; Hicks, K.; Fairhurst, C.; Gabe, R.; Torgerson, D.; Jefferson, L.; Oxberry, S.; et al. Oral Modified Release Morphine for Breathlessness in Chronic Heart Failure: A Randomized Placebo-Controlled Trial. ESC Heart Fail. 2019, 6, 1149–1160. [Google Scholar] [CrossRef]
- Mavaddat, N.; Roalfe, A.; Fletcher, K.; Lip, G.Y.H.; Hobbs, F.D.R.; Fitzmaurice, D.; Mant, J. Warfarin versus Aspirin for Prevention of Cognitive Decline in Atrial Fibrillation: Randomized Controlled Trial (Birmingham Atrial Fibrillation Treatment of the Aged Study). Stroke 2014, 45, 1381–1386. [Google Scholar] [CrossRef]
- Caramelli, B.; Yu, P.C.; Cardozo, F.A.M.; Magalhães, I.R.; Spera, R.R.; Amado, D.K.; Escalante-Rojas, M.C.; Gualandro, D.M.; Calderaro, D.; Tavares, C.A.M.; et al. Effects of Dabigatran versus Warfarin on 2-Year Cognitive Outcomes in Older Patients with Atrial Fibrillation: Results from the GIRAF Randomized Clinical Trial. BMC Med. 2022, 20, 374. [Google Scholar] [CrossRef]
- Osipova, O.A.; Shepel, R.N.; Plaksina, K.G.; Mezentsev, Y.A.; Negrebetsky, V.A.; Pribylov, V.S. Cognitive Function of Elderly and Senile Patients on the Background of Long-Term Pharmacotherapy of Chronic Heart Failure with Low Ejection Fraction. Res. Results Biomed. 2023, 9, 254–267. [Google Scholar] [CrossRef]
- De Vecchis, R.; Ariano, C.; Di Biase, G.; Noutsias, M. Cognitive Performance of Patients with Chronic Heart Failure on Sacubitril/Valsartan. Herz 2019, 44, 534–540. [Google Scholar] [CrossRef]
- Jahangiri, S.; Kazakov, E.; Amancherla, S.; Kalogeropoulos, A.P. Impact of Heart Failure Medications on Cognitive Function: A Systematic Review. Eur. J. Clin. Investig. 2025, 55, e70008. [Google Scholar] [CrossRef]
- Mone, P.; Lombardi, A.; Gambardella, J.; Pansini, A.; Macina, G.; Morgante, M.; Frullone, S.; Santulli, G. Empagliflozin Improves Cognitive Impairment in Frail Older Adults with Type 2 Diabetes and Heart Failure with Preserved Ejection Fraction. Diabetes Care 2022, 45, 1247–1251. [Google Scholar] [CrossRef]
- Burns, J.M.; Morris, J.K.; Vidoni, E.D.; Wilkins, H.M.; Choi, I.Y.; Lee, P.; Hunt, S.L.; Mahnken, J.D.; Brooks, W.M.; Lepping, R.J.; et al. Effects of the SGLT2 Inhibitor Dapagliflozin in Early Alzheimer’s Disease: A Randomized Controlled Trial. Alzheimer’s Dement. 2025, 21, e70416. [Google Scholar] [CrossRef]
- Angraal, S.; Nuti, S.V.; Masoudi, F.A.; Freeman, J.V.; Murugiah, K.; Shah, N.D.; Desai, N.R.; Ranasinghe, I.; Wang, Y.; Krumholz, H.M. Digoxin Use and Associated Adverse Events among Older Adults. Am. J. Med. 2019, 132, 1191–1198. [Google Scholar] [CrossRef] [PubMed]
- Birks, J.; Grimley Evans, J. Ginkgo biloba for Cognitive Impairment and Dementia. Cochrane Database Syst. Rev. 2009, 1, CD003120. [Google Scholar] [CrossRef] [PubMed]
- Secades, J.J. Citicoline in the Treatment of Cognitive Impairment. J. Neurol. Exp. Neurosci. 2019, 5, 14–26. [Google Scholar] [CrossRef][Green Version]
- Bachinskaya, N.; Demchenko, E.; Kholin, V.; Shulkevich, A. Use of Pramiracetam in Elderly Patients with Mild Cognitive Impairment and Arterial Hypertension. J. Neurol. Sci. 2013, 333, e313. [Google Scholar] [CrossRef]

| HF Type | HFpEF | HFmrEF | HFrEF |
|---|---|---|---|
| LVEF | ≥50% | 41–49% | ≤40% |
| Study (Year, Trial Acronym) | Participants (n) | Diagnosis/Population | Intervention | Cognitive Tools | Main Results (Effect Size, p-Value) | Key Findings |
|---|---|---|---|---|---|---|
| Haney et al. (2024, SPRINT) [23] | 8111 | Hypertension with cardiac biomarkers (Hs-cTnT, NT-proBNP), categorized into three groups based on biomarker levels (low, intermediate, high) | Intensive vs. Standard BP Control | MoCA, DSC | In the low biomarker group, intensive BP control significantly reduced the risk of MCI/dementia (HR 0.64; 95% CI 0.50–0.81; p < 0.05). Risk reduction was similar across all groups, but the greatest impact on cognitive decline prevention was seen in the low biomarker group (Interaction p = 0.02). | Intensive BP control reduces cognitive decline risk among those with lower cardiac biomarker levels (no overall harm). |
| Dewan et al. (2024, PARAGON-HF) [24] | 2895 | HFpEF | Sacubitril/Valsartan vs. Valsartan | MMSE | Change in MMSE at 96 weeks: sac/val −0.05 ± 0.07, valsartan −0.04 ± 0.07; between-group difference −0.01 (95% CI −0.20 to 0.19), p = 0.95. | No significant difference in cognitive change (MMSE) between sacubitril/valsartan and valsartan in HFpEF. |
| Palau et al. (2021) [25] | 52 | HFpEF + chronotropic incompetence | β-blocker Withdrawal vs. Continuation | MoCA, MMSE | Baseline MMSE ≈ 27.4 ± 1.9 vs. 27.5 ± 2.1 (p = 0.84); change +0.2 vs. +0.1 (p = 0.68); MoCA change +0.3 vs. +0.2 (p = 0.76). | In this small RCT, stopping β-blockers did not worsen (or improve) cognitive scores; cardiac functional capacity improved (reported elsewhere). |
| Offer et al. (2019) [26] | 45,029 | Vascular disease or diabetes (HPS/SEARCH/HPS2-THRIVE trials) | Statin therapy vs. Placebo/Usual care | TICS-m, CANTAB, MMSE, CDR | Expected cognitive ageing reduction ~0.15 years over 5 years with statins (95% CI 0.11–0.19); change not statistically detectable in trial (p > 0.05). | Statin therapy provided cardiovascular benefit, but any cognitive gains were very small (≈0.15-year delay) and not detectable in short-term trials. |
| Bratzke et al. (2016) [27] | 612 | Recently hospitalized HF patients | β-blockers, ACEIs/ARBs, diuretics, aldosterone antagonists (any) | Mini-Cog | Adjusted OR for cognitive impairment with GDMT: 0.84 (95% CI 0.51–1.38, p = 0.49). | Prescription of HF therapies did not correlate with worse cognition; no evidence that these medications cause cognitive decline. |
| Hildreth et al. (2015) [28] | 78 | Older adults with central obesity + MCI | Pioglitazone vs. Exercise vs. Control | MMSE | Baseline MMSE ~27.2 ± 2.1 (p = 0.69); change over 6 months: +0.2 vs. +0.2 vs. +0.1 (p = 0.98). | Pioglitazone improved insulin resistance (p = 0.002) but showed no cognitive benefit on MMSE. |
| Johnson et al. (2019) [29] | 45 | HF (NYHA III/IV) with chronic breathlessness | Morphine 20 mg vs. Placebo (for breathlessness) | MoCA | Baseline MoCA: ~24.2 ± 4.4 vs. 24.0 ± 5.0 (p = 0.89); change over 12 weeks: +0.2 vs. +0.4 (p = 0.85). | No significant cognitive difference with morphine use; single case of delirium with renal dysfunction. |
| Mavaddat et al. (2014) [30] | 973 | Atrial fibrillation, age ≥ 75 | Warfarin (INR 2–3) vs. Aspirin (75 mg) | MMSE | Mean MMSE at 33 mo: warfarin higher by 0.49 points (95% CI −0.01 to 0.98) vs. aspirin (after imputation); difference not statistically significant. | No significant cognitive advantage of warfarin over aspirin beyond stroke prevention (Warfarin did not meaningfully slow cognitive decline in the first 33 months). |
| Caramelli et al. (2022, GIRAF) [31] | 200 | Older adults (≥70 years) with atrial fibrillation or flutter, CHA2DS2-VASc ≥ 2, no prior stroke or dementia at baseline | Dabigatran (110 mg or 150 mg twice daily) vs. Warfarin (dose adjusted to INR 2.0–3.0) for 24 months | MMSE, MoCA, NTB, CGNT | No significant differences between groups in most cognitive measures after 2 years. MMSE: Mean difference = −0.12 (95% CI −0.88 to 0.63; p = 0.75) MoCA: Mean difference = −0.96 (95% CI −1.80 to −0.13; p = 0.02; adjusted p = 0.08) NTB: Mean difference = 0.05 (95% CI −0.07 to 0.18; p = 0.40) CGNT: Mean difference = −0.15 (95% CI −0.30 to 0.01; p = 0.06) | Neither dabigatran nor warfarin showed superiority in cognitive outcomes after 2 years. While unadjusted MoCA results favoured warfarin (less decline; p = 0.02), this difference lost significance after correction for multiple comparisons. No dementia cases occurred, and domain-specific tests (memory, attention, executive function, language) revealed no group differences. |
| Osipova et al. (2023) [32] | 93 | Elderly and senile patients with chronic heart failure with low ejection fraction (HFrEF) | OMT for 12 months | MoCA, MMSE | MoCA improved (p < 0.05), MMSE correlated with LV EF (r = 0.527, p < 0.01), MoCA correlated with LV EF (r = 0.655, p < 0.01); MoCA correlated with GFR (r = 0.765, p < 0.001), MMSE with GFR (r = 0.671, p < 0.001) | Long-term OMT improved myocardial systolic function, GFR, cognitive function, and exercise tolerance. Improvements were more pronounced in elderly patients compared to senile patients. |
| De Vecchis et al. (2019) [33] | 102 | Patients with chronic heart failure | Sacubitril/valsartan vs. Standard Therapy | MMSE | Sacubitril/valsartan: 22.72 ± 2.68; Control: 21.96 ± 2.73; p = 0.1572 | No significant difference in cognitive function between groups; cognitive function remained similar in both groups |
| Study (Year, Trial Acronym) | Study Design | Tool Used | Result |
|---|---|---|---|
| Haney et al. (2024, SPRINT) [23] | RCT | RoB 2 | Low–moderate risk |
| Dewan et al. (2024, PARAGON-HF) [24] | RCT | RoB 2 | Low risk |
| Palau et al. (2021) [25] | RCT | RoB 2 | Low risk |
| Offer et al. (2019) [26] | RCTs (secondary analysis) | RoB 2 | Moderate risk |
| Bratzke et al. (2016) [27] | Observational | NOS | 7/9 stars (moderate) |
| Hildreth et al. (2015) [28] | RCT | RoB 2 | Moderate risk |
| Johnson et al. (2019) [29] | RCT | RoB 2 | Moderate risk |
| Mavaddat et al. (2014) [30] | RCT | RoB 2 | Moderate risk |
| Caramelli et al. (2022, GIRAF) [31] | RCT | RoB 2 | Low risk |
| Osipova et al. (2023) [32] | Observational | NOS | 6/9 stars (moderate) |
| De Vecchis et al. (2019) [33] | Observational | NOS | 7/9 stars (moderate) |
| Intervention/ Exposure | Comparator | Studies (n for Participants) | Main Cognitive Outcome | Effect | Certainty (GRADE) |
|---|---|---|---|---|---|
| Intensive BP lowering | Standard BP | 1 RCT (n = 8111) | MoCA, MCI/dementia | HR 0.64 (95% CI 0.50–0.81) | Moderate |
| Sacubitril/ valsartan | RAAS inhibitors | 2 studies (1 RCT, n = 2895; 1 observational, n = 102) | MMSE | No difference | Low |
| Standard HF therapies (β-blockers, ACEI/ARB, diuretics, statins) | Placebo/ usual care | Multiple cohorts + RCTs (n > 45,000) | MMSE, MoCA | No consistent harm | Low |
| Warfarin | Aspirin | 1 RCT (n = 973) | MMSE | No significant difference | Very low |
| Dabigatran | Warfarin | 1 RCT (n = 200) | MMSE, MoCA, NTB | No significant difference after adjustment | Low |
| Optimized medical therapy (OMT) | Baseline | 1 observational (n = 93) | MMSE, MoCA | Cognitive improvement parallel to LV EF and GFR gains | Very low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balcerzak, W.; Poczatek, G.; Gorzkowska, A.; Blach, A.; Jurkiewicz, M.; Lasek-Bal, A. Cognitive Safety and Outcomes of Pharmacological Management in Heart Failure: A Systematic Review. Pharmaceuticals 2025, 18, 1671. https://doi.org/10.3390/ph18111671
Balcerzak W, Poczatek G, Gorzkowska A, Blach A, Jurkiewicz M, Lasek-Bal A. Cognitive Safety and Outcomes of Pharmacological Management in Heart Failure: A Systematic Review. Pharmaceuticals. 2025; 18(11):1671. https://doi.org/10.3390/ph18111671
Chicago/Turabian StyleBalcerzak, Wiktoria, Gabriela Poczatek, Agnieszka Gorzkowska, Anna Blach, Michal Jurkiewicz, and Anetta Lasek-Bal. 2025. "Cognitive Safety and Outcomes of Pharmacological Management in Heart Failure: A Systematic Review" Pharmaceuticals 18, no. 11: 1671. https://doi.org/10.3390/ph18111671
APA StyleBalcerzak, W., Poczatek, G., Gorzkowska, A., Blach, A., Jurkiewicz, M., & Lasek-Bal, A. (2025). Cognitive Safety and Outcomes of Pharmacological Management in Heart Failure: A Systematic Review. Pharmaceuticals, 18(11), 1671. https://doi.org/10.3390/ph18111671

