Vitamin D and Chronic Disorders: A Review of Metabolic and Cardiovascular Diseases
Abstract
1. Introduction
2. Metabolic Disorders
2.1. Vitamin D in Type 1 Diabetes Mellitus
2.2. Vitamin D in Type 2 Diabetes Mellitus
2.3. Vitamin D in Gestational Diabetes Mellitus
2.4. Vitamin D in Polycystic Ovary Syndrome
3. The Role of Vitamin D in Cardiovascular Disease
3.1. Vitamin D in Hypertension
3.2. Vitamin D in Coronary Artery Disease (CAD) and Atherosclerosis
4. Vitamin D in Chronic Kidney Disease
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
1,25(OH)2D | 1,25-dihydroxyvitamin D |
1,25(OH)2D3 | 1,25-dihydroxyvitamin D3 |
25(OH)D | 25-hydroxyvitamin D |
25(OH)D3 | 25-hydroxyvitamin D3 |
7-DHC | 7-dehydrocholesterol |
ABCA1 | ATP-binding cassette transporter 1 |
ABPM | Ambulatory blood pressure monitoring |
AGEs | Advanced glycation end products |
AMH | Anti-Müllerian hormone |
Ang II | Angiotensin II |
APS | Antiphospholipid syndrome |
AST | Aspartate aminotransferase (if needed) |
BMI | Body mass index |
CACS | Coronary artery calcium score |
CAD | Coronary artery disease |
CAMP | Cyclic adenosine monophosphate |
CCTA | Coronary computed tomography angiography |
CD40/CD80/CD86/CD68 | Co-stimulatory molecules on antigen-presenting cells |
cIMT | Carotid intima-media thickness |
CKD | Chronic kidney disease |
CKD-MBD | Chronic kidney disease-mineral and bone disorder |
CRP | C-reactive protein |
CVD | Cardiovascular diseases |
CXCL10 | C-X-C motif chemokine ligand 10 (IP-10) |
DAG | Diacyloglycerol |
DBP | Diastolic blood pressure/Vitamin-D-binding protein (context-dependent) |
DHEA-S | Dehydroepiandrosterone sulfate |
DPN | Diabetic peripheral neuropathy |
DRI | Dietary reference intake |
EMT | Epithelial to mesenchymal transition |
ESKD | End-stage kidney disease |
FGF23 | Fibroblast growth factor 23 |
FSH | Follicle-stimulating hormone |
GDM | Gestational diabetes mellitus |
GFR | Glomerular filtration rate |
GLUT4 | Glucose Transporter Type 4 |
HDL | High-density lipoprotein |
HDL-C | High-density lipoprotein cholesterol |
HbA1c | Glycated hemoglobin |
HOMA-B | Homeostatic model assessment of β-cell function |
HOMA-IR | Homeostatic model assessment of insulin resistance |
HT | Hashimoto’s thyroiditis |
HTN | Hypertension |
IFN-γ | Interferon gamma |
IL-1/IL-6/IL-10 | Interleukin-1/Interleukin-6/Interleukin-10 |
IRS | Insulin receptor substrate |
KDIGO | Kidney Disease: Improving Global Outcomes |
LEAD | Lower extremity arterial disease |
LDL | Low-density lipoprotein |
LDL-C | Low-density lipoprotein cholesterol |
MACE | Major adverse cardiovascular events |
MAPK | Mitogen-activated protein kinases |
MCP-1 | Monocyte chemoattractant protein 1 |
MHC | Major histocompatibility complex |
MI | Myocardial infarction |
MMP-9 | Matrix metalloproteinase 9 |
mo | Months |
MetS | Metabolic syndrome |
MS | Multiple sclerosis |
mTOR | Mechanistic target of rapamycin |
NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells/Nuclear factor kappa B |
Nrf2 | Nuclear factor erythroid 2-related factor |
NS | Not significant |
NO | Nitric oxide |
NOAEL | No observed adverse effect level |
NOS3 | Nitric oxide synthase |
PPARγ | Peroxisome proliferator-activated receptor gamma |
PCI | Percutaneous coronary intervention |
PCOS | Polycystic ovary syndrome |
PCV | Packed cell volume (if needed) |
PDIA3 | Protein disulfide-isomerase A3 |
PI3K | Phospatidylimositol 3-kinase |
PKA | Protein kinase A |
PKC | Protein kinase C |
PTH | Parathyroid hormone |
RA | Rheumatoid arthritis |
RAAS | Renin–angiotensin–aldosterone system |
RCT | Randomized controlled trial |
ROC | Receiver operating characteristic curve |
ROS | Reactive oxygen species |
RXR | Retinoid X receptor |
SBP | Systolic blood pressure |
SHBG | Sex hormone-binding globulin |
SHPT | Secondary hyperparathyroidism |
SLE | Systemic lupus erythematosis |
SNP | Single nucleotide polymorphism |
T1DM | Type 1 diabetes mellitus |
T2DM | Type 2 diabetes mellitus |
T-bet | T-box transcription factor |
TGF-β | Transforming growth factor beta |
Th1/Th17 | T helper cell subsets (pro-inflammatory) |
TIR | Time in range (glycemic metric) |
TRPV | Transient receptor potential vanilloid |
UL | Tolerable upper intake level |
VC | Vascular calcification |
VDR | Vitamin D receptor |
VDRE | Vitamin D response element |
VITAL | Vitamin D and Omega-3 trial |
ViDA | Vitamin D assessment study |
VSMC | Vascular smooth muscle cell |
UVB | Ultraviolet B radiation |
wk | Week |
References
- World Health Organization. Cardiovascular Diseases (CVDs). Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-%28cvds%29 (accessed on 12 September 2025).
- World Health Organization. Diabetes. WHO. Available online: http://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 12 September 2025).
- World Health Organization. The Top 10 Causes of Death. WHO. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 12 September 2025).
- Izzo, M.; Carrizzo, A.; Izzo, C.; Cappello, E.; Cecere, D.; Ciccarelli, M.; Iannece, P.; Damato, A.; Vecchione, C.; Pompeo, F. Vitamin D: Not Just Bone Metabolism but a Key Player in Cardiovascular Diseases. Life 2021, 11, 452. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kumari, A.; Singh, S.; Ahmad, F.; Chaki, D.; Poria, V.; Kumar, S.; Saini, N.; Yadav, N.; Sangwan, N.; BinMowyna, M.N.; et al. Vitamin D: Recent advances, associated factors, and its role in combating non-communicable diseases. npj Sci. Food 2025, 9, 100. [Google Scholar] [CrossRef]
- Zhang, S.; Miller, D.D.; Li, W. Non-Musculoskeletal Benefits of Vitamin D beyond the Musculoskeletal System. Int. J. Mol. Sci. 2021, 22, 2128. [Google Scholar] [CrossRef]
- Argano, C.; Torres, A.; Orlando, V.; Cangialosi, V.; Maggio, D.; Pollicino, C.; Corrao, S. Molecular Insight into the Role of Vitamin D in Immune-Mediated Inflammatory Diseases. Int. J. Mol. Sci. 2025, 26, 4798. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Mercado, A.I.; Mesa, M.D.; Gil, Á. Vitamin D: Role in chronic and acute diseases. In Encyclopedia of Human Nutrition, 4th ed.; Academic Press: Cambridge, MA, USA, 2023; pp. 535–544. [Google Scholar] [CrossRef] [PubMed Central]
- Chew, C.; A Reynolds, J.; Lertratanakul, A.; Wu, P.; Urowitz, M.; Gladman, D.D.; Fortin, P.R.; Bae, S.-C.; Gordon, C.; E Clarke, A.; et al. Lower vitamin D is associated with metabolic syndrome and insulin resistance in systemic lupus: Data from an international inception cohort. Rheumatology 2021, 60, 4737–4747. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tønnesen, R.; Hovind, P.H.; Jensen, L.T.; Schwarz, P. Determinants of vitamin D status in young adults: Influence of lifestyle, sociodemographic and anthropometric factors. BMC Public Health 2016, 16, 385, Erratum in BMC Public Health 2017, 18, 14. https://doi.org/10.1186/s12889-016-3042-9. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jäpelt, R.B.; Jakobsen, J. Vitamin D in plants: A review of occurrence, analysis, and biosynthesis. Front. Plant Sci. 2013, 4, 136. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bennour, I.; Haroun, N.; Sicard, F.; Mounien, L.; Landrier, J.-F. Vitamin D and Obesity/Adiposity—A Brief Overview of Recent Studies. Nutrients 2022, 14, 2049. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Delrue, C.; Speeckaert, M.M. Vitamin D and Vitamin D-Binding Protein in Health and Disease. Int. J. Mol. Sci. 2023, 24, 4642. [Google Scholar] [CrossRef]
- Saponaro, F.; Saba, A.; Zucchi, R. An Update on Vitamin D Metabolism. Int. J. Mol. Sci. 2020, 21, 6573. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Warwick, T.; Schulz, M.H.; Gilsbach, R.; Brandes, R.P.; Seuter, S. Nuclear receptor activation shapes spatial genome organization essential for gene expression control: Lessons learned from the vitamin D receptor. Nucleic Acids Res. 2022, 50, 3745–3763. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hanel, A.; Malmberg, H.-R.; Carlberg, C. Genome-wide effects of chromatin on vitamin D signaling. J. Mol. Endocrinol. 2020, 64, R45–R56. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Xu, Q.; Zhu, R. Vitamin D and allergic diseases. Front. Immunol. 2024, 15, 1420883. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cyprian, F.; Lefkou, E.; Varoudi, K.; Girardi, G. Immunomodulatory Effects of Vitamin D in Pregnancy and Beyond. Front. Immunol. 2019, 10, 2739. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Daryabor, G.; Gholijani, N.; Kahmini, F.R. A review of the critical role of vitamin D axis on the immune system. Exp. Mol. Pathol. 2023, 132–133, 104866. [Google Scholar] [CrossRef] [PubMed]
- Durá-Travé, T.; Gallinas-Victoriano, F. Type 1 Diabetes Mellitus and Vitamin D. Int. J. Mol. Sci. 2025, 26, 4593. [Google Scholar] [CrossRef]
- Argano, C.; Mirarchi, L.; Amodeo, S.; Orlando, V.; Torres, A.; Corrao, S. The Role of Vitamin D and Its Molecular Bases in Insulin Resistance, Diabetes, Metabolic Syndrome, and Cardiovascular Disease: State of the Art. Int. J. Mol. Sci. 2023, 24, 15485. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Norris, J.M.; Johnson, R.K.; Stene, L.C. Type 1 Diabetes—Early Life Origins and Changing Epidemiology. Lancet Diabetes Endocrinol. 2020, 8, 226–238. [Google Scholar] [CrossRef]
- Wu, J.; Atkins, A.; Downes, M.; Wei, Z. Vitamin D in Diabetes: Uncovering the Sunshine Hormone’s Role in Glucose Metabolism and Beyond. Nutrients 2023, 15, 1997. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Park, C.Y.; Shin, S.; Han, S.N. Multifaceted Roles of Vitamin D for Diabetes: From Immunomodulatory Functions to Metabolic Regulations. Nutrients 2024, 16, 3185. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Low, C.E.; Chew, N.S.M.; Rana, S.; Loke, S.; Chin, R.T.; Kao, S.L.; Bin Lee, A.R.Y.; Tay, S.H. Vitamin supplementation and its effect on incident type 1 diabetes mellitus and islet autoimmunity: A systematic review and meta-analysis. Front. Immunol. 2025, 16, 1505324. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- The EURODIAB Substudy 2 Study Group. Vitamin D supplement in early childhood and risk for Type I (insulin-dependent) diabetes mellitus. Diabetologia 1999, 42, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Najjar, L.; Sutherland, J.; Zhou, A.; Hyppönen, E. Vitamin D and Type 1 Diabetes Risk: A Systematic Review and Meta-Analysis of Genetic Evidence. Nutrients 2021, 13, 4260. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ferraz, L.; Barros, M.; Almeida, K.; Silva, M.; Bueno, N. Effects of dietary supplementation in treatment and control of progression and complications of insulin-dependent diabetes mellitus: A systematic review with meta-analyses of randomized clinical trials. Braz. J. Med. Biol. Res. 2024, 57, e13649. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fenercioglu, A.K.; Gonen, M.S.; Uzun, H.; Sipahioglu, N.T.; Can, G.; Tas, E.; Kara, Z.; Ozkaya, H.M.; Atukeren, P. The Association between Serum 25-Hydroxyvitamin D3 Levels and Pro-Inflammatory Markers in New-Onset Type 2 Diabetes Mellitus and Prediabetes. Biomolecules 2023, 13, 1778. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, M.; Gao, Y.; Tian, L.; Zheng, L.; Wang, X.; Liu, W.; Zhang, Y.; Huang, G. Association of serum 25-hydroxyvitamin D 3 with adipokines and inflammatory marker in persons with prediabetes mellitus. Clin. Chim. Acta 2017, 468, 152–158. [Google Scholar] [CrossRef]
- Arabi, A.; Nasrallah, D.; Mohsen, S.; Abugharbieh, L.; Al-Hashimi, D.; AlMass, S.; Albasti, S.; Al-Ajmi, S.A.; Zughaier, S.M. The interplay between vitamin D status, subclinical inflammation, and prediabetes. Heliyon 2024, 10, e35764. [Google Scholar] [CrossRef]
- Contreras-Bolívar, V.; García-Fontana, B.; García-Fontana, C.; Muñoz-Torres, M. Mechanisms Involved in the Relationship between Vitamin D and Insulin Resistance: Impact on Clinical Practice. Nutrients 2021, 13, 3491. [Google Scholar] [CrossRef]
- Abugoukh, T.M.; Al Sharaby, A.; O Elshaikh, A.; Joda, M.; Madni, A.; Ahmed, I.; Abdalla, R.S.; Ahmed, K.; E Elazrag, S.; Abdelrahman, N. Does Vitamin D Have a Role in Diabetes? Cureus 2022, 14, e30432. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fuentes-Barría, H.; Aguilera-Eguía, R.; Flores-Fernández, C.; Angarita-Davila, L.; Rojas-Gómez, D.; Alarcón-Rivera, M.; López-Soto, O.; Maureira-Sánchez, J. Vitamin D and Type 2 Diabetes Mellitus: Molecular Mechanisms and Clinical Implications—A Narrative Review. Int. J. Mol. Sci. 2025, 26, 2153. [Google Scholar] [CrossRef]
- Tang, W.; Chen, S.; Zhang, S.; Ran, X. The Multi-Dimensional Role of Vitamin D in the Pathophysiology and Treatment of Diabetic Foot Ulcers: From Molecular Mechanisms to Clinical Translation. Int. J. Mol. Sci. 2025, 26, 5719. [Google Scholar] [CrossRef]
- Rafiq, S.; Jeppesen, P.B. Vitamin D Deficiency Is Inversely Associated with Homeostatic Model Assessment of Insulin Resistance. Nutrients 2021, 13, 4358. [Google Scholar] [CrossRef]
- Martinelli, R.P.; Petroni, C.; Martinez, J.; Cuesta, C.; Esteban, L.; Pacchioni, A.M.; Arias, P. Investigating the association between FOK1 polymorphism in the vitamin D receptor (VDR) gene and type 2 diabetes prevalence: A comprehensive analysis. J. Steroid Biochem. Mol. Biol. 2025, 248, 106692. [Google Scholar] [CrossRef] [PubMed]
- Szymczak-Pajor, I.; Drzewoski, J.; Śliwińska, A. The Molecular Mechanisms by Which Vitamin D Prevents Insulin Resistance and Associated Disorders. Int. J. Mol. Sci. 2020, 21, 6644. [Google Scholar] [CrossRef]
- Li, M.; Chi, X.; Wang, Y.; Setrerrahmane, S.; Xie, W.; Xu, H. Trends in insulin resistance: Insights into mechanisms and therapeutic strategy. Signal Transduct. Target. Ther. 2022, 7, 216. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ghozali, N.M.; Giribabu, N.; Salleh, N. Mechanisms Linking Vitamin D Deficiency to Impaired Metabolism: An Overview. Int. J. Endocrinol. 2022, 2022, 6453882. [Google Scholar] [CrossRef] [PubMed]
- Ghaseminejad-Raeini, A.; Ghaderi, A.; Sharafi, A.; Nematollahi-Sani, B.; Moossavi, M.; Derakhshani, A.; Sarab, G.A. Immunomodulatory actions of vitamin D in various immune-related disorders: A comprehensive review. Front. Immunol. 2023, 14, 950465. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arfian, N.; Nugraha, G.C.; Kencana, S.M.S.; Alexandra, G.; Eliyani, N.D.; Dewi, K.C.; Rinendyaputri, R.; A Nikmah, U.; Intan, P.R.; Sari, D.C.R. Calcitriol attenuates inflammatory response in the lung of diabetes mellitus rat model. Med. J. Malays. 2024, 79 (Suppl. S4), 72–76. [Google Scholar] [PubMed]
- Chung, C.; Silwal, P.; Kim, I.; Modlin, R.L.; Jo, E.-K. Vitamin D-Cathelicidin Axis: At the Crossroads between Protective Immunity and Pathological Inflammation during Infection. Immune Netw. 2020, 20, e12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Szymczak-Pajor, I.; Miazek, K.; Selmi, A.; Balcerczyk, A.; Śliwińska, A. The Action of Vitamin D in Adipose Tissue: Is There the Link between Vitamin D Deficiency and Adipose Tissue-Related Metabolic Disorders? Int. J. Mol. Sci. 2022, 23, 956. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Refaat, B.; Abdelghany, A.H.; Ahmad, J.; Abdalla, O.M.; Elshopakey, G.E.; Idris, S.; El-Boshy, M. Vitamin D3 enhances the effects of omega-3 oils against metabolic dysfunction-associated fatty liver disease in rat. Biofactors 2022, 48, 498–513. [Google Scholar] [CrossRef]
- Renke, G.; Starling-Soares, B.; Baesso, T.; Petronio, R.; Aguiar, D.; Paes, R. Effects of Vitamin D on Cardiovascular Risk and Oxidative Stress. Nutrients 2023, 15, 769. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, H.-C.; Geng, T.-T.; Zhang, J.-J.; Zhou, X.-T.; Wang, Y.-X.; Zhang, B.-F.; Yang, K.; Franco, O.H.; Liao, Y.-F.; Liu, G.; et al. Serum 25-hydroxyvitamin D concentrations, vitamin D receptor polymorphisms, and risk of infections among individuals with type 2 diabetes: A prospective cohort study. Am. J. Clin. Nutr. 2024, 120, 398–406. [Google Scholar] [CrossRef]
- Jiang, W.; Li, L.; Wang, W.; Liang, Y.; Bai, X.; Xu, Y.; Guo, Q.; Ge, L.; Liang, J.; Lu, B.; et al. Association of circulating 25-hydroxyvitamin D with time in range and insulin secretion in type 2 diabetes. Front. Endocrinol. 2025, 16, 1573963. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rafiq, S.; Jeppesen, P.B. Insulin Resistance Is Inversely Associated with the Status of Vitamin D in Both Diabetic and Non-Diabetic Populations. Nutrients 2021, 13, 1742. [Google Scholar] [CrossRef]
- Zhang, X.J.; Wang, H.F.; Gao, X.; Zhao, Y. Effects of Oral Vitamin D Supplementation on Vitamin D Levels and Glycemic Parameters in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Network Meta-Analysis. Biomed. Environ. Sci. 2025, 38, 716–726. [Google Scholar] [CrossRef] [PubMed]
- Probosari, E.; Subagio, H.W.; Nugroho, H.; Rachmawati, B.; Muis, S.F.; Tjandra, K.C.; Adiningsih, D.; Winarni, T.I. The Impact of Vitamin D Supplementation on Fasting Plasma Glucose, Insulin Sensitivity, and Inflammation in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Nutrients 2025, 17, 2489. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, W.; Liu, L.; Hu, F. Efficacy of vitamin D supplementation on glycaemic control in type 2 diabetes: An updated systematic review and meta-analysis of randomized controlled trials. Diabetes Obes. Metab. 2024, 26, 5713–5726. [Google Scholar] [CrossRef] [PubMed]
- Ahi, S.; Reiskarimian, A.; Bagherzadeh, M.A.; Rahmanian, Z.; Pilban, P.; Sobhanian, S. Impact of vitamin D on glycemic control and microvascular complications in type 2 diabetes: A cross-sectional study. PLoS ONE 2025, 20, e0324729. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kropp, M.; Golubnitschaja, O.; Mazurakova, A.; Koklesova, L.; Sargheini, N.; Vo, T.-T.K.S.; de Clerck, E.; Polivka, J.; Potuznik, P.; Stetkarova, I.; et al. Diabetic retinopathy as the leading cause of blindness and early predictor of cascading complications—Risks and mitigation. EPMA J. 2023, 14, 21–42. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tan, J.; Lv, H.; Ma, Y.; Liu, C.; Li, Q.; Wang, C. Analysis of angiographic characteristics and intervention of vitamin D in type 2 diabetes mellitus complicated with lower extremity arterial disease. Diabetes Res. Clin. Pract. 2020, 169, 108439. [Google Scholar] [CrossRef] [PubMed]
- Hang, X.; Yu, X.; Fan, S. Lower extremity arterial plaque in patients with type 2 diabetes mellitus: A cross-sectional study of 25-(OH)D3 and other risk factors. J. Diabetes Complicat. 2024, 38, 108665. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Zhou, B.; Yao, K.; Yang, J.; Yan, Y.; Ning, Y. Correlation between serum 25-hydroxyvitamin D level and peripheral arterial disease in patients with type 2 diabetes mellitus: A single-center retrospective study. Am. J. Transl. Res. 2024, 16, 3759–3768. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, G.; Wu, X.; Zhang, Y.; Zhang, W.; Jiang, H.; Dai, Y.; Zhang, X. Serum Vitamin D Level and Erectile Dysfunction in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Urol. Int. 2022, 106, 1025–1032. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Munive, A.K.; Molina-Leonor, M.B.; Ayala-González, B.D.; Vázquez-Andrade, J.; Medina-Nieto, A.; Fernández-Guasti, A. Diabetes mellitus and female sexual response: What do animal models tell us? Sex. Med. Rev. 2024, 12, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Chen, J.; Zheng, S.; Yan, Y.; Huang, M.; Chen, N. Correlation between serum 25-hydroxyvitamin D levels and peripheral neuropathy in type 2 diabetes mellitus. Front. Endocrinol. 2025, 16, 1541388. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vinturache, A.; Khalil, A. Maternal Physiological Changes in Pregnancy. In Fetal Development and Maternal Adaptation; GLOWM: London, UK, 2021; Available online: https://www.glowm.com/article/heading/vol-4--fetal-development-and-maternal-adaptation--maternal-physiological-changes-in-pregnancy/id/411323 (accessed on 15 August 2025).
- Wagner, C.L.; Hollis, B.W. Early-Life Effects of Vitamin D: A Focus on Pregnancy and Lactation. Ann. Nutr. Metab. 2020, 76 (Suppl. S2), 16–28. [Google Scholar] [CrossRef] [PubMed]
- Wagner, C.L.; Hollis, B.W. The extraordinary metabolism of vitamin D. eLife 2022, 11, e77539. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Durá-Travé, T.; Gallinas-Victoriano, F. Pregnancy, Breastfeeding, and Vitamin D. Int. J. Mol. Sci. 2023, 24, 11881. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Parenti, M.; Melough, M.M.; Lapehn, S.; MacDonald, J.; Bammler, T.; Firsick, E.J.; Choi, H.Y.; Derefinko, K.J.; A Enquobahrie, D.; Carroll, K.N.; et al. Associations Between Prenatal Vitamin D and Placental Gene Expression. J. Nutr. 2024, 154, 3603–3614. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cleal, J.K.; Day, P.E.; Simner, C.L.; Barton, S.J.; Mahon, P.A.; Inskip, H.M.; Godfrey, K.M.; Hanson, M.A.; Cooper, C.; Lewis, R.M.; et al. Placental amino acid transport may be regulated by maternal vitamin D and vitamin D-binding protein: Results from the Southampton Women’s Survey. Br. J. Nutr. 2015, 113, 1903–1910. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ashley, B.; Simner, C.; Manousopoulou, A.; Jenkinson, C.; Hey, F.; Frost, J.M.; I Rezwan, F.; White, C.H.; Lofthouse, E.M.; Hyde, E.; et al. Placental uptake and metabolism of 25(OH)vitamin D determine its activity within the fetoplacental unit. eLife 2022, 11, e71094. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tung, K.T.S.; Wong, R.S.; Tsang, H.W.; Chan, B.N.K.; Wong, S.Y.; So, H.-K.; Tung, J.Y.L.; Ho, M.H.K.; Wong, W.H.S.; Ip, P. An Assessment of Risk Factors for Insufficient Levels of Vitamin D during Early Infancy. Nutrients 2021, 13, 1068. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, Y.; Wu, N. Gestational Diabetes Mellitus and Preeclampsia: Correlation and Influencing Factors. Front. Cardiovasc. Med. 2022, 9, 831297. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Craigie, L.; Power, A.; Geraghty, A.; O’REilly, S. Dietary nutritional deficiencies identified in women at-risk of developing gestational diabetes across the UK, Ireland, Spain, Australia: The Bump2Baby and Me Study. Proc. Nutr. Soc. 2023, 82, E233. [Google Scholar] [CrossRef]
- Liu, S. The role of vitamin D receptor gene polymorphisms in gestational diabetes mellitus susceptibility: A meta-analysis. Diabetol. Metab. Syndr. 2021, 13, 144. [Google Scholar] [CrossRef]
- Aziz, A.; Shah, M.; Siraj, S.; Iqbal, W.; Jan, A.; Khan, I.; Ahmed, S.; Vitale, S.G.; Angioni, S. Association of vitamin D deficiency and vitamin D receptor (VDR) gene single-nucleotide polymorphism (rs7975232) with risk of preeclampsia. Gynecol. Endocrinol. 2023, 39, 2146089. [Google Scholar] [CrossRef]
- Alzaim, M.; Ansari, M.G.; Al-Masri, A.A.; Khattak, M.N.; Alamro, A.; Alghamdi, A.; Alenad, A.; Alokail, M.; Al-Attas, O.S.; Al-Zahrani, A.G.; et al. Association of VDR gene variant rs2228570-FokI with gestational diabetes mellitus susceptibility in Arab women. Heliyon 2024, 10, e32048. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Agliardi, C.; Guerini, F.R.; Bolognesi, E.; Zanzottera, M.; Clerici, M. VDR Gene Single Nucleotide Polymorphisms and Autoimmunity: A Narrative Review. Biology 2023, 12, 916. [Google Scholar] [CrossRef]
- Sheiner, E. Gestational Diabetes Mellitus: Long-Term Consequences for the Mother and Child Grand Challenge: How to Move on Towards Secondary Prevention? Front. Clin. Diabetes Health 2020, 1, 546256. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ornoy, A.; Becker, M.; Weinstein-Fudim, L.; Ergaz, Z. Diabetes during Pregnancy: A Maternal Disease Complicating the Course of Pregnancy with Long-Term Deleterious Effects on the Offspring. Clin. Rev. Int. J. Mol. Sci. 2021, 22, 2965. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cagiran, F.T.; Kali, Z. Role of vitamin D on gestational hypertension, diabetes mellitus, timing and mode of delivery. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Hu, X.; Jin, Y. Causal association between vitamin D and gestational diabetes mellitus: A two-sample Mendelian randomization study. J. Matern. Neonatal Med. 2024, 37, 2427760. [Google Scholar] [CrossRef] [PubMed]
- Griffith, R.J.; Alsweiler, J.; Moore, A.E.; Brown, S.; Middleton, P.; Shepherd, E.; Crowther, C.A. Interventions to prevent women from developing gestational diabetes mellitus: An overview of Cochrane Reviews. Cochrane Database Syst. Rev. 2020, 6, CD012394. [Google Scholar] [CrossRef] [PubMed]
- Akbari, M.; Moosazadeh, M.; Lankarani, K.B.; Tabrizi, R.; Samimi, M.; Karamali, M.; Jamilian, M.; Kolahdooz, F.; Asemi, Z. Correction: The Effects of Vitamin D Supplementation on Glucose Metabolism and Lipid Profiles in Patients with Gestational Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Horm. Metab. Res. 2017, 49, 647–653, Erratum in Horm. Metab. Res. 2017, 49, e3. https://doi.org/10.1055/s-0037-1600933. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Chen, Z.; Hu, Y.; Wang, Y.; Wu, Y.; Lian, F.; Li, H.; Yang, J.; Xu, X. The effects of vitamin D supplementation on glycemic control and maternal-neonatal outcomes in women with established gestational diabetes mellitus: A systematic review and meta-analysis. Clin. Nutr. 2021, 40, 3148–3157. [Google Scholar] [CrossRef] [PubMed]
- Beck, C.; Blue, N.R.; Silver, R.M.; Na, M.; A Grobman, W.; Steller, J.; Parry, S.; Scifres, C.; Gernand, A.D. Maternal vitamin D status, fetal growth patterns, and adverse pregnancy outcomes in a multisite prospective pregnancy cohort. Am. J. Clin. Nutr. 2025, 121, 376–384. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ku, C.W.; Lee, A.J.W.; Oh, B.; Lim, C.H.F.; Chang, T.Y.; Yap, F.; Chan, J.K.Y.; Loy, S.L. The Effect of Vitamin D Supplementation in Pregnant Women with Overweight and Obesity: A Randomised Controlled Trial. Nutrients 2024, 16, 146. [Google Scholar] [CrossRef]
- Akita, K.; Ikenoue, S.; Tamai, J.; Otani, T.; Fukutake, M.; Kasuga, Y.; Tanaka, M. Maternal Serum 25-Hydroxyvitamin D as a Possible Modulator of Fetal Adiposity: A Prospective Longitudinal Study. Int. J. Mol. Sci. 2025, 26, 4435. [Google Scholar] [CrossRef]
- Singh, S.; Pal, N.; Shubham, S.; Sarma, D.K.; Verma, V.; Marotta, F.; Kumar, M. Polycystic Ovary Syndrome: Etiology, Current Management, and Future Therapeutics. J. Clin. Med. 2023, 12, 1454. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- E Dragomir, R.; Toader, O.D.; Mutu, D.E.G.; Stănculescu, R.V. The Key Role of Vitamin D in Female Reproductive Health: A Narrative Review. Cureus 2024, 16, e65560. [Google Scholar] [CrossRef] [PubMed]
- A Albahlol, I.; Neamatallah, M.; Serria, M.S.; El-Gilany, A.-H.; A Setate, Y.; Alkasaby, N.M.; Mostafa, S.A.; Abdelaziz, M.; Elazab, H.; Ammar, O.A. Vitamin D receptor gene polymorphism and polycystic ovary syndrome susceptibility. BMC Med. Genom. 2023, 16, 108. [Google Scholar] [CrossRef] [PubMed]
- Ramezani, N.; Ostadsharif, M.; Nayeri, H. Association of BsmI variant of vitamin D receptor gene with polycystic ovary syndrome: A case-control study. Int. J. Reprod. Biomed. 2020, 18, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Shahmoradi, A.; Aghaei, A.; Ghaderi, K.; Rezaei, M.J.; Azarnezhad, A. A meta-analysis of the association of ApaI, BsmI, FokI, and TaqI polymorphisms in the vitamin D receptor gene with the risk of polycystic ovary syndrome in the Eastern Mediterranean Regional Office population. Int. J. Reprod. Biomed. 2022, 20, 433–446. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Heidarzadehpilehrood, R.; Hamid, H.A.; Pirhoushiaran, M. Vitamin D receptor (VDR) gene polymorphisms and risk for polycystic ovary syndrome and infertility: An updated systematic review and meta-analysis. Metab. Open 2024, 25, 100343. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pililis, S.; Lampsas, S.; Kountouri, A.; Pliouta, L.; Korakas, E.; Livadas, S.; Thymis, J.; Peppa, M.; Kalantaridou, S.; Oikonomou, E.; et al. The Cardiometabolic Risk in Women with Polycystic Ovarian Syndrome (PCOS): From Pathophysiology to Diagnosis and Treatment. Medicina 2024, 60, 1656. [Google Scholar] [CrossRef]
- Moieni, A.; Haghollahi, F.; Dashtkoohi, M.; Abiri, A.; Salari, E.; Najafi, M.S.; Tajik, N. Vitamin D levels and lipid profiles in patients with polycystic ovary syndrome. BMC Women’s Health 2024, 24, 472. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mohan, A.M.; Haider, R.M.; Fakhor, H.M.; Hina, F.M.; Kumar, V.; Jawed, A.M.; Majumder, K.M.; Ayaz, A.M.; Lal, P.M.M.; Tejwaney, U.P.D.; et al. Vitamin D and polycystic ovary syndrome (PCOS): A review. Ann. Med. Surg. 2023, 85, 3506–3511. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moridi, I.; Chen, A.; Tal, O.; Tal, R. The Association between Vitamin D and Anti-Müllerian Hormone: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 1567. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alesi, S.; Ee, C.; Moran, L.J.; Rao, V.; Mousa, A. Nutritional Supplements and Complementary Therapies in Polycystic Ovary Syndrome. Adv. Nutr. Int. Rev. J. 2022, 13, 1243–1266. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Radkhah, N.; Zarezadeh, M.; Jamilian, P.; Ostadrahimi, A. The Effect of Vitamin D Supplementation on Lipid Profiles: An Umbrella Review of Meta-Analyses. Adv. Nutr. Int. Rev. J. 2023, 14, 1479–1498. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nowak, A.; Wojtowicz, M.; Baranski, K.; Galczynska, D.; Daniluk, J.; Pluta, D. The correlation of vitamin D level with body mass index in women with PCOS. Ginekol. Polska 2023, 94, 883–888. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Santos, H.O.; Khani, V.; Tan, S.C.; Zhi, Y. Effects of dehydroepiandrosterone (DHEA) supplementation on the lipid profile: A systematic review and dose-response meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 1465–1475. [Google Scholar] [CrossRef] [PubMed]
- Mills, K.T.; Stefanescu, A.; He, J. The global epidemiology of hypertension. Nat. Rev. Nephrol. 2020, 16, 223–237. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cakal, S.; Çakal, B.; Karaca, O. Association of vitamin D deficiency with arterial stiffness in newly diagnosed hypertension. Blood Press. Monit. 2020, 26, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Pilz, S.; Tomaschitz, A.; Ritz, E.; Pieber, T.R. Vitamin D status and arterial hypertension: A systematic review. Nat. Rev. Cardiol. 2009, 6, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Della Nera, G.; Sabatino, L.; Gaggini, M.; Gorini, F.; Vassalle, C. Vitamin D Determinants, Status, and Antioxidant/Anti-inflammatory-Related Effects in Cardiovascular Risk and Disease: Not the Last Word in the Controversy. Antioxidants 2023, 12, 948. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Voltan, G.; Cannito, M.; Ferrarese, M.; Ceccato, F.; Camozzi, V. Vitamin D: An Overview of Gene Regulation, Ranging from Metabolism to Genomic Effects. Genes 2023, 14, 1691. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Haussler, M.R.; Jurutka, P.W.; Mizwicki, M.; Norman, A.W. Vitamin D receptor (VDR)-mediated actions of 1α,25(OH)2vitamin D3: Genomic and non-genomic mechanisms. Best Pr. Res. Clin. Endocrinol. Metab. 2011, 25, 543–559. [Google Scholar] [CrossRef] [PubMed]
- Jensen, N.S.; Wehland, M.; Wise, P.M.; Grimm, D. Latest Knowledge on the Role of Vitamin D in Hypertension. Int. J. Mol. Sci. 2023, 24, 4679. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zovi, A.; Ferrara, F.; Pasquinucci, R.; Nava, L.; Vitiello, A.; Arrigoni, R.; Ballini, A.; Cantore, S.; Palmirotta, R.; Di Domenico, M.; et al. Effects of Vitamin D on the Renin–Angiotensin System and Acute Childhood Pneumonia. Antibiotics 2022, 11, 1545. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Y.C.; Kong, J.; Wei, M.; Chen, Z.-F.; Liu, S.Q.; Cao, L.-P. 1,25-Dihydroxyvitamin D3 is a negative endocrine regulator of the renin-angiotensin system. J. Clin. Investig. 2002, 110, 229–238. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, D.-H.; Meza, C.A.; Clarke, H.; Kim, J.-S.; Hickner, R.C. Vitamin D and Endothelial Function. Nutrients 2020, 12, 575. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Calton, E.K.; Keane, K.N.; Newsholme, P.; Soares, M.J. The Impact of Vitamin D Levels on Inflammatory Status: A Systematic Review of Immune Cell Studies. PLoS ONE 2015, 10, e0141770. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Żmijewski, M.A. Nongenomic Activities of Vitamin D. Nutrients 2022, 14, 5104. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hii, C.S.; Ferrante, A. The Non-Genomic Actions of Vitamin D. Nutrients 2016, 8, 135. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khattar, V.; Wang, L.; Peng, J.-B. Calcium selective channel TRPV6: Structure, function, and implications in health and disease. Gene 2022, 817, 146192. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peng, J.-B.; Suzuki, Y.; Gyimesi, G.; Hediger, M.A. TRPV5 and TRPV6 Calcium-Selective Channels. In Calcium Entry Channels in Non-Excitable Cells; Kozak, J.A., Putney, J.W., Jr., Eds.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2017. [Google Scholar] [PubMed]
- Hernando, N.; Pastor-Arroyo, E.M.; Marks, J.; Schnitzbauer, U.; Knöpfel, T.; Bürki, M.; Bettoni, C.; Wagner, C.A. 1,25(OH)2 vitamin D3 stimulates active phosphate transport but not paracellular phosphate absorption in mouse intestine. J. Physiol. 2021, 599, 1131–1150. [Google Scholar] [CrossRef] [PubMed]
- Grillo, A.; Barbato, V.; Antonello, R.M.; Cola, M.F.; Parati, G.; Salvi, P.; Fabris, B.; Bernardi, S. Arterial Stiffness in Thyroid and Parathyroid Disease: A Review of Clinical Studies. J. Clin. Med. 2022, 11, 3146. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rahme, M.; Al-Shaar, L.; Tamim, H.; Fuleihan, G.E.-H. Blood Pressure Decreases in Overweight Elderly Individuals on Vitamin D: A Randomized Trial. J. Endocr. Soc. 2024, 8, bvae168. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sheikh, V.; Mozaianimonfared, A.; Gharakhani, M.; Poorolajal, J. Effect of vitamin D supplementation versus placebo on essential hypertension in patients with vitamin D deficiency: A double-blind randomized clinical trial. J. Clin. Hypertens. 2020, 22, 1867–1873. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, D.; Cheng, C.; Wang, Y.; Sun, H.; Yu, S.; Xue, Y.; Liu, Y.; Li, W.; Li, X. Effect of Vitamin D on Blood Pressure and Hypertension in the General Population: An Update Meta-Analysis of Cohort Studies and Randomized Controlled Trials. Prev. Chronic Dis. 2020, 17, E03. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Amer, S.A.; Abo-Elnour, D.E.; Abbas, A.; Abdelrahman, A.S.; Hamdy, H.-E.M.; Kenawy, S.; Sarhan, M.M.; Mohamed, O.H.; Elnaghy, M.Y.; Baker, M.; et al. Calcium, magnesium, and vitamin D supplementations as complementary therapy for hypertensive patients: A systematic review and meta-analysis. BMC Complement. Med. Ther. 2025, 25, 89. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grübler, M.R.; Zittermann, A.; Verheyen, N.D.; Trummer, C.; Theiler-Schwetz, V.; Keppel, M.H.; Malle, O.; Richtig, G.; Gängler, S.; Bischoff-Ferrari, H.; et al. Randomized trial of vitamin D versus placebo supplementation on markers of systemic inflammation in hypertensive patients. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 3202–3209. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Gemelga, G.; Yeghiazarians, Y. Is Vitamin D Supplementation an Effective Treatment for Hypertension? Curr. Hypertens. Rep. 2022, 24, 445–453. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Libby, P. The changing landscape of atherosclerosis. Nature 2021, 592, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Hirani, S.; Mishra, A.; Vardhan, S.; Hirani, S.; Prasad, R.; Wanjari, M.; Khanholkar, S. Exploring the Role of Vitamin D in Atherosclerosis and Its Impact on Cardiovascular Events: A Comprehensive Review. Cureus 2023, 15, e42470. [Google Scholar] [CrossRef]
- Hiemstra, T.F.; Lim, K.; Thadhani, R.; E Manson, J. Vitamin D and Atherosclerotic Cardiovascular Disease. J. Clin. Endocrinol. Metab. 2019, 104, 4033–4050. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fisher, S.A.; Rahimzadeh, M.; Brierley, C.; Gration, B.; Doree, C.; Kimber, C.E.; Cajide, A.P.; Lamikanra, A.A.; Roberts, D.J. The role of vitamin D in increasing circulating T regulatory cell numbers and modulating T regulatory cell phenotypes in patients with inflammatory disease or in healthy volunteers: A systematic review. PLoS ONE 2019, 14, e0222313. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, J.; Xiang, X.; Nie, L.; Guo, X.; Zhang, F.; Wen, C.; Xia, Y.; Mao, L. The emerging role of Th1 cells in atherosclerosis and its implications for therapy. Front. Immunol. 2023, 13, 1079668. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marino, M.; Venturi, S.; Del Bo’, C.; Møller, P.; Riso, P.; Porrini, M. Vitamin D Counteracts Lipid Accumulation, Augments Free Fatty Acid-Induced ABCA1 and CPT-1A Expression While Reducing CD36 and C/EBPβ Protein Levels in Monocyte-Derived Macrophages. Biomedicines 2022, 10, 775. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gholamzad, A.; Khakpour, N.; Kabipour, T.; Gholamzad, M. Association between serum vitamin D levels and lipid profiles: A cross-sectional analysis. Sci. Rep. 2023, 13, 21058. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Y.; Tong, C.H.; Rowland, C.M.; Radcliff, J.; Bare, L.A.; McPhaul, M.J.; Devlin, J.J. Association of changes in lipid levels with changes in vitamin D levels in a real-world setting. Sci. Rep. 2021, 11, 21536. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Serrano, N.C.; Rojas, L.Z.; Gamboa-Delgado, E.M.; Suárez, D.P.; Acosta, I.S.; Romero, S.L.; Forero, M.; Quintero-Lesmes, D.C. Efficacy of vitamin D supplementation in reducing body mass index and lipid profile in healthy young adults in Colombia: A pilot randomised controlled clinical trial. J. Nutr. Sci. 2023, 12, e29. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lu, Q.; Liang, Q.; Xi, Y. The effects of vitamin D supplementation on serum lipid profiles in people with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Front. Nutr. 2024, 11, 1419747. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Foroughinia, F.; Mirjalili, M. Association between Serum Vitamin D Concentration Status and Matrix Metalloproteinase-9 in Patients Undergoing Elective Percutaneous Coronary Intervention. IJ Pharm. Res. 2020, 19, 135–142. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pella, D.; Poruban, T.; Gonsorcik, J.; Fedacko, J.; Pella, Z.; Uchnar, K.A.S.; Hreskova, R.; Vachalcova, M.B. Assessment of vitamin D levels in correlation with coronary CT angiography results in a Slovak Population. Arch. Med. Sci. 2024, 21, 409–415. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Meena, D.; Dib, M.-J.; Huang, J.; Smith, A.; Huang, J.; Lota, A.S.; Prasad, S.K.; Gill, D.; Dehghan, A.; Tzoulaki, I. Associations of genetically predicted vitamin D status and deficiency with the risk of carotid artery plaque: A Mendelian randomization study. Sci. Rep. 2024, 14, 14743. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Manson, J.E.; Bassuk, S.S.; Buring, J.E. Principal results of the VITamin D and OmegA-3 TriaL (VITAL) and updated meta-analyses of relevant vitamin D trials. J. Steroid Biochem. Mol. Biol. 2020, 198, 105522. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Scragg, R. The Vitamin D Assessment (ViDA) study—Design and main findings. J. Steroid Biochem. Mol. Biol. 2020, 198, 105562. [Google Scholar] [CrossRef] [PubMed]
- Mirza, A.M.; Almansouri, N.E.M.; Muslim, M.F.; Basheer, T.M.; Uppalapati, S.V.; Lakra, S.M.; Fatima, H.M.; Adhnon, A.M.; Filho, I.W.M.; Mahmood, R.M.; et al. Effect of vitamin D supplementation on cardiovascular outcomes: An updated meta-analysis of RCTs. Ann. Med. Surg. 2024, 86, 6665–6672. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Francis, A.; Harhay, M.N.; Ong, A.C.M.; Tummalapalli, S.L.; Ortiz, A.; Fogo, A.B.; Fliser, D.; Roy-Chaudhury, P.; Fontana, M.; Nangaku, M.; et al. Chronic kidney disease and the global public health agenda: An international consensus. Nat. Rev. Nephrol. 2024, 20, 473–485. [Google Scholar] [CrossRef] [PubMed]
- Hill, N.R.; Fatoba, S.T.; Oke, J.L.; Hirst, J.A.; O’Callaghan, C.A.; Lasserson, D.S.; Hobbs, F.D.R. Global prevalence of chronic kidney disease—A systematic review and meta-analysis. PLoS ONE 2016, 11, e0158765. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kovesdy, C.P. Epidemiology of chronic kidney disease: An update 2022. Kidney Int. Suppl. 2021, 12, 7–11. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jankowski, J.; Floege, J.; Fliser, D.; Böhm, M.; Marx, N. Cardiovascular disease in chronic kidney disease: Pathophysiologi-cal insights and therapeutic options. Circulation 2021, 143, 1157–1172. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hu, L.; Napoletano, A.; Provenzano, M.; Garofalo, C.; Bini, C.; Comai, G.; La Manna, G. Mineral bone disorders in kidney disease patients: The ever-current topic. Int. J. Mol. Sci. 2022, 23, 12223. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gonçalves, L.E.D.; Andrade-Silva, M.; Basso, P.J.; Câmara, N.O.S. Vitamin D and chronic kidney disease: Insights on lipid metabolism of tubular epithelial cell and macrophages in tubulointerstitial fibrosis. Front. Physiol. 2023, 14, 1145233. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bikle, D.D. Vitamin D: Production, Metabolism, and Mechanism of Action. In Endotext; Feingold, K.R., Ahmed, S.F., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar] [PubMed]
- Ganimusa, I.; Chew, E.; Lu, E.M.-C. Vitamin D Deficiency, Chronic Kidney Disease and Periodontitis. Medicina 2024, 60, 420. [Google Scholar] [CrossRef]
- Khan, S.S.; Petkovich, M.; Holden, R.M.; Adams, M.A. Megalin and Vitamin D Metabolism—Implications in Non-Renal Tissues and Kidney Disease. Nutrients 2022, 14, 3690. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mace, M.L.; Olgaard, K.; Lewin, E. New Aspects of the Kidney in the Regulation of Fibroblast Growth Factor 23 (FGF23) and Mineral Homeostasis. Int. J. Mol. Sci. 2020, 21, 8810. [Google Scholar] [CrossRef]
- Adamantidi, T.; Maris, G.; Altantsidou, P.; Tsoupras, A. Anti-Inflammatory Benefits of Vitamin D and Its Analogues against Glomerulosclerosis and Kidney Diseases. Sclerosis 2024, 2, 217–265. [Google Scholar] [CrossRef]
- Kim, C.S.; Kim, S.W. Vitamin D and chronic kidney disease. Korean J. Intern. Med. 2014, 29, 416–427. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xiong, X.-R.; Huo, R.-J.; Dong, Y.-T.; Liu, D.; Bai, J.-C.; Qi, Y.-F.; Tian, X.-R. 1α, 25-dihydroxyvitamin D3 inhibits transforming growth factor β1-induced epithelial-mesenchymal transition via β-catenin pathway. Chin. Med. J. 2020, 133, 1298–1303. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kheiri, B.; Abdalla, A.; Osman, M.; Ahmed, S.; Hassan, M.; Bachuwa, G. Vitamin D deficiency and risk of cardiovascular diseases: A narrative review. Clin. Hypertens. 2018, 24, 9, Erratum in Clin. Hypertens. 2018, 24, 19. https://doi.org/10.1186/s40885-018-0105-5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pilz, S.; Iodice, S.; Zittermann, A.; Grant, W.B.; Gandini, S. Vitamin D status and mortality risk in CKD: A meta-analysis of prospective studies. Am. J. Kidney Dis. 2011, 58, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Zappulo, F.; Cappuccilli, M.; Cingolani, A.; Scrivo, A.; Chiocchini, A.L.C.; Di Nunzio, M.; Donadei, C.; Napoli, M.; Tondolo, F.; Cianciolo, G.; et al. Vitamin D and the kidney: Two players, one console. Int. J. Mol. Sci. 2022, 23, 9135. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brandenburg, V.; Ketteler, M. Vitamin D and secondary hyperparathyroidism in chronic kidney disease: A critical appraisal of the past, present, and the future. Nutrients 2022, 14, 3009. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jean, G.; Souberbielle, J.C.; Chazot, C. Vitamin D in chronic kidney disease and dialysis patients. Nutrients 2017, 9, 328. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Çankaya, E.; Bilen, Y.; Keleş, M.; Uyanık, A.; Akbaş, M.; Güngör, A.; Arslan, Ş.; Aydınlı, B. Comparison of serum vitamin D levels among patients with chronic kidney disease, patients in dialysis, and renal transplant patients. Transplant. Proc. 2015, 47, 1405–1407. [Google Scholar] [CrossRef] [PubMed]
- Nigwekar, S.U.; Bhan, I.; Thadhani, R. Ergocalciferol and cholecalciferol in CKD. Am. J. Kidney Dis. 2012, 60, 139–156. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, F.; Damghani, S.; Lessan-Pezeshki, M.; Razeghi, E.; Maziar, S.; Mahdavi-Mazdeh, M. Association of low vitamin D levels with metabolic syndrome in hemodialysis patients. Hemodial. Int. 2016, 20, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Christodoulou, M.; Aspray, T.J.; Schoenmakers, I. Vitamin D Supplementation for Patients with Chronic Kidney Disease: A Systematic Review and Meta-analyses of Trials Investigating the Response to Supplementation and an Overview of Guidelines. Calcif. Tissue Int. 2021, 109, 157–178. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.; Coppola, B.; Dimko, M.; Galani, A.; Innico, G.; Frassetti, N.; Mariotti, A. Vitamin D deficiency, insulin resistance, and ventricular hypertrophy in the early stages of chronic kidney disease. Ren. Fail. 2013, 36, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Stevens, P.E.; Ahmed, S.B.; Carrero, J.J.; Foster, B.; Francis, A.; Hall, R.K.; Herrington, W.G.; Hill, G.; Inker, L.A.; Kazancıoğlu, R.; et al. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, S117–S314. [Google Scholar] [CrossRef] [PubMed]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group. KDIGO 2017 Clinical Practice Guideline Update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease–mineral and bone disorder (CKD-MBD). Kidney Int. Suppl. 2017, 7, 1–59, Erratum in Kidney Int. Suppl. 2017, 7, e1. https://doi.org/10.1016/j.kisu.2017.10.001. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arrebola, M.M.; Filella, X.; Albaladejo-Oton, M.D.; Giménez, N.; Serrano-Olmedo, M.G.; García-Martínez, R.J.; Bonet-Estruch, E.; Santamaría-González, M.; Pérez-Torrella, D.; Morell-García, D.; et al. Vitamin D Controversies in the Laboratory Medicine: A Review of Clinical Guidelines and Recommendations. Electron. J. IFCC (eJIFCC) 2024, 35, 223–243. [Google Scholar] [PubMed] [PubMed Central]
- Yeung, W.-C.G.; Toussaint, N.D.; Badve, S.V. Vitamin D therapy in chronic kidney disease: A critical appraisal of clinical trial evidence. Clin. Kidney J. 2024, 17, sfae227. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Patel, R.B.; ter Maaten, J.M.; Ferreira, J.P.; McCausland, F.R.; Shah, S.J.; Rossignol, P.; Solomon, S.D.; Vaduganathan, M.; Packer, M.; Thompson, A.; et al. Challenges of Cardio-Kidney Composite Outcomes in Large-Scale Clinical Trials. Circulation 2021, 143, 949–958. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sassi, F.; Tamone, C.; D’Amelio, P. Vitamin D: Nutrient, Hormone, and Immunomodulator. Nutrients 2018, 10, 1656. [Google Scholar] [CrossRef]
- Heath, A.K.; Kim, I.Y.; Hodge, A.M.; English, D.R.; Muller, D.C. Vitamin D Status and Mortality: A Systematic Review of Observational Studies. Int. J. Environ. Res. Public Health 2019, 16, 383. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rebelos, E.; Tentolouris, N.; Jude, E. The Role of Vitamin D in Health and Disease: A Narrative Review on the Mechanisms Linking Vitamin D with Disease and the Effects of Supplementation. Drugs 2023, 83, 665–685. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Demay, M.B.; Pittas, A.G.; Bikle, D.D.; Diab, D.L.; E Kiely, M.; Lazaretti-Castro, M.; Lips, P.; Mitchell, D.M.; Murad, M.H.; Powers, S.; et al. Vitamin D for the Prevention of Disease: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2024, 109, 1907–1947. [Google Scholar] [CrossRef] [PubMed]
- Balachandar, R.; Pullakhandam, R.; Kulkarni, B.; Sachdev, H.S. Relative Efficacy of Vitamin D2 and Vitamin D3 in Improving Vitamin D Status: Systematic Review and Meta-Analysis. Nutrients 2021, 13, 3328. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vieth, R. Vitamin D supplementation: Cholecalciferol, calcifediol, and calcitriol. Eur. J. Clin. Nutr. 2020, 74, 1493–1497. [Google Scholar] [CrossRef] [PubMed]
- Bouillon, R.; Manousaki, D.; Rosen, C.; Trajanoska, K.; Rivadeneira, F.; Richards, J.B. The health effects of vitamin D supplementation: Evidence from human studies. Nat. Rev. Endocrinol. 2022, 18, 96–110. [Google Scholar] [CrossRef] [PubMed]
- Giustina, A.; Adler, R.A.; Binkley, N.; Bollerslev, J.; Bouillon, R.; Dawson-Hughes, B.; Ebeling, P.R.; Feldman, D.; Formenti, A.M.; Lazaretti-Castro, M.; et al. Consensus statement from 2nd International Conference on Controversies in Vitamin D. Rev. Endocr. Metab. Disord. 2020, 21, 89–116. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wortsman, J.; Matsuoka, L.Y.; Chen, T.C.; Lu, Z.; Holick, M.F. Decreased bioavailability of vitamin D in obesity. Am. J. Clin. Nutr. 2000, 72, 690–693, Erratum in Am. J. Clin. Nutr. 2003, 77, 1342. PMID: 10966885. [Google Scholar] [CrossRef] [PubMed]
- Alnafisah, R.Y.; Alragea, A.S.; Alzamil, M.K.; Alqahtani, A.S. The Impact and Efficacy of Vitamin D Fortification. Nutrients 2024, 16, 4322. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cashman, K.D.; Dowling, K.G.; Škrabáková, Z.; Gonzalez-Gross, M.; Valtueña, J.; De Henauw, S.; Moreno, L.; Damsgaard, C.T.; Michaelsen, K.F.; Mølgaard, C.; et al. Vitamin D deficiency in Europe: Pandemic? Am. J. Clin. Nutr. 2016, 103, 1033–1044. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Herrick, K.A.; Storandt, R.; Afful, J.; Pfeiffer, C.M.; Schleicher, R.L.; Gahche, J.J.; Potischman, N. Vitamin D status in the United States, 2011–2014. Am. J. Clin. Nutr. 2019, 110, 150–157. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Y.; Fang, F.; Tang, J.; Jia, L.; Feng, Y.; Xu, P.; Faramand, A. Association between vitamin D supplementation and mortality: Systematic review and meta-analysis. BMJ 2019, 366, l4673, Erratum in BMJ 2020, 22, m2329. https://doi.org/10.1136/bmj.m2329. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weaver, C.M.; Alexander, D.D.; Boushey, C.J.; Dawson-Hughes, B.; Lappe, J.M.; LeBoff, M.S.; Liu, S.; Looker, A.C.; Wallace, T.C.; Wang, D.D. Calcium plus vitamin D supplementation and risk of fractures: An updated meta-analysis from the National Osteoporosis Foundation. Osteoporos. Int. 2016, 27, 367–376, Erratum in Osteoporos. Int. 2016, 27, 2643-2646. https://doi.org/10.1007/s00198-016-3699-z. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rizzoli, R. Vitamin D supplementation: Upper limit for safety revisited? Aging Clin. Exp. Res. 2021, 33, 19–24. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wanigatunga, A.A.; ScM, A.L.S.; Blackford, A.L.; Cai, Y.; Mitchell, C.M.; Roth, D.L.; Miller, E.R., III; Szanton, S.L.; Juraschek, S.P.; Michos, E.D.; et al. The effects of vitamin D supplementation on types of falls. J. Am. Geriatr. Soc. 2021, 69, 2851–2864. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Janoušek, J.; Pilařová, V.; Macáková, K.; Nomura, A.; Veiga-Matos, J.; da Silva, D.D.; Remião, F.; Saso, L.; Malá-Ládová, K.; Malý, J.; et al. Vitamin D: Sources, physiological role, biokinetics, deficiency, therapeutic use, toxicity, and overview of analytical methods for detection of vitamin D and its metabolites. Crit. Rev. Clin. Lab. Sci. 2022, 59, 517–554. [Google Scholar] [CrossRef]
- Batman, A.; Saygili, E.S.; Yildiz, D.; Sen, E.C.; Erol, R.S.; Canat, M.M.; Ozturk, F.Y.; Altuntas, Y. Risk of hypercalcemia in patients with very high serum 25-OH vitamin D levels. Int. J. Clin. Pract. 2021, 75, e14181. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lim, K.; Thadhani, R. Vitamin D Toxicity. Braz. J. Nephrol. 2020, 42, 238–244. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dominguez, L.J.; Farruggia, M.; Veronese, N.; Barbagallo, M. Vitamin D Sources, Metabolism, and Deficiency: Available Compounds and Guidelines for Its Treatment. Metabolites 2021, 11, 255. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ekwaru, J.P.; Zwicker, J.D.; Holick, M.F.; Giovannucci, E.; Veugelers, P.J. The importance of body weight for the dose response relationship of oral vitamin D supplementation and serum 25-hydroxyvitamin D in healthy volunteers. PLoS ONE 2014, 9, e111265. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Scragg, R. Limitations of vitamin D supplementation trials: Why observational studies will continue to help determine the role of vitamin D in health. J. Steroid Biochem. Mol. Biol. 2018, 177, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Grant, W.B.; Boucher, B.J.; Al Anouti, F.; Pilz, S. Comparing the Evidence from Observational Studies and Randomized Controlled Trials for Nonskeletal Health Effects of Vitamin D. Nutrients 2022, 14, 3811. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abouzid, M.; Kruszyna, Ł.; Kaczmarek, D.; Kagan, L.; Mikulska-Sauermann, A.A.; Filipowicz, D.; Resztak, M.; Główka, F.K.; Karaźniewicz-Łada, M. Genetic Polymorphism of CYP2R1, CYP27A1, CYP27B1, and Vitamin D Metabolites Plasma Levels in Patients with Cardiovascular Disease: A Pilot Study. Biomolecules 2025, 15, 699. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Heaney, R.P. Vitamin D in health and disease. Clin. J. Am. Soc. Nephrol. 2008, 3, 1535–1541. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carlberg, C. Vitamin D Signaling in the Context of Innate Immunity: Focus on Human Monocytes. Front. Immunol. 2019, 10, 2211. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vázquez-Lorente, H.; Herrera-Quintana, L.; Jiménez-Sánchez, L.; Fernández-Perea, B.; Plaza-Diaz, J. Antioxidant Functions of Vitamin D and CYP11A1-Derived Vitamin D, Tachysterol, and Lumisterol Metabolites: Mechanisms, Clinical Implications, and Future Directions. Antioxidants 2024, 13, 996. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aggeletopoulou, I.; Kalafateli, M.; Geramoutsos, G.; Triantos, C. Recent Advances in the Use of Vitamin D Organic Nanocarriers for Drug Delivery. Biomolecules 2024, 14, 1090. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Polymorphism (SNP) | Mechanism/Role | Clinical Relevance |
---|---|---|
rs7975232 (ApaI) | May alter VDR transcription and mRNA stability [71,72]. | Associated with increased GDM risk in several populations; meta-analyses support link |
rs2228570 (FokI) | Alters VDR protein length and activity; impacts receptor signaling [72,73,74]. | Linked to higher susceptibility to GDM; associated with insulin resistance and β-cell dysfunction |
rs1544410 (BsmI) | May affect mRNA stability and receptor expression [71,72,74]. | Related to insulin secretion defects; linked to GDM in Saudi population |
rs731236 (TaqI) | Silent polymorphism; may influence VDR expression [71,72,74]. | Associated with occurrence of GDM in Saudi population (with ApaI, BsmI, FokI) |
rs10783219 | SNP variant shown to affect VDR function [71,72]. | Significantly increased risk of GDM in genetic studies |
rs739837 | May influence gene regulation, but no clear mechanistic link found [71,72]. | Not associated with GDM development |
Study/Year | Population & Baseline 25(OH)D | Intervention & Duration | Main Findings |
---|---|---|---|
Rahme et al. [116] | ≥65 y, overweight, 25(OH)D 10–30 ng/mL | 600 IU or 3750 IU/day + Ca 1000 mg/day, 12 mo | ↓ SBP −3.5 mmHg, ↓ DBP −2.8 mmHg; greater benefit in obese/hypertensive |
Sheikh et al. [117] | 26–84 y, essential HTN, 25(OH)D < 20 ng/mL (deficiency) or 20–30 ng/mL (insufficiency) | 50,000 IU/week × 8 wk (deficient) or 1000 IU/week × 8 wk (insufficient) | Greater ↓ SBP vs. placebo at 1 and 2 mo; DBP NS |
Grübler et al. [120] | HTN, 25(OH)D < 30 ng/mL | 2800 IU/day × 8 wk | No overall BP effect; inverse association between achieved 25(OH)D and SBP |
Amer et al. (meta-analysis) [119] | Mild–moderate HTN | 8 RCTs, doses 1000–3000 IU/day or 50,000–200,000 IU bolus, duration 1 wk–18 mo | ↓ SBP −2.83 mmHg, ↓ DBP −1.64 mmHg; greatest effect in deficiency/high BP |
Zhang et al. (meta-analysis) [118] | Healthy adults ≥ 18 y | 27 RCTs | No BP effect; cohort data show higher HTN risk below 75 nmol/L 25(OH)D |
Limitation | Mechanism | Clinical/Research Implications |
---|---|---|
Tissue-specific VDR expression | Vitamin D activity depends on VDR distribution, which varies between tissues | Uneven effects across organs; limited responses in tissues with low VDR density |
CYP24A1-mediated degradation | Rapid catabolism of active vitamin D metabolites by CYP24A1 reduces intracellular availability | May blunt therapeutic efficacy; rationale for developing analogues resistant to CYP24A1 |
Sequestration in adipose tissue | Vitamin D is fat-soluble and can be stored in adipose tissue, lowering circulating 25(OH)D bioavailability | Reduced effectiveness in obese individuals; higher doses may be needed |
Genetic variability | Polymorphisms in CYP2R1, CYP27B1, and VDR contribute to variable metabolism | High vs. low responders; complicates universal dosing and supports personalized supplementation |
Sunlight and dietary dependence | Endogenous synthesis and food-derived vitamin D depend on lifestyle and geography | Seasonal/regional differences in deficiency prevalence; supplementation or fortification often required |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Młynarska, E.; Lisińska, W.; Hossa, K.; Krupińska, N.; Jakubowska, P.; Rysz, J.; Franczyk, B. Vitamin D and Chronic Disorders: A Review of Metabolic and Cardiovascular Diseases. Pharmaceuticals 2025, 18, 1467. https://doi.org/10.3390/ph18101467
Młynarska E, Lisińska W, Hossa K, Krupińska N, Jakubowska P, Rysz J, Franczyk B. Vitamin D and Chronic Disorders: A Review of Metabolic and Cardiovascular Diseases. Pharmaceuticals. 2025; 18(10):1467. https://doi.org/10.3390/ph18101467
Chicago/Turabian StyleMłynarska, Ewelina, Wiktoria Lisińska, Katarzyna Hossa, Natalia Krupińska, Paulina Jakubowska, Jacek Rysz, and Beata Franczyk. 2025. "Vitamin D and Chronic Disorders: A Review of Metabolic and Cardiovascular Diseases" Pharmaceuticals 18, no. 10: 1467. https://doi.org/10.3390/ph18101467
APA StyleMłynarska, E., Lisińska, W., Hossa, K., Krupińska, N., Jakubowska, P., Rysz, J., & Franczyk, B. (2025). Vitamin D and Chronic Disorders: A Review of Metabolic and Cardiovascular Diseases. Pharmaceuticals, 18(10), 1467. https://doi.org/10.3390/ph18101467