Comparison of Quercetin and Isoquercitrin’s Anti-Heart Failure Activity via MAPK Inflammatory Pathway and Caspase Apoptosis Pathway
Abstract
1. Introduction
2. Results
2.1. Evaluation of IQ and Que on Ang II-Treated H9c2 Cell Viability, ROS Levels, and Concentration Screening by Cell Counting Kit-8 (CCK-8) and 20,70-Dichlorodihydrofluorescein Diacetate (DCFH-DA) Assays
2.2. Staining Analysis of IQ and Que on Apoptosis in Ang II Treated H9c2 Cells
2.3. IQ and Que Alleviate Ang II Induced H9c2 Cell Damage by Regulating Caspase Apoptotic Pathway and MAPK Inflammatory Pathway
2.4. Quantitative Analysis of Serum Inflammatory Cytokines by Enzyme-Linked Immunosorbent Assay (ELISA) and Body Weight Changes in Mice
2.5. Echocardiographic and Electrocardiographic Characterization of Ang II Induced Cardiac Dysfunction in Mice
2.6. Cardioprotective Effects of IQ and Que via Apoptosis and Inflammation Pathways
2.7. Molecular Docking Results of IQ with MAPK Pathway and Caspase Pathway
2.8. Molecular Docking Results of Que with MAPK Pathway and Caspase Pathway
3. Discussion
4. Materials and Methods
4.1. Reagent
4.2. Cell Culture
4.3. Cell Viability Assay
4.4. ROS Detection Experiment
4.5. Hoechst 33342 Staining
4.6. Propidium Iodide Staining
4.7. Inflammatory Cytokine Levels in Mouse Serum Were Assessed via ELISA
4.7.1. Collection of Blood Samples from C57BL/6J Mice
4.7.2. Determination of Free Fatty Acid (FFA) Content
- Cstandard: The standard has a concentration of 1 mmol/L (equivalent to 1 μmol/mL).
- V2: The volume of standard added is 0.004 mL.
- W: Mass (expressed in grams, g).
- D: The dilution factor is 1, indicating no dilution of the samples.
- V1: The volume of sample added is 0.004 mL.
- V: The volume of extraction solution used is 1 mL.
4.7.3. Determination of Concentrations of Murine Atrial Natriuretic Peptide (ANP), Brain Natriuretic Peptide (BNP), Lactate Dehydrogenase (LDH), and Creatine Kinase MB Isoenzyme (CK-MB)
4.8. Ang II Induced Myocardial Injury Pattern
4.9. Transthoracic Echocardiography
4.10. ECG Detection
4.11. Western Blotting (WB)
4.12. Molecular Docking
4.13. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAPH | 2,2′-azobis[2-methylpropionamidine] dihydrochloride |
Ang II | Angiotensin II |
ANP | Atrial Natriuretic Peptide |
Bax | Bcl-2-Associated X |
BCA | Bicinchoninic acid |
BNP | Brain Natriuretic Peptide |
Caspase-3 | Cysteine-dependent Aspartate-specific |
CCK-8 | Cell Counting Kit-8 |
CK-MB | Creatine Kinase-MB |
CytoC | Cytochrome C |
DCFH-DA | 2,7-Dichlorodihydrofluorescein diacetate |
DMSO | Dimethyl sulfoxide |
ECG | Electrocardiographic |
EF (%) | Ejection Fraction |
ELISA | Enzyme-linked immunosorbent assay |
ERK | Extracellular Signal-Regulated Kinase |
FFA | Free Fatty Acids |
FS (%) | Fractional Shortening |
GADPH | Glyceraldehyde-3-Phosphate Dehydrogenase |
IQ | Isoquercitrin |
JNK | c-Jun N-terminal Kinase |
LDH | Lactate Dehydrogenase |
LVEDV | Left Ventricular End-Diastolic Volume |
LVIDs | Left Ventricular Internal Dimension at end-Systole |
MAPK | Mitogen-activated protein kinase |
P38 | P38 Mitogen-Activated Protein Kinase |
PBS | Phosphate-buffer saline |
p-ERK | Phospho-Extracellular Signal-Regulated |
PI | Propidium iodide |
p-JNK | Phospho-c-Jun N-terminal Kinase |
p-P38 | Phospho-p38 Mitogen-Activated Protein Kinase |
PPI | Protein–Protein Interaction |
Que | Quercetin |
ROS | Reactive Oxygen Species |
STEMI | ST-segment elevation myocardial infarction |
TBST | Tris buffered saline Tween |
WB | Western Blot |
References
- Chang, C.C.; Cheng, H.C.; Chou, W.C.; Huang, Y.T.; Hsieh, P.L.; Chu, P.M.; Lee, S.D. Sesamin suppresses angiotensin-II-enhanced oxidative stress and hypertrophic markers in H9c2 cells. Environ. Toxicol. 2023, 38, 2165–2172. [Google Scholar] [CrossRef]
- Ai, X.; Yan, J.; Bare, D.J. Stress Kinase Signaling in Cardiac Myocytes. In Cardiovascular Signaling in Health and Disease; Springer: Berlin/Heidelberg, Germany, 2022; pp. 67–110. [Google Scholar]
- Wu, W.; Zhang, W.; Choi, M.; Zhao, J.; Gao, P.; Xue, M.; Singer, H.A.; Jourd’heuil, D.; Long, X. Vascular smooth muscle-MAPK14 is required for neointimal hyperplasia by suppressing VSMC differentiation and inducing proliferation and inflammation. Redox Biol. 2019, 22, 101137. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.; Wang, H.; Xu, X.; Yang, Z.; Zhang, T. Angiotensin II induces cognitive decline and anxiety-like behavior via disturbing pattern of theta-gamma oscillations. Brain Res. Bull. 2021, 174, 84–91. [Google Scholar] [CrossRef]
- Chang, X.; Zhang, T.; Wang, J.; Liu, Y.; Yan, P.; Meng, Q.; Yin, Y.; Wang, S.; Chen, Y.-D. SIRT5-Related Desuccinylation Modification Contributes to Quercetin-Induced Protection against Heart Failure and High-Glucose-Prompted Cardiomyocytes Injured through Regulation of Mitochondrial Quality Surveillance. Oxidative Med. Cell. Longev. 2021, 2021, 5876841. [Google Scholar] [CrossRef]
- Cruz-Zúñiga, J.M.; Soto-Valdez, H.; Peralta, E.; Mendoza-Wilson, A.M.; Robles-Burgueño, M.R.; Auras, R.; Gámez-Meza, N. Development of an antioxidant biomaterial by promoting the deglycosylation of rutin to isoquercetin and quercetin. Food Chem. 2016, 204, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-S.; Na, C.S.; Shin, K.-C. Enhanced Antioxidant and Anti-Inflammatory Activities of Diospyros lotus Leaf Extract via Enzymatic Conversion of Rutin to Isoquercitrin. Antioxidants 2025, 14, 950. [Google Scholar] [CrossRef]
- Zymone, K.; Benetis, R.; Trumbeckas, D.; Baseviciene, I.; Trumbeckaite, S. Different Effects of Quercetin Glycosides and Quercetin on Kidney Mitochondrial Function—Uncoupling, Cytochrome C Reducing and Antioxidant Activity. Molecules 2022, 27, 6377. [Google Scholar] [CrossRef]
- Crespy, V.; Morand, C.; Besson, C.; Manach, C.; Démigné, C.; Rémésy, C. Comparison of the intestinal absorption of quercetin, phloretin and their glucosides in rats. Nutr. Metab. 2001, 131, 2109–2114. [Google Scholar] [CrossRef]
- Beken, B.; Serttas, R.; Yazicioglu, M.; Turkekul, K.; Erdogan, S. Quercetin Improves Inflammation, Oxidative Stress, and Impaired Wound Healing in Atopic Dermatitis Model of Human Keratinocytes. Pediatr. Allergy Immunol. Pulmonol. 2020, 33, 69–79. [Google Scholar] [CrossRef]
- Sumi, M.; Tateishi, N.; Shibata, H.; Ohki, T.; Sata, M. Quercetin glucosides promote ischemia-induced angiogenesis, but do not promote tumor growth. Life Sci. 2013, 93, 814–819. [Google Scholar] [CrossRef] [PubMed]
- Valentová, K.; Vrba, J.; Bancířová, M.; Ulrichová, J.; Křen, V. Isoquercitrin: Pharmacology, toxicology, and metabolism. Food Chem. Toxicol. 2014, 68, 267–282. [Google Scholar] [CrossRef]
- Pudzianowska, M.; Gajewski, M.; Przybył, J.L.; Buraczyńska, A.; Gaczkowska, O.; Matuszczak, M.; Dziechciarska, M. Influence of Storage Conditions on Flavonoids Content and Antioxidant Activity of Selected Shallot (Allium Cepa Var. Ascalonicum Backer) Hybrid Cultivars. J. Fruit Ornam. Plant Res. 2012, 77, 101–111. [Google Scholar] [CrossRef]
- Li, X.; Jiang, Q.; Wang, T.; Liu, J.; Chen, D. Comparison of the Antioxidant Effects of Quercitrin and Isoquercitrin: Understanding the Role of the 6″-OH Group. Molecules 2016, 21, 1246. [Google Scholar] [CrossRef]
- Li, L.; Zhang, X.-H.; Liu, G.-R.; Liu, C.; Dong, Y.-M. Isoquercitrin suppresses the expression of histamine and pro-inflammatory cytokines by inhibiting the activation of MAP Kinases and NF-κB in human KU812 cells. Chin. J. Nat. Med. 2016, 14, 407–412. [Google Scholar] [CrossRef]
- Kim, G.T.; Lee, S.H.; Kim, J.I.; Kim, Y.M. Quercetin regulates the sestrin 2-AMPK-p38 MAPK signaling pathway and induces apoptosis by increasing the generation of intracellular ROS in a p53-independent manner. Int. J. Mol. Med. 2014, 33, 863–869. [Google Scholar] [CrossRef]
- Morand, C.; Manach, C.; Crespy, V.; Remesy, C. Quercetin 3-O-β-Glucoside Is Better Absorbed than Other Quercetin Forms and Is Not Present in Rat Plasma. Free Radic. Res. 2000, 33, 667–676. [Google Scholar] [CrossRef]
- Han, J.; Ma, J.; He, R.; Yang, F.; Meng, J.; Liu, J.; Shi, F.; Duan, J.; Chen, L.; Zhang, S. Efficient directional biosynthesis of isoquercitrin from quercetin by Bacillus subtilis CD-2 and its anti-inflammatory activity. Nat. Prod. Res. 2024, 13, 1–5. [Google Scholar] [CrossRef]
- Makino, T.; Kanemaru, M.; Okuyama, S.; Shimizu, R.; Tanaka, H.; Mizukami, H. Anti-allergic effects of enzymatically modified isoquercitrin (α-oligoglucosyl quercetin 3-O-glucoside), quercetin 3-O-glucoside, α-oligoglucosyl rutin, and quercetin, when administered orally to mice. J. Nat. Med. 2013, 67, 881–886. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ma, Y.; Yao, Y.; Ru, G.; Lan, C.; Li, L.; Huang, T. Protective effect of isoquercitrin on UVB-induced injury in HaCaT cells and mice skin through anti-inflammatory, antioxidant, and regulation of MAPK and JAK2-STAT3 pathways. Photochem. Photobiol. 2024, 100, 1507–1518. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Zhang, M.; Yang, G.; Liu, W.; Yu, H.; Yan, S.; Ren, T.; Zhang, L.; Wang, M.; Sun, H. Portulaca oleracea L. Extract and Its Alkaloid Oleracein E Alleviates Cardiac Remodeling and Heart Failure in Mice by Targeting STAT2 Through the MAPK Signaling Inflammatory Pathway. Phytother. Res. 2025, 39, 2790–2807. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhou, D.; Yang, D.; Fu, Y.; Tao, X.; Hu, X.; Dai, Y.; Yue, H. Isoquercitrin Attenuates Osteogenic Injury in MC3T3 Osteoblastic Cells and the Zebrafish Model via the Keap1-Nrf2-ARE Pathway. Molecules 2022, 27, 3459. [Google Scholar] [CrossRef]
- Liu, N.; Zhen, Z.; Xiong, X.; Xue, Y. Aerobic exercise protects MI heart through miR-133a-3p downregulation of connective tissue growth factor. PLoS ONE 2024, 19, e0296430. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Zhang, Q.; Liu, J.; Li, R.; Wang, D.; Peng, W.; Wu, C. Suppression of apoptosis in vascular endothelial cell, the promising way for natural medicines to treat atherosclerosis. Pharmacol. Res. 2021, 168, 105599. [Google Scholar] [CrossRef] [PubMed]
- Mbikay, M.; Chrétien, M. Isoquercetin as an Anti-COVID-19 Medication: A Potential to Realize. Front. Pharmacol. 2022, 13, 830205. [Google Scholar] [CrossRef]
- Tang, E.; Hu, T.; Jiang, Z.; Shen, X.; Lin, H.; Xian, H.; Wu, X. Isoquercitrin alleviates lipopolysaccharide-induced intestinal mucosal barrier damage in mice by regulating TLR4/MyD88/NF-κB signaling pathway and intestinal flora. Food Funct. 2024, 15, 295–309. [Google Scholar] [CrossRef]
- Chi, J.; Zhu, Y.; Fu, Y.; Liu, Y.; Zhang, X.; Han, L.; Yin, X.; Zhao, D. Cyclosporin A induces apoptosis in H9c2 cardiomyoblast cells through calcium-sensing receptor-mediated activation of the ERK MAPK and p38 MAPK pathways. Mol. Cell. Biochem. 2012, 367, 227–236. [Google Scholar] [CrossRef]
- Wang, M.; Luo, W.; Yu, T.; Liang, S.; Zou, C.; Sun, J.; Li, G.; Liang, G. Diacerein alleviates Ang II-induced cardiac inflammation and remodeling by inhibiting the MAPKs/c-Myc pathway. Phytomedicine 2022, 106, 154387. [Google Scholar] [CrossRef]
- Adluri, R.S.; Thirunavukkarasu, M.; Zhan, L.; Dunna, N.R.; Akita, Y.; Selvaraju, V.; Otani, H.; Sanchez, J.A.; Ho, Y.-S.; Maulik, N. Glutaredoxin-1 Overexpression Enhances Neovascularization and Diminishes Ventricular Remodeling in Chronic Myocardial Infarction. PLoS ONE 2012, 7, e34790. [Google Scholar] [CrossRef]
- Wang, C.-P.; Shi, Y.-W.; Tang, M.; Zhang, X.-C.; Gu, Y.; Liang, X.-M.; Wang, Z.-W.; Ding, F. Isoquercetin Ameliorates Cerebral Impairment in Focal Ischemia Through Anti-Oxidative, Anti-Inflammatory, and Anti-Apoptotic Effects in Primary Culture of Rat Hippocampal Neurons and Hippocampal CA1 Region of Rats. Mol. Neurobiol. 2016, 54, 2126–2142. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ma, J.; Chen, C.; Lin, B.; Xie, S.; Yang, W.; Qian, J.; Zhang, Y. Isoquercitrin alleviates pirarubicin-induced cardiotoxicity in vivo and in vitro by inhibiting apoptosis through Phlpp1/AKT/Bcl-2 signaling pathway. Front. Pharmacol. 2024, 15, 1315001. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, F.; Zhang, Y.; Kang, Y.; Wang, H.; Si, M.; Su, L.; Xin, X.; Xue, F.; Hao, F.; et al. Celecoxib prevents pressure overload-induced cardiac hypertrophy and dysfunction by inhibiting inflammation, apoptosis and oxidative stress. J. Cell. Mol. Med. 2015, 20, 116–127. [Google Scholar] [CrossRef]
- Weng, C.-J.; Chen, M.-J.; Yeh, C.-T.; Yen, G.-C. Hepatoprotection of quercetin against oxidative stress by induction of metallothionein expression through activating MAPK and PI3K pathways and enhancing Nrf2 DNA-binding activity. New Biotechnol. 2011, 28, 767–777. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Zhang, J.D.; Wang, B.; Lv, Y.J.; Jiang, H.; Liu, G.L.; Qiao, Y.; Ren, M.; Guo, X.F. Quercetin Inhibits Left Ventricular Hypertrophy in Spontaneously Hypertensive Rats and Inhibits Angiotensin II-Induced H9C2 Cells Hypertrophy by Enhancing PPAR-γ Expression and Suppressing AP-1 Activity. PLoS ONE 2013, 8, e72548. [Google Scholar] [CrossRef]
- Xiao, J. Dietary Flavonoid Aglycones and Their Glycosides: Which Show Better Biological Significance? Crit. Rev. Food Sci. Nutr. 2015, 57, 1874–1905. [Google Scholar] [CrossRef]
- Xie, L.; Deng, Z.; Zhang, J.; Dong, H.; Wang, W.; Xing, B.; Liu, X. Comparison of Flavonoid O-Glycoside, C-Glycoside and Their Aglycones on Antioxidant Capacity and Metabolism during In Vitro Digestion and In Vivo. Foods 2022, 11, 882. [Google Scholar] [CrossRef]
- Vijayan, R.; Baby, B.; Antony, P.; Al Halabi, W.; Al Homedi, Z. Structural insights into the polypharmacological activity of quercetin on serine/threonine kinases. Drug Des. Dev. Ther. 2016, 10, 3109–3123. [Google Scholar] [CrossRef] [PubMed]
- Lai, Q.; Liu, F.-M.; Rao, W.-L.; Yuan, G.-Y.; Fan, Z.-Y.; Zhang, L.; Fu, F.; Kou, J.-P.; Yu, B.-Y.; Li, F. Aminoacylase-1 plays a key role in myocardial fibrosis and the therapeutic effects of 20(S)-ginsenoside Rg3 in mouse heart failure. Acta Pharmacol. Sin. 2021, 43, 2003–2015. [Google Scholar] [CrossRef]
- Zheng, J.; Zhao, S.; Yang, Q.; Wei, Y.; Li, J.; Guo, T. Sympathetic Activation Promotes Cardiomyocyte Apoptosis in a Rabbit Susceptibility Model of Hyperthyroidism-Induced Atrial Fibrillation via the p38 MAPK Signaling Pathway. Crit. Rev. Eukaryot. Gene Expr. 2023, 33, 17–27. [Google Scholar] [CrossRef]
- Sharma, V.; Sharma, A.; Saran, V.; Bernatchez, P.N.; Allard, M.F.; McNeill, J.H. β-receptor antagonist treatment prevents activation of cell death signaling in the diabetic heart independent of its metabolic actions. Eur. J. Pharmacol. 2011, 657, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Mao, W.; Iwai, C.; Fukuoka, S.; Vulapalli, R.; Huang, H.; Wang, T.; Sharma, V.K.; Sheu, S.-S.; Fu, M.; et al. Adoptive passive transfer of rabbit β1-adrenoceptor peptide immune cardiomyopathy into the Rag2−/− mouse: Participation of the ER stress. J. Mol. Cell. Cardiol. 2008, 44, 304–314. [Google Scholar] [CrossRef]
- Wu, T.; Liu, Y.; Ai, X.; Wang, S.; Hou, A.; Zheng, F.; Yue, H.; Dai, Y. Fucoidan JHCF4s from Hizikia fusiformis against ethanol-induced damage in vitro and in vivo. Food Sci. Biotechnol. 2025, 34, 2295–2306. [Google Scholar] [CrossRef] [PubMed]
- Chuang, C.-H.; Lin, Y.-C.; Yang, J.; Chan, S.-T.; Yeh, S.-L. Quercetin supplementation attenuates cisplatin induced myelosuppression in mice through regulation of hematopoietic growth factors and hematopoietic inhibitory factors. J. Nutr. Biochem. 2022, 110, 109149. [Google Scholar] [CrossRef] [PubMed]
- Gholami, M.; Khayat, Z.K.; Anbari, K.; Obidavi, Z.; Varzi, A.; Boroujeni, M.B.; Alipour, M.; Niapoor, A.; Gharravi, A.M. Quercetin ameliorates peripheral nerve ischemia–reperfusion injury through the NF-κB pathway. Anat. Sci. Int. 2016, 92, 330–337. [Google Scholar] [CrossRef]
- Bai, X.; Wang, Y.; Shi, S.; Sun, L.; Zhao, J.; Liu, B. Electrocardiogram evolution of acute anterior ST-segment elevation myocardial infarction following pericarditis. Ann. Noninvasive Electrocardiol. 2021, 27, e12906. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, A.; Chen, X.; Bai, Y.; Dai, Y.; Yue, H. Comparison of Quercetin and Isoquercitrin’s Anti-Heart Failure Activity via MAPK Inflammatory Pathway and Caspase Apoptosis Pathway. Pharmaceuticals 2025, 18, 1447. https://doi.org/10.3390/ph18101447
Guo A, Chen X, Bai Y, Dai Y, Yue H. Comparison of Quercetin and Isoquercitrin’s Anti-Heart Failure Activity via MAPK Inflammatory Pathway and Caspase Apoptosis Pathway. Pharmaceuticals. 2025; 18(10):1447. https://doi.org/10.3390/ph18101447
Chicago/Turabian StyleGuo, Ao, Xiangqian Chen, Yuxin Bai, Yulin Dai, and Hao Yue. 2025. "Comparison of Quercetin and Isoquercitrin’s Anti-Heart Failure Activity via MAPK Inflammatory Pathway and Caspase Apoptosis Pathway" Pharmaceuticals 18, no. 10: 1447. https://doi.org/10.3390/ph18101447
APA StyleGuo, A., Chen, X., Bai, Y., Dai, Y., & Yue, H. (2025). Comparison of Quercetin and Isoquercitrin’s Anti-Heart Failure Activity via MAPK Inflammatory Pathway and Caspase Apoptosis Pathway. Pharmaceuticals, 18(10), 1447. https://doi.org/10.3390/ph18101447