Descriptive Analysis of Adverse Events Reported for New Multiple Myeloma Medications Using FDA Adverse Event Reporting System (FAERS) Databases from 2015 to 2022
Abstract
:1. Background
2. Results
2.1. Daratumumab
2.2. Ixazomib
2.3. Elotuzumab
2.4. Panobinostat
3. Discussion
4. Methods
4.1. Study Design
4.2. Data Sources
4.3. Data Components
4.4. Data Curation
4.5. Disproportionality Analysis
5. Strengths and Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Edwards, C.M.; Zhuang, J.; Mundy, G.R. The pathogenesis of the bone disease of multiple myeloma. Bone 2008, 42, 1007–1013. [Google Scholar] [CrossRef] [PubMed]
- Fernández Lázaro, D. Biological and molecular bases in the development of the pathogenic of the disease of multiple myeloma. Investig. Clínica 2019, 60, 247–264. [Google Scholar]
- Jekarl, D.W.; Min, C.K.; Kwon, A.; Kim, H.; Chae, H.; Kim, M.; Lim, J.; Kim, Y.; Han, K. Impact of Genetic Abnormalities on the Prognoses and Clinical Parameters of Patients with Multiple Myeloma. Ann. Lab. Med. 2013, 33, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Kyle, R.A.; Rajkumar, S.V. Multiple myeloma. Blood 2008, 111, 2962–2972. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Survival Rates for Multiple Myeloma. Available online: https://www.cancer.org/cancer/types/multiple-myeloma/detection-diagnosis-staging/survival-rates.html (accessed on 28 September 2023).
- Fernández-Lázaro, D.; Fernández-Lázaro, C.I.; Caballero García, A.; Córdova Martínez, A. Immunomodulator drugs for the treatment of multiple myeloma. Rev. Med. Chil. 2018, 146, 1444–1451. [Google Scholar] [CrossRef] [PubMed]
- Daratumumab, Bortezomib, and Dexamethasone for Multiple Myeloma|NEJM. Available online: https://www.nejm.org/doi/full/10.1056/nejmoa1606038 (accessed on 28 September 2023).
- Dimopoulos, M.A.; Oriol, A.; Nahi, H.; San-Miguel, J.; Bahlis, N.J.; Usmani, S.Z.; Rabin, N.; Orlowski, R.Z.; Komarnicki, M.; Suzuki, K.; et al. Daratumumab, Lenalidomide, and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2016, 375, 1319–1331. [Google Scholar] [CrossRef]
- Moreau, P.; Masszi, T.; Grzasko, N.; Bahlis, N.J.; Hansson, M.; Pour, L.; Sandhu, I.; Ganly, P.; Baker, B.W.; Jackson, S.R.; et al. Oral Ixazomib, Lenalidomide, and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2016, 374, 1621–1634. [Google Scholar] [CrossRef]
- Kumar, S.K.; LaPlant, B.; Roy, V.; Reeder, C.B.; Lacy, M.Q.; Gertz, M.A.; Laumann, K.; Thompson, M.A.; Witzig, T.E.; Buadi, F.K.; et al. Phase 2 trial of ixazomib in patients with relapsed multiple myeloma not refractory to bortezomib. Blood Cancer J. 2015, 5, e338. [Google Scholar] [CrossRef]
- Lonial, S.; Dimopoulos, M.; Palumbo, A.; White, D.; Grosicki, S.; Spicka, I.; Walter-Croneck, A.; Moreau, P.; Mateos, M.V.; Magen, H.; et al. Elotuzumab Therapy for Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2015, 373, 621–631. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Lonial, S.; White, D.; Moreau, P.; Weisel, K.; San-Miguel, J.; Shpilberg, O.; Grosicki, S.; Špička, I.; Walter-Croneck, A.; et al. Elotuzumab, lenalidomide, and dexamethasone in RRMM: Final overall survival results from the phase 3 randomized ELOQUENT-2 study. Blood Cancer J. 2020, 10, 91. [Google Scholar] [CrossRef] [PubMed]
- San-Miguel, J.F.; Hungria, V.T.M.; Yoon, S.S.; Beksac, M.; Dimopoulos, M.A.; Elghandour, A.; Jedrzejczak, W.W.; Günther, A.; Na Nakorn, T.; Siritanaratkul, N.; et al. Panobinostat plus bortezomib and dexamethasone versus placebo plus bortezomib and dexamethasone in patients with relapsed or relapsed and refractory multiple myeloma: A multicentre, randomised, double-blind phase 3 trial. Lancet Oncol. 2014, 15, 1195–1206. [Google Scholar] [CrossRef] [PubMed]
- Greig, S.L. Panobinostat: A Review in Relapsed or Refractory Multiple Myeloma. Target Oncol. 2016, 11, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Lokhorst, H.M.; Plesner, T.; Laubach, J.P.; Nahi, H.; Gimsing, P.; Hansson, M.; Minnema, M.C.; Lassen, U.; Krejcik, J.; Palumbo, A.; et al. Targeting CD38 with Daratumumab Monotherapy in Multiple Myeloma. N. Engl. J. Med. 2015, 373, 1207–1219. [Google Scholar] [CrossRef] [PubMed]
- Ixazomib-Associated Cardiovascular Adverse Events in Multiple Myeloma: A Systematic Review and Meta-Analysis: Drug and Chemical Toxicology: Vol. 45, No 4. Available online: https://www.tandfonline.com/doi/abs/10.1080/01480545.2020.1835945 (accessed on 28 September 2023).
- Wang, Y.; Sanchez, L.; Siegel, D.S.; Wang, M.L. Elotuzumab for the treatment of multiple myeloma. J. Hematol. Oncol. 2016, 9, 55. [Google Scholar] [CrossRef] [PubMed]
- Phipps, C.; Chen, Y.; Gopalakrishnan, S.; Tan, D. Daratumumab and its potential in the treatment of multiple myeloma: Overview of the preclinical and clinical development. Ther. Adv. Hematol. 2015, 6, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Palladini, G.; Milani, P.; Malavasi, F.; Merlini, G. Daratumumab in the Treatment of Light-Chain (AL) Amyloidosis. Cells 2021, 10, 545. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, N.; Kumar, S.K. Daratumumab in untreated newly diagnosed multiple myeloma. Ther. Adv. Hematol. 2019, 10, 2040620719894871. [Google Scholar] [CrossRef] [PubMed]
- Raedler, L.A. Darzalex (Daratumumab): First Anti-CD38 Monoclonal Antibody Approved for Patients with Relapsed Multiple Myeloma. Am. Health Drug Benefits 2016, 9, 70–73. [Google Scholar]
- Xie, J.; Wan, N.; Liang, Z.; Zhang, T.; Jiang, J. Ixazomib—The first oral proteasome inhibitor. Leuk. Lymphoma 2019, 60, 610–618. [Google Scholar] [CrossRef]
- Armoiry, X.; Connock, M.; Tsertsvadze, A.; Cummins, E.; Melendez-Torres, G.J.; Royle, P.; Clarke, A. Ixazomib for Relapsed or Refractory Multiple Myeloma: Review from an Evidence Review Group on a NICE Single Technology Appraisal. PharmacoEconomics 2018, 36, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Richardson, P.G.; Zweegman, S.; O’Donnell, E.K.; Laubach, J.P.; Raje, N.; Voorhees, P.; Ferrari, R.H.; Skacel, T.; Kumar, S.K.; Lonial, S. Ixazomib for the treatment of multiple myeloma. Expert Opin. Pharmacother. 2018, 19, 1949–1968. [Google Scholar] [CrossRef] [PubMed]
- Zanwar, S.; Abeykoon, J.P.; Kapoor, P. Ixazomib: A novel drug for multiple myeloma. Expert Rev. Hematol. 2018, 11, 761–771. [Google Scholar] [CrossRef] [PubMed]
- Fancher, K.M.; Bunk, E.J. Elotuzumab: The First Monoclonal Antibody for the Treatment of Multiple Myeloma. J. Adv. Pract. Oncol. 2016, 7, 542–547. [Google Scholar] [PubMed]
- Emerging Combination Therapies for the Management of Multiple Myeloma: The Role of Elotuzumab—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/28744161/ (accessed on 17 October 2023).
- Lonial, S.; Kaufman, J.; Reece, D.; Mateos, M.V.; Laubach, J.; Richardson, P. Update on elotuzumab, a novel anti-SLAMF7 monoclonal antibody for the treatment of multiple myeloma. Expert Opin. Biol. Ther. 2016, 16, 1291–1301. [Google Scholar] [CrossRef] [PubMed]
- Panobinostat—An Overview|ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/medicine-and-dentistry/panobinostat (accessed on 17 October 2023).
- Moore, D. Panobinostat (Farydak): A Novel Option for the Treatment of Relapsed Or Relapsed and Refractory Multiple Myeloma. Pharm. Ther. 2016, 41, 296–300. [Google Scholar]
- Pan, D.; Mouhieddine, T.H.; Upadhyay, R.; Casasanta, N.; Lee, A.; Zubizarreta, N.; Moshier, E.; Richter, J. Outcomes with panobinostat in heavily pretreated multiple myeloma patients. Semin. Oncol. 2023, 50, 40–48. [Google Scholar] [CrossRef]
- Inc SB. Secura Bio Announces U.S. Withdrawal of FARYDAK® (panobinostat) NDA. Available online: https://www.prnewswire.com/news-releases/secura-bio-announces-us-withdrawal-of-farydak--panobinostat-nda-301434428.html (accessed on 17 October 2023).
- Warren, K. Phase 1 Trial of Marizomib Alone and in Combination with Panobinostat for Children with Diffuse Intrinsic Pontine Glioma. clinicaltrials.gov; 2023 May. Report No.: NCT04341311. Available online: https://clinicaltrials.gov/study/NCT04341311 (accessed on 1 January 2023).
- Wu, C.C. A Feasibility Study Examining the Use of Non-Invasive Focused Ultrasound (FUS) with Oral Panobinostat Administration in Children with Progressive Diffuse Midline Glioma (DMG). clinicaltrials.gov; 2022 Feb. Report No.: NCT04804709. Available online: https://clinicaltrials.gov/study/NCT04804709 (accessed on 1 January 2023).
- Mainou, M.; Bougioukas, K.I.; Malandris, K.; Liakos, A.; Klonizakis, P.; Avgerinos, I.; Haidich, A.-B.; Tsapas, A. Reporting of adverse events of treatment interventions in multiple myeloma: An overview of systematic reviews. Ann. Hematol. 2023, 1–17. [Google Scholar] [CrossRef]
- Pozzi, S.; Bari, A.; Pecherstorfer, M.; Vallet, S. Management of Adverse Events and Supportive Therapy in Relapsed/Refractory Multiple Myeloma. Cancers 2021, 13, 4978. [Google Scholar] [CrossRef]
- Ludwig, H.; Delforge, M.; Facon, T.; Einsele, H.; Gay, F.; Moreau, P.; Avet-Loiseau, H.; Boccadoro, M.; Hajek, R.; Mohty, M.; et al. Prevention and management of adverse events of novel agents in multiple myeloma: A consensus of the European Myeloma Network. Leukemia 2018, 32, 1542–1560. [Google Scholar] [CrossRef]
- Wang, J.; Lv, C.; Zhou, M.; Xu, J.Y.; Chen, B.; Wan, Y. Second Primary Malignancy Risk in Multiple Myeloma from 1975 to 2018. Cancers 2022, 14, 4919. [Google Scholar] [CrossRef] [PubMed]
- Research C for DE and Questions and Answers on FDA’s Adverse Event Reporting System (FAERS). FDA. FDA; 2019. Available online: https://www.fda.gov/drugs/surveillance/questions-and-answers-fdas-adverse-event-reporting-system-faers (accessed on 17 October 2023).
- Pharmacovigilance. Available online: https://www.who.int/teams/regulation-prequalification/regulation-and-safety/pharmacovigilance (accessed on 11 October 2023).
- Jeetu, G.; Anusha, G. Pharmacovigilance: A Worldwide Master Key for Drug Safety Monitoring. J. Young Pharm. 2010, 2, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, K.B.; Demakas, A.R.; Dimbil, M.; Tatonetti, N.P.; Erdman, C.B. Stimulated Reporting: The Impact of US Food and Drug Administration-Issued Alerts on the Adverse Event Reporting System (FAERS). Drug Saf. 2014, 37, 971–980. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, E.P.; McGladrigan, C.G. Differences in safety profiles of newly approved medications for multiple myeloma in real-world settings versus randomized controlled trials. J. Oncol. Pharm. Pract. 2021, 27, 887–896. [Google Scholar] [CrossRef] [PubMed]
- Mina, S.A.; Muhsen, I.N.; Burns, E.A.; Sarfraz, H.; Pingali, S.R.; Xu, J.; Hashmi, S.K. Post-Marketing Analysis of Peripheral Neuropathy Burden with New-Generation Proteasome Inhibitors Using the FDA Adverse Event Reporting System. Turk. J. Haematol. Off. J. Turk. Soc. Haematol. 2021, 38, 218–221. [Google Scholar]
- Lee, E.; Wen, P. Gender and sex disparity in cancer trials. ESMO Open 2020, 5, e000773. [Google Scholar] [CrossRef] [PubMed]
- Rosko, A.; Giralt, S.; Mateos, M.V.; Dispenzieri, A. Myeloma in Elderly Patients: When Less Is More and More Is More. Am. Soc. Clin. Oncol. Educ. Book Am. Soc. Clin. Oncol. Annu. Meet. 2017, 37, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Tanguay, M.; Dagenais, C.; LeBlanc, R.; Ahmad, I.; Claveau, J.S.; Roy, J. Young Myeloma Patients: A Systematic Review of Manifestations and Outcomes. Curr. Oncol. 2023, 30, 5214–5226. [Google Scholar] [CrossRef] [PubMed]
- Dagli, R.J.; Sharma, A. Polypharmacy: A Global Risk Factor for Elderly People. J. Int. Oral. Health JIOH 2014, 6, i–ii. [Google Scholar]
- Turesson, I.; Velez, R.; Kristinsson, S.Y.; Landgren, O. Patterns of Multiple Myeloma During the Past 5 Decades: Stable Incidence Rates for All Age Groups in the Population but Rapidly Changing Age Distribution in the Clinic. Mayo Clin. Proc. 2010, 85, 225–230. [Google Scholar] [CrossRef]
- Smith, B.D.; Smith, G.L.; Hurria, A.; Hortobagyi, G.N.; Buchholz, T.A. Future of Cancer Incidence in the United States: Burdens Upon an Aging, Changing Nation. J. Clin. Oncol. 2009, 27, 2758–2765. [Google Scholar] [CrossRef] [PubMed]
- Wildes, T.M.; Anderson, K.C. Approach to the treatment of the older, unfit patient with myeloma from diagnosis to relapse: Perspectives of a US hematologist and a geriatric hematologist. Hematol. Am. Soc. Hematol. Educ. Program. 2018, 2018, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Merck Sharp & Dohme Corp. Withdrawal of Approval of New Drug Applications for VIOXX (Rofecoxib) Tablets and Suspension. Federal Register. 2022. Available online: https://www.federalregister.gov/documents/2022/09/13/2022-19740/merck-sharp-and-dohme-corp-withdrawal-of-approval-of-new-drug-applications-for-vioxx-rofecoxib (accessed on 2 November 2023).
- Rosiglitazone: Recommended Withdrawal from Clinical Use. GOV.UK. Available online: https://www.gov.uk/drug-safety-update/rosiglitazone-recommended-withdrawal-from-clinical-use (accessed on 2 November 2023).
- Commissioner O of the FDA Requests Removal of All Ranitidine Products (Zantac) from the Market. FDA. FDA; 2020. Available online: https://www.fda.gov/news-events/press-announcements/fda-requests-removal-all-ranitidine-products-zantac-market (accessed on 2 November 2023).
- Dash, A.B.; Zhang, J.; Shen, L.; Li, B.; Berg, D.; Lin, J.; Avet-Loiseau, H.; Bahlis, N.J.; Moreau, P.; Richardson, P.G.; et al. Clinical benefit of ixazomib plus lenalidomide-dexamethasone in myeloma patients with non-canonical NF-κB pathway activation. Eur. J. Haematol. 2020, 105, 274–285. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.H.; Iwakoshi, N.N.; Anderson, K.C.; Glimcher, L.H. Proteasome inhibitors disrupt the unfolded protein response in myeloma cells. Proc. Natl. Acad. Sci. USA 2003, 100, 9946–9951. [Google Scholar] [CrossRef] [PubMed]
- van de Donk, N.W.C.J.; Richardson, P.G.; Malavasi, F. CD38 antibodies in multiple myeloma: Back to the future. Blood 2018, 131, 13–29. [Google Scholar] [CrossRef] [PubMed]
- Soekojo, C.Y.; Ooi, M.; de Mel, S.; Chng, W.J. Immunotherapy in Multiple Myeloma. Cells 2020, 9, 601. [Google Scholar] [CrossRef] [PubMed]
- Campbell, K.S.; Cohen, A.D.; Pazina, T. Mechanisms of NK Cell Activation and Clinical Activity of the Therapeutic SLAMF7 Antibody, Elotuzumab in Multiple Myeloma. Front. Immunol. 2018, 9, 2551. [Google Scholar] [CrossRef]
- Schütt, J.; Nägler, T.; Schenk, T.; Brioli, A. Investigating the Interplay between Myeloma Cells and Bone Marrow Stromal Cells in the Development of Drug Resistance: Dissecting the Role of Epigenetic Modifications. Cancers 2021, 13, 4069. [Google Scholar] [CrossRef]
- Laubach, J.P.; Moreau, P.; San-Miguel, J.F.; Richardson, P.G. Panobinostat for the Treatment of Multiple Myeloma. Clin. Cancer Res. 2015, 21, 4767–4773. [Google Scholar] [CrossRef]
Medication | Ixazomib (%) | Daratumumab (%) | Panobinostat (%) | Elotuzumab (%) |
---|---|---|---|---|
Total reported AEs | 206,243 (56.1) | 98,872 (26.9) | 36,448 (9.9) | 26,193 (7.1) |
Female | 93,786 (45) | 41,279 (42) | 11,970 (33) | 8987 (34) |
Male | 99,486 (48) | 47,143 (48) | 15,132 (41) | 14,198 (54) |
NA | 12,971 (6) | 10,450 (11) | 9346 (26) | 3008 (11) |
<18 | 1478 (0.7) | 2043 (2.1) | 488 (1.3) | 433 (1.7) |
18–24 | 1 (0.0) | 62 (0.1) | 1824 (5) | 4 (0.0) |
25–34 | 146 (0.1) | 113 (0.1) | 46 (0.1) | 18 (0.1) |
35–44 | 1264 (0.6) | 1378 (1.4) | 1221 (3.3) | 159 (0.6) |
45–54 | 5937 (2.9) | 5665 (5.7) | 789 (2.2) | 1620 (6.2) |
55–64 | 30,069 (14.6) | 19,975 (20.2) | 8786 (24.1) | 5187 (19.8) |
65–74 | 61,711 (29.9) | 32,032 (32.4) | 6345 (17.4) | 7440 (28.4) |
>75 | 44,351 (21.5) | 13,886 (14) | 5418 (14.9) | 5280 (20.2) |
NA | 61,286 (29.7) | 23,718 (24) | 11,531 (31.6) | 6052 (23.1) |
Daratumumab | ||
AEs | ROR (95% CI) | PRR (95% CI) |
Hematological disorders | 1.152 (1.130–1.174) | 1.123 (1.108–1.138) |
Infectious diseases | 0.938 (0.915–0.961) | 0.944 (0.927–0.961) |
Respiratory disorders | 11.865 (11.557–12.180) | 10.929 (10.725–11.137) |
Gastrointestinal disorder | 0.571 (0.556–0.586) | 0.601 (0.589–0.615) |
Neurological disorders | 1.053 (1.019–1.088) | 1.049 (1.025–1.074) |
Ixazomib | ||
AEs | ROR | PRR |
Hematological disorders | 0.798 (0.785–0.812) | 0.831 (0.824–0.837) |
Gastrointestinal disorder | 1.473 (1.441–1.507) | 1.419 (1.407–1.431) |
Infectious diseases | 1.077 (1.054–1.101) | 1.069 (1.059–1.079) |
Respiratory disorders | 0.926 (0.904–0.949) | 0.931 (0.921–0.942) |
Neurological disorders | 1.146 (1.112–1.180) | 1.138 (1.124–1.152) |
Elotuzumab | ||
AEs | ROR | PRR |
Hematological disorders | 0.973 (0.941–1.006) | 0.977 (0.948–1.009) |
Infectious diseases | 1.363 (1.313–1.415) | 1.316 (1.271–1.361) |
Gastrointestinal disorder | 1.059 (1.018–1.103) | 1.053 (1.015–1.092) |
Respiratory disorders | 1.193 (1.141–1.247) | 1.176 (1.129–1.224) |
Cardiovascular disorders | 1.394 (1.316–1.476) | 1.373 (1.304–1.447) |
Panobinostat | ||
AEs | ROR | PRR |
Hematological disorders | 1.385 (1.349–1.422) | 1.299 (1.269–1.330) |
Gastrointestinal disorder | 1.626 (1.577–1.676) | 1.529 (1.489–1.569) |
Infectious diseases | 0.698 (0.671–0.727) | 0.721 (0.695–0.749) |
Respiratory disorders | 0.707 (0.675–0.740) | 0.724 (0.694–0.755) |
Cardiovascular disorders | 1.437 (1.367–1.509) | 1.414 (1.354–1.476) |
Adverse Event Category | Examples of AEs Reported |
---|---|
Cardiovascular disorders | Cardiac arrest, Cardiac dysfunction, Chest pain, Palpitations, Aortic aneurysm |
Congenital, familial and genetic disorders | Talipes, Wolff–Parkinson–White syndrome, Palatal disorder |
Dermatological disorders | Skin plaque, Actinic keratosis, Dermatitis |
Endocrine disorders | Adrenal insufficiency, Hypothyroidism Cushing’s syndrome |
ENT disorder | Otitis media, Paranasal sinus hypersecretion, Laryngitis |
Gastrointestinal disorders | Gastrointestinal obstruction, Fistula of small intestine, Gastric ulcer |
Genitourinary disorders | Renal failure, Nephrolithiasis, Urethral pain, Epididymitis |
Hematological disorders | Purpura, Hemoglobin decreased, Thrombosis |
Immunological disorders | Autoimmune disorder, Type IV hypersensitivity reaction, Antiphospholipid syndrome |
Infectious diseases | Enterobacter sepsis, Staphylococcal bacteremia, Escherichia infection |
Miscellaneous | Catheter site hemorrhage, Fatigue, Pain, Multiple injuries |
Musculoskeletal disorders | Femoral neck fracture, Muscular weakness, Limb discomfort |
Near miss/med error | Dose calculation error, Poor quality product administered, Drug interaction |
Neurological disorders | Dizziness, Seizure, Cognitive disorder |
Nutritional and metabolic disorders | Hyponatremia, Increased appetite, Diet refusal, Anion gap increased |
Oncological disorders | Malignant melanoma, Lung cancer, Colon cancer, Lymphoma |
Ophthalmic disorders | Retinal disorder, Vision blurred, Cataract |
Oral and dental disorders | Mouth ulceration, Gingival swelling, Dental caries |
Psychiatric disorders | Depression, Anxiety, Suicidal ideation, Schizophrenia |
Respiratory disorders | Bronchitis, Asthma, Pulmonary edema, Bronchospasm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alrasheed, M.A.; Alamer, K.A.; Albishi, M.; Alsuhibani, A.A.; Almohammed, O.A.; Alwhaibi, A.; Almajed, A.N.; Guo, J.J. Descriptive Analysis of Adverse Events Reported for New Multiple Myeloma Medications Using FDA Adverse Event Reporting System (FAERS) Databases from 2015 to 2022. Pharmaceuticals 2024, 17, 815. https://doi.org/10.3390/ph17070815
Alrasheed MA, Alamer KA, Albishi M, Alsuhibani AA, Almohammed OA, Alwhaibi A, Almajed AN, Guo JJ. Descriptive Analysis of Adverse Events Reported for New Multiple Myeloma Medications Using FDA Adverse Event Reporting System (FAERS) Databases from 2015 to 2022. Pharmaceuticals. 2024; 17(7):815. https://doi.org/10.3390/ph17070815
Chicago/Turabian StyleAlrasheed, Marwan A., Khalid A. Alamer, Mashael Albishi, Abdulrahman A. Alsuhibani, Omar A. Almohammed, Abdulrahman Alwhaibi, Abdullah N. Almajed, and Jeff J. Guo. 2024. "Descriptive Analysis of Adverse Events Reported for New Multiple Myeloma Medications Using FDA Adverse Event Reporting System (FAERS) Databases from 2015 to 2022" Pharmaceuticals 17, no. 7: 815. https://doi.org/10.3390/ph17070815
APA StyleAlrasheed, M. A., Alamer, K. A., Albishi, M., Alsuhibani, A. A., Almohammed, O. A., Alwhaibi, A., Almajed, A. N., & Guo, J. J. (2024). Descriptive Analysis of Adverse Events Reported for New Multiple Myeloma Medications Using FDA Adverse Event Reporting System (FAERS) Databases from 2015 to 2022. Pharmaceuticals, 17(7), 815. https://doi.org/10.3390/ph17070815