Critical Appraisal and Future Challenges of Artificial Intelligence and Anticancer Drug Development
Abstract
:1. Introduction
2. Breaking the Dogma of Traditional Clinical Trial Designs
3. In Silico Clinical Trials
4. Critical Appraisal (Table 1)
Strengths [14] |
|
Limits and potential deficiencies [27,28] |
|
5. Future Challenges
Author Contributions
Funding
Conflicts of Interest
References
- Gupta, R.; Srivastava, D.; Sahu, M.; Tiwari, S.; Ambasta, R.K.; Kumar, P. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol. Divers. 2021, 25, 1315–1360. [Google Scholar] [CrossRef]
- Gerstberger, S.; Jiang, Q.; Ganesh, K. Metastasis. Cell 2023, 186, 1564–1579. [Google Scholar] [CrossRef]
- Kortemme, T. De novo protein design-from new structures to programmable functions. Cell 2024, 187, 526–544. [Google Scholar] [CrossRef]
- Gal, J.; Milano, G.; Ferrero, J.M.; Saada-Bouzid, E.; Viotti, J.; Chabaud, S.; Gougis, P.; Le Tourneau, C.; Schiappa, R.; Paquet, A.; et al. Optimizing drug development in oncology by clinical trial simulation: Why and how? Brief. Bioinform. 2018, 19, 1203–1217. [Google Scholar] [CrossRef]
- Paule, I.; Tod, M.; Henin, E.; You, B.; Freyer, G.; Girard, P. Dose adaptation of capecitabine based on individual prediction of limiting toxicity grade: Evaluation by clinical trial simulation. Cancer Chemother. Pharmacol. 2012, 69, 447–455. [Google Scholar] [CrossRef]
- Claret, L.; Lu, J.F.; Bruno, R.; Hsu, C.P.; Hei, Y.J.; Sun, Y.N. Simulations using a drug-disease modeling framework and phase II data predict phase III survival outcome in first-line non-small-cell lung cancer. Clin. Pharmacol. Ther. 2012, 92, 631–634. [Google Scholar] [CrossRef]
- Mazzocco, P.; Honnorat, J.; Ducray, F.; Ribba, B. Increasing the Time Interval between PCV Chemotherapy Cycles as a Strategy to Improve Duration of Response in Low-Grade Gliomas: Results from a Model-Based Clinical Trial Simulation. Comput. Math. Methods Med. 2015, 2015, 297903. [Google Scholar] [CrossRef]
- Zhang, Z.; Wei, X. Artificial intelligence-assisted selection and efficacy prediction of antineoplastic strategies for precision cancer therapy. Semin. Cancer Biol. 2023, 90, 57–72. [Google Scholar] [CrossRef]
- Perurena, N.; Situ, L.; Cichowski, K. Combinatorial strategies to target RAS-driven cancers. Nat. Rev. Cancer 2024, 24, 316–337. [Google Scholar] [CrossRef]
- Diaz, L.A., Jr.; Shiu, K.K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer (KEYNOTE-177): Final analysis of a randomised, open-label, phase 3 study. Lancet Oncol. 2022, 23, 659–670. [Google Scholar] [CrossRef]
- Cohen, R.; Raeisi, M.; Chibaudel, B.; Yoshino, T.; Shi, Q.; Zalcberg, J.R.; Adams, R.; Cremolini, C.; Grothey, A.; Mayer, R.J.; et al. Efficacy of immune checkpoint inhibitors for metastatic colorectal cancer with microsatellite instability in second or latter line using synthetic control arms: A non-randomised evaluation. Eur. J. Cancer 2024, 199, 113537. [Google Scholar] [CrossRef]
- Ferri-García, R.; Rueda, M.D.M. Propensity score adjustment using machine learning classification algorithms to control selection bias in online surveys. PLoS ONE 2020, 15, e0231500. [Google Scholar] [CrossRef]
- Beaulieu-Jones, B.K.; Finlayson, S.G.; Yuan, W.; Altman, R.B.; Kohane, I.S.; Prasad, V.; Yu, K.H. Examining the Use of Real-World Evidence in the Regulatory Process. Clin. Pharmacol. Ther. 2020, 107, 843–852. [Google Scholar] [CrossRef]
- Creemers, J.H.A.; Ankan, A.; Roes, K.C.B.; Schröder, G.; Mehra, N.; Figdor, C.G.; de Vries, I.J.M.; Textor, J. In silico cancer immunotherapy trials uncover the consequences of therapy-specific response patterns for clinical trial design and outcome. Nat. Commun. 2023, 14, 2348. [Google Scholar] [CrossRef]
- Chopra, H.; Annu; Shin, D.K.; Munjal, K.; Priyanka; Dhama, K.; Emran, T.B. Revolutionizing clinical trials: The role of AI in accelerating medical breakthroughs. Int. J. Surg. 2023, 109, 4211–4220. [Google Scholar] [CrossRef]
- Swanson, K.; Wu, E.; Zhang, A.; Alizadeh, A.A.; Zou, J. From patterns to patients: Advances in clinical machine learning for cancer diagnosis, prognosis, and treatment. Cell 2023, 186, 1772–1791. [Google Scholar] [CrossRef]
- jinkō: A Complete Solution for Trial Simulation & Design Optimization. Available online: https://www.novadiscovery.com/jinko/ (accessed on 15 April 2024).
- EGFR-Mutant NSCLC: Chemo-TKI Bests TKI Alone. Cancer Discov. 2023, 13, 2298. [CrossRef]
- L’Hostis, A.; Palgen, J.L.; Perrillat-Mercerot, A.; Peyronnet, E.; Jacob, E.; Bosley, J.; Duruisseaux, M.; Toueg, R.; Lefevre, L.; Kahoul, R.; et al. Knowledge-based mechanistic modeling accurately predicts disease progression with gefitinib in EGFR-mutant lung adenocarcinoma. NPJ Syst. Biol. Appl. 2023, 9, 37. [Google Scholar] [CrossRef]
- Schiappa, R.; Contu, S.; Culie, D.; Chateau, Y.; Gal, J.; Pace-Loscos, T.; Bailleux, C.; Haudebourg, J.; Ferrero, J.M.; Barranger, E.; et al. Validation of RUBY for Breast Cancer Knowledge Extraction From a Large French Electronic Medical Record System. JCO Clin. Cancer Inf. 2023, 7, e2200130. [Google Scholar] [CrossRef] [PubMed]
- Schiappa, R.; Contu, S.; Culie, D.; Thamphya, B.; Chateau, Y.; Gal, J.; Bailleux, C.; Haudebourg, J.; Ferrero, J.M.; Barranger, E.; et al. RUBY: Natural Language Processing of French Electronic Medical Records for Breast Cancer Research. JCO Clin. Cancer Inform. 2022, 6, e2100199. [Google Scholar] [CrossRef] [PubMed]
- Eckardt, J.N.; Hahn, W.; Rollig, C.; Stasik, S.; Platzbecker, U.; Muller-Tidow, C.; Serve, H.; Baldus, C.D.; Schliemann, C.; Schafer-Eckart, K.; et al. Mimicking clinical trials with synthetic acute myeloid leukemia patients using generative artificial intelligence. NPJ Digit. Med. 2024, 7, 76. [Google Scholar] [CrossRef] [PubMed]
- Sanford, N.N.; Hong, T.S.; Hall, W.A. Elucidating the Benefit of Radiation Therapy in GI Cancers: Rethinking Trial End Points and Patient Selection. J. Clin. Oncol. 2024, 42, 868–871. [Google Scholar] [CrossRef] [PubMed]
- Musuamba, F.T.; Skottheim Rusten, I.; Lesage, R.; Russo, G.; Bursi, R.; Emili, L.; Wangorsch, G.; Manolis, E.; Karlsson, K.E.; Kulesza, A.; et al. Scientific and regulatory evaluation of mechanistic in silico drug and disease models in drug development: Building model credibility. CPT Pharmacomet. Syst. Pharmacol. 2021, 10, 804–825. [Google Scholar] [CrossRef] [PubMed]
- Karr, J.; Malik-Sheriff, R.S.; Osborne, J.; Gonzalez-Parra, G.; Forgoston, E.; Bowness, R.; Liu, Y.; Thompson, R.; Garira, W.; Barhak, J.; et al. Model Integration in Computational Biology: The Role of Reproducibility, Credibility and Utility. Front. Syst. Biol. 2022, 2. [Google Scholar] [CrossRef] [PubMed]
- Cobanaj, M.; Corti, C.; Dee, E.C.; McCullum, L.; Boldrini, L.; Schlam, I.; Tolaney, S.M.; Celi, L.A.; Curigliano, G.; Criscitiello, C. Advancing equitable and personalized cancer care: Novel applications and priorities of artificial intelligence for fairness and inclusivity in the patient care workflow. Eur. J. Cancer 2024, 198, 113504. [Google Scholar] [CrossRef] [PubMed]
- Poweleit, E.A.; Vinks, A.A.; Mizuno, T. Artificial Intelligence and Machine Learning Approaches to Facilitate Therapeutic Drug Management and Model-Informed Precision Dosing. Ther. Drug Monit. 2023, 45, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Kolanska, K.; Chabbert-Buffet, N.; Darai, E.; Antoine, J.M. Artificial intelligence in medicine: A matter of joy or concern? J. Gynecol. Obs. Hum. Reprod. 2021, 50, 101962. [Google Scholar] [CrossRef] [PubMed]
- Beaver, J.A.; Pazdur, R. The Wild West of Checkpoint Inhibitor Development. N. Engl. J. Med. 2022, 386, 1297–1301. [Google Scholar] [CrossRef] [PubMed]
- Leary, A.; Besse, B.; André, F. The need for pragmatic, affordable, and practice-changing real-life clinical trials in oncology. Lancet 2024, 403, 406–408. [Google Scholar] [CrossRef] [PubMed]
- Moutinho, S. Dozens of precision cancer drugs tested at lower doses to reduce side effects and cut costs. Nat. Med. 2024, 30, 611–614. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chamorey, E.; Gal, J.; Mograbi, B.; Milano, G. Critical Appraisal and Future Challenges of Artificial Intelligence and Anticancer Drug Development. Pharmaceuticals 2024, 17, 816. https://doi.org/10.3390/ph17070816
Chamorey E, Gal J, Mograbi B, Milano G. Critical Appraisal and Future Challenges of Artificial Intelligence and Anticancer Drug Development. Pharmaceuticals. 2024; 17(7):816. https://doi.org/10.3390/ph17070816
Chicago/Turabian StyleChamorey, Emmanuel, Jocelyn Gal, Baharia Mograbi, and Gérard Milano. 2024. "Critical Appraisal and Future Challenges of Artificial Intelligence and Anticancer Drug Development" Pharmaceuticals 17, no. 7: 816. https://doi.org/10.3390/ph17070816
APA StyleChamorey, E., Gal, J., Mograbi, B., & Milano, G. (2024). Critical Appraisal and Future Challenges of Artificial Intelligence and Anticancer Drug Development. Pharmaceuticals, 17(7), 816. https://doi.org/10.3390/ph17070816