The Antimicrobial Effect of Cornus mas L. and Sorbus aucuparia L. Fruit Extracts against Resistant Uropathogens in Correlation with the Prevalence of Urinary Tract Infections in Companion Animals
Abstract
:1. Introduction
2. Results
2.1. Study Population
2.2. Bacterial Isolates
2.3. Antibiotic Resistance of Clinical Isolates
2.4. Phytochemical Profile of Cornus mas L. and Sorbus aucuparia L. Fruit Extracts
2.5. Antimicrobial Activity of Cornus mas L. and Sorbus aucuparia L. Fruit Extracts on Resistant Clinical Isolates
2.5.1. Selected Bacterial Isolates
2.5.2. Antimicrobial Activity by the Agar Well Diffusion Method
2.5.3. Antimicrobial Activity by the Broth Microdilution Method
3. Discussion
4. Materials and Methods
4.1. Reagents and Chemicals
4.2. Plant Material
4.3. Fruit Extract Preparation
4.4. Biological Material
4.5. Preliminary Identification and Antimicrobial Susceptibility Testing
4.6. Bacterial Species Identification
4.7. Bacterial Isolates Selection for Fruit Extracts Antimicrobial Activity Assay
4.8. Antimicrobial Activity of Investigated Fruit Extracts
4.8.1. Agar Well Diffusion Method
4.8.2. Determination of Minimum Inhibitory Concentration (MIC) Index
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Diallo, O.O.; Baron, S.A.; Abat, C.; Colson, P.; Chaudet, H.; Rolain, J.-M. Antibiotic resistance surveillance systems: A review. J. Glob. Antimicrob. Resist. 2020, 23, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Smoglica, C.; Evangelisti, G.; Fani, C.; Marsilio, F.; Trotta, M.; Messina, F.; Di Francesco, C.E. Antimicrobial Resistance Profile of Bacterial Isolates from Urinary Tract Infections in Companion Animals in Central Italy. Antibiotics 2022, 11, 1363. [Google Scholar] [CrossRef] [PubMed]
- Scarpellini, R.; Assirelli, G.; Giunti, M.; Esposito, E.; Mondo, E.; Piva, S. Monitoring the Prevalence of Antimicrobial Resistance in Companion Animals: Results from Clinical Isolates in an Italian University Veterinary Hospital. Transbound. Emerg. Dis. 2023, 2023, 6695493. [Google Scholar] [CrossRef]
- Gee, N.R.; Mueller, M.K. A Systematic Review of Research on Pet Ownership and Animal Interactions among Older Adults. Anthrozoös 2019, 32, 183–207. [Google Scholar] [CrossRef]
- Pomba, C.; Rantala, M.; Greko, C.; Baptiste, K.E.; Catry, B.; van Duijkeren, E.; Mateus, A.; Moreno, M.A.; Pyörälä, S.; Ružauskas, M.; et al. Public health risk of antimicrobial resistance transfer from companion animals. J. Antimicrob. Chemother. 2017, 72, 957–968. [Google Scholar] [CrossRef]
- Dorsch, R.; Teichmann-Knorrn, S.; Sjetne Lund, H. Urinary tract infection and subclinical bacteriuria in cats: A clinical update. J. Feline Med. Surg. 2019, 21, 1023–1038. [Google Scholar] [CrossRef] [PubMed]
- Darwich, L.; Seminati, C.; Burballa, A.; Nieto, A.; Durán, I.; Tarradas, N.; Molina-López, R.A. Antimicrobial susceptibility of bacterial isolates from urinary tract infections in companion animals in Spain. Vet. Rec. 2021, 188, e60. [Google Scholar] [CrossRef] [PubMed]
- Hernando, E.; Vila, A.; D’Ippolito, P.; Rico, A.J.; Rodon, J.; Roura, X. Prevalence and Characterization of Urinary Tract Infection in Owned Dogs and Cats from Spain. Top. Companion Anim. Med. 2021, 43, 100512. [Google Scholar] [CrossRef] [PubMed]
- Foglia Manzillo, V.; Peruzy, M.F.; Gizzarelli, M.; Izzo, B.; Sarnelli, P.; Carrella, A.; Vinciguerra, G.; Chirollo, C.; Ben Fayala, N.E.H.; Balestrino, I.; et al. Examining the Veterinary Electronic Antimicrobial Prescriptions for Dogs and Cats in the Campania Region, Italy: Corrective Strategies Are Imperative. Animals 2023, 13, 2869. [Google Scholar] [CrossRef]
- Caneschi, A.; Bardhi, A.; Barbarossa, A.; Zaghini, A. The Use of Antibiotics and Antimicrobial Resistance in Veterinary Medicine, a Complex Phenomenon: A Narrative Review. Antibiotics 2023, 12, 487. [Google Scholar] [CrossRef]
- Fonseca, J.D.; Mavrides, D.E.; Graham, P.A.; McHugh, T.D. Results of urinary bacterial cultures and antibiotic susceptibility testing of dogs and cats in the UK. J. Small Anim. Pract. 2021, 62, 1085–1091. [Google Scholar] [CrossRef]
- Shaheen, G.; Akram, M.; Jabeen, F.; Ali Shah, S.M.; Munir, N.; Daniyal, M.; Riaz, M.; Tahir, I.M.; Ghauri, A.O.; Sultana, S.; et al. Therapeutic potential of medicinal plants for the management of urinary tract infection: A systematic review. Clin. Exp. Pharmacol. Physiol. 2019, 46, 613–624. [Google Scholar] [CrossRef]
- Güneş, Y.; Anlaş, C.; Dokuzeylül, B. Pharmacological and clinical approach to plant based complementary health products in lower urinary system diseases in cats and dogs. J. Istanb. Vet. Sci. 2022, 6, 116–122. [Google Scholar] [CrossRef]
- Tache, A.M.; Dinu, L.D.; Vamanu, E. Novel Insights on Plant Extracts to Prevent and Treat Recurrent Urinary Tract Infections. Appl. Sci. 2022, 12, 2635. [Google Scholar] [CrossRef]
- Bayram, H.M.; Arda Ozturkcan, S. Bioactive components and biological properties of cornelian cherry (Cornus mas L.): A comprehensive review. J. Funct. Foods 2020, 75, 104252. [Google Scholar] [CrossRef]
- Szczepaniak, O.M.; Kobus-Cisowska, J.; Kusek, W.; Przeor, M. Functional properties of Cornelian cherry (Cornus mas L.): A comprehensive review. Eur. Food Res. Technol. 2019, 245, 2071–2087. [Google Scholar] [CrossRef]
- Tenuta, M.C.; Deguin, B.; Loizzo, M.R.; Cuyamendous, C.; Bonesi, M.; Sicari, V.; Trabalzini, L.; Mitaine-Offer, A.-C.; Xiao, J.; Tundis, R. An Overview of Traditional Uses, Phytochemical Compositions and Biological Activities of Edible Fruits of European and Asian Cornus Species. Foods 2022, 11, 1240. [Google Scholar] [CrossRef]
- Turker, A.U.; Yildirim, A.B.; Karakas, F.P. Antibacterial and Antitumor Activities of Some Wild Fruits Grown in Turkey. Biotechnol. Biotechnol. Equip. 2012, 26, 2765–2772. [Google Scholar] [CrossRef]
- Aurori, M.; Niculae, M.; Hanganu, D.; Pall, E.; Cenariu, M.; Vodnar, D.C.; Bunea, A.; Fiţ, N.; Andrei, S. Phytochemical Profile, Antioxidant, Antimicrobial and Cytoprotective Effects of Cornelian Cherry (Cornus mas L.) Fruit Extracts. Pharmaceuticals 2023, 16, 420. [Google Scholar] [CrossRef]
- Kyriakopoulos, A.M.; Dinda, B. Cornus mas (Linnaeus) Novel Devised Medicinal Preparations: Bactericidal Effect against Staphylococcus aureus and Pseudomonas aeruginosa. Molecules 2015, 20, 11202–11218. [Google Scholar] [CrossRef] [PubMed]
- Yigit, D. Antimicrobial and Antioxidant evaluation of fruit extract from Cornus mas L. Aksaray Univ. J. Sci. Eng. 2018, 2, 41–51. [Google Scholar] [CrossRef]
- Arvinte, O.M.; Senila, L.; Becze, A.; Amariei, S. Rowanberry—A Source of Bioactive Compounds and Their Biopharmaceutical Properties. Plants 2023, 12, 3225. [Google Scholar] [CrossRef] [PubMed]
- Bobinaitė, R.; Grootaert, C.; Van Camp, J.; Šarkinas, A.; Liaudanskas, M.; Žvikas, V.; Viškelis, P.; Rimantas Venskutonis, P. Chemical composition, antioxidant, antimicrobial and antiproliferative activities of the extracts isolated from the pomace of rowanberry (Sorbus aucuparia L.). Food Res. Int. 2020, 136, 109310. [Google Scholar] [CrossRef] [PubMed]
- Cristea, E.; Ghendov-Mosanu, A.; Patras, A.; Socaciu, C.; Pintea, A.; Tudor, C.; Sturza, R. The Influence of Temperature, Storage Conditions, pH, and Ionic Strength on the Antioxidant Activity and Color Parameters of Rowan Berry Extracts. Molecules 2021, 26, 3786. [Google Scholar] [CrossRef] [PubMed]
- Sarv, V.; Venskutonis, P.R.; Rätsep, R.; Aluvee, A.; Kazernavičiūtė, R.; Bhat, R. Antioxidants Characterization of the Fruit, Juice, and Pomace of Sweet Rowanberry (Sorbus aucuparia L.) Cultivated in Estonia. Antioxidants 2021, 10, 1779. [Google Scholar] [CrossRef] [PubMed]
- Boath, A.S.; Stewart, D.; McDougall, G.J. Berry components inhibit α-glucosidase in vitro: Synergies between acarbose and polyphenols from black currant and rowanberry. Food Chem. 2012, 135, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Grussu, D.; Stewart, D.; McDougall, G.J. Berry Polyphenols Inhibit α-Amylase in Vitro: Identifying Active Components in Rowanberry and Raspberry. J. Agric. Food Chem. 2011, 59, 2324–2331. [Google Scholar] [CrossRef] [PubMed]
- Rutkowska, M.; Kolodziejczyk-Czepas, J.; Owczarek, A.; Zakrzewska, A.; Magiera, A.; Olszewska, M.A. Novel insight into biological activity and phytochemical composition of Sorbus aucuparia L. fruits: Fractionated extracts as inhibitors of protein glycation and oxidative/nitrative damage of human plasma components. Food Res. Int. 2021, 147, 110526. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Zhang, G.; Zhang, X.; Gao, J.; Zhou, Z.; Fan, J. Polyphenols from Sorbus aucuparia Ameliorate Insulin Resistance and Metabolic Disorders in Diabetic Mice. Curr. Top. Nutraceutical Res. 2016, 14, 227–233. [Google Scholar]
- Nowotny, K.; Jung, T.; Höhn, A.; Weber, D.; Grune, T. Advanced Glycation End Products and Oxidative Stress in Type 2 Diabetes Mellitus. Biomolecules 2015, 5, 194–222. [Google Scholar] [CrossRef]
- Blahova, J.; Martiniakova, M.; Babikova, M.; Kovacova, V.; Mondockova, V.; Omelka, R. Pharmaceutical Drugs and Natural Therapeutic Products for the Treatment of Type 2 Diabetes Mellitus. Pharmaceuticals 2021, 14, 806. [Google Scholar] [CrossRef] [PubMed]
- Aurori, M.; Niculae, M.; Hanganu, D.; Pall, E.; Cenariu, M.; Vodnar, D.C.; Fiţ, N.; Andrei, S. The Antioxidant, Antibacterial and Cell-Protective Properties of Bioactive Compounds Extracted from Rowanberry (Sorbus aucuparia L.) Fruits In Vitro. Plants 2024, 13, 538. [Google Scholar] [CrossRef] [PubMed]
- Denev, P.; Kratchanova, M.; Ciz, M.; Lojek, A.; Vasicek, O.; Nedelcheva, P.; Blazheva, D.; Toshkova, R.; Gardeva, E.; Yossifova, L.; et al. Biological activities of selected polyphenol-rich fruits related to immunity and gastrointestinal health. Food Chem. 2014, 157, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Li, A.-N.; Li, S.; Zhang, Y.-J.; Xu, X.-R.; Chen, Y.-M.; Li, H.-B. Resources and Biological Activities of Natural Polyphenols. Nutrients 2014, 6, 6020–6047. [Google Scholar] [CrossRef] [PubMed]
- Lima, M.C.; Paiva de Sousa, C.; Fernandez-Prada, C.; Harel, J.; Dubreuil, J.D.; de Souza, E.L. A review of the current evidence of fruit phenolic compounds as potential antimicrobials against pathogenic bacteria. Microb. Pathog. 2019, 130, 259–270. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Ataya, H.A.-S.; Soliman, S.M.; Kayaf, K.A.H.; Marouf, S.; Alamry, K. Incidence, Bacterial causes and Antibiotic Resistance Patterns of Urinary Tract Infection in Pet Animals. J. Appl. Vet. Sci. 2023, 8, 35–43. [Google Scholar] [CrossRef]
- Garcês, A.; Lopes, R.; Silva, A.; Sampaio, F.; Duque, D.; Brilhante-Simões, P. Bacterial Isolates from Urinary Tract Infection in Dogs and Cats in Portugal, and Their Antibiotic Susceptibility Pattern: A Retrospective Study of 5 Years (2017–2021). Antibiotics 2022, 11, 1520. [Google Scholar] [CrossRef] [PubMed]
- Aurich, S.; Prenger-Berninghoff, E.; Ewers, C. Prevalence and Antimicrobial Resistance of Bacterial Uropathogens Isolated from Dogs and Cats. Antibiotics 2022, 11, 1730. [Google Scholar] [CrossRef]
- Da Silva, D.R.; Vieira, Y.G.; Venancio, T.J.R.; Ortiz, M.A.L.; Molinari, B.L.D. Retrospective Study of Etiology, Antibiotic Sensitivity, Hematological and Biochemical Evaluation of Dogs and Cats Urinary Tract Infections. Uningá Rev. 2018, 33, 13–26. [Google Scholar]
- Koontz, C.W.; Epstein, S.E.; Westropp, J.L. Antimicrobial susceptibility patterns from urinary isolates obtained from cats (2013–2020). J. Vet. Intern. Med. 2023, 37, 1077–1087. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, G.C.; Costa, F.V.A.D.; Valle, S.F.; Matesco, V.C.; Heck, J.W.; Spanamberg, A.; Ferreiro, L.; Gonzalez, F.H.D. Evaluation of urine cultures obtained by cystocentesis from cats with urethral obstruction at the time of hospital admission and after urethral catheterization. Arq. Bras. De Med. Veterinária E Zootec. 2023, 75, 1107–1115. [Google Scholar] [CrossRef]
- Saputra, S.; Jordan, D.; Mitchell, T.; Wong, H.S.; Abraham, R.J.; Kidsley, A.; Turnidge, J.; Trott, D.J.; Abraham, S. Antimicrobial resistance in clinical Escherichia coli isolated from companion animals in Australia. Vet. Microbiol. 2017, 211, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Teichmann-Knorrn, S.; Reese, S.; Wolf, G.; Hartmann, K.; Dorsch, R. Prevalence of feline urinary tract pathogens and antimicrobial resistance over five years. Vet. Rec. 2018, 183, 21. [Google Scholar] [CrossRef] [PubMed]
- Rampacci, E.; Bottinelli, M.; Stefanetti, V.; Hyatt, D.R.; Sgariglia, E.; Coletti, M.; Passamonti, F. Antimicrobial susceptibility survey on bacterial agents of canine and feline urinary tract infections: Weight of the empirical treatment. J. Glob. Antimicrob. Resist. 2018, 13, 192–196. [Google Scholar] [CrossRef] [PubMed]
- KuKanich, K.; Lubbers, B.; Salgado, B. Amoxicillin and amoxicillin-clavulanate resistance in urinary Escherichia coli antibiograms of cats and dogs from the Midwestern United States. J. Vet. Intern. Med. 2020, 34, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Yudhanto, S.; Hung, C.-C.; Maddox, C.W.; Varga, C. Antimicrobial Resistance in Bacteria Isolated from Canine Urine Samples Submitted to a Veterinary Diagnostic Laboratory, Illinois, United States. Front. Vet. Sci. 2022, 9, 867784. [Google Scholar] [CrossRef] [PubMed]
- Jung, W. Antimicrobial resistance of infectious pathogens in companion animals. Korean Soc. Zoonotic Infect. Dis. 2019, 2019, 169–188. [Google Scholar]
- Puvača, N.; de Llanos Frutos, R. Antimicrobial Resistance in Escherichia coli Strains Isolated from Humans and Pet Animals. Antibiotics 2021, 10, 69. [Google Scholar] [CrossRef]
- Courtice, R.; Sniatynski, M.; Rubin, J.E. Characterization of antimicrobial-resistant Escherichia coli causing urinary tract infections in dogs: Passive surveillance in Saskatchewan, Canada 2014 to 2018. J. Vet. Intern. Med. 2021, 35, 1389–1396. [Google Scholar] [CrossRef]
- Marques, C.; Belas, A.; Aboim, C.; Trigueiro, G.; Cavaco-Silva, P.; Gama, L.T.; Pomba, C. Clonal relatedness of Proteus mirabilis strains causing urinary tract infections in companion animals and humans. Vet. Microbiol. 2019, 228, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Moyaert, H.; Morrissey, I.; de Jong, A.; El Garch, F.; Klein, U.; Ludwig, C.; Thiry, J.; Youala, M. Antimicrobial Susceptibility Monitoring of Bacterial Pathogens Isolated from Urinary Tract Infections in Dogs and Cats Across Europe: ComPath Results. Microb. Drug Resist. 2016, 23, 391–403. [Google Scholar] [CrossRef]
- Schultz, E.; Haenni, M.; Mereghetti, L.; Siebor, E.; Neuwirth, C.; Madec, J.-Y.; Cloeckaert, A.; Doublet, B. Survey of multidrug resistance integrative mobilizable elements SGI1 and PGI1 in Proteus mirabilis in humans and dogs in France, 2010–2013. J. Antimicrob. Chemother. 2015, 70, 2543–2546. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.A.; Coelho, A.C.; Fontes, M.d.C.; Esteves, A.; Costa, J.Á. Isolation of emerging human pathogens and foodborne pathogens in clinical cases of infections from dogs and cats admitted to a veterinary clinic in northern Portugal. Vet. Stanica 2024, 55, 25–36. [Google Scholar] [CrossRef]
- Marques, C.; Belas, A.; Franco, A.; Aboim, C.; Gama, L.T.; Pomba, C. Increase in antimicrobial resistance and emergence of major international high-risk clonal lineages in dogs and cats with urinary tract infection: 16 year retrospective study. J. Antimicrob. Chemother. 2018, 73, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Blondeau, L.D.; Rubin, J.E.; Deneer, H.; Kanthan, R.; Morrison, B.; Sanche, S.; Rypien, C.; Dueck, D.; Beck, G.; Blondeau, J.M. Persistent infection with Staphylococcus pseudintermedius in an adult oncology patient with transmission from a family dog. J. Chemother. 2020, 32, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Carroll, K.C.; Burnham, C.A.D.; Westblade, L.F. From canines to humans: Clinical importance of Staphylococcus pseudintermedius. PLoS Pathog. 2021, 17, e1009961. [Google Scholar] [CrossRef]
- Thomson, P.; García, P.; Miles, J.; Isla, D.; Yáñez, C.; Santibáñez, R.; Núñez, A.; Flores-Yáñez, C.; del Río, C.; Cuadra, F. Isolation and Identification of Staphylococcus Species Obtained from Healthy Companion Animals and Humans. Vet. Sci. 2022, 9, 79. [Google Scholar] [CrossRef] [PubMed]
- Bierowiec, K. Isolation and genetic characterization of Staphylococcus haemolyticus from cats. Pak. Vet. J. 2020, 40, 375–379. [Google Scholar]
- Vercelli, C.; Della Ricca, M.; Re, M.; Gambino, G.; Re, G. Antibiotic Stewardship for Canine and Feline Acute Urinary Tract Infection: An Observational Study in a Small Animal Hospital in Northwest Italy. Antibiotics 2021, 10, 562. [Google Scholar] [CrossRef]
- Nakata, M.; Kuji, H.; Toishi, T.; Inoue, T.; Kawaji, A.; Matsunami, M.; Fukuda, J.; Ohara, M.; Suzuki, T. Relapsing Peritoneal Dialysis-Associated Peritonitis due to Kocuria rhizophila: A Case Report. Case Rep. Nephrol. Dial. 2024, 14, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Turnbull Jake, D.; Russell Julie, E.; Fazal, M.-A.; Grayson Nicholas, E.; Deheer-Graham, A.; Oliver, K.; Holroyd, N.; Parkhill, J.; Alexander, S. Whole-Genome Sequences of Five Strains of Kocuria rosea, NCTC2676, NCTC7514, NCTC7512, NCTC7528, and NCTC7511. Microbiol. Resour. Announc. 2019, 8, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Ugwoke-Adibuah, S.; Imanyikwa, O.E.I.; Ezeonu, I.M.; Ezema, J.N.; Nwangwu, C.C.; Ukhureigbe, M.O. Screening for Kocuria Species among Presumptive Coagulasenegative Staphylococcus Isolates in Case of Urinary Tract Infections in Enugu. J. Pharm. Allied Sci. 2022, 19, 3715. [Google Scholar]
- Kim, M.-H.; Baek, K.-O.; Park, G.-G.; Jang, J.-Y.; Lee, J.-H. A Study on Concentration, Identification, and Reduction of Airborne Microorganisms in the Military Working Dog Clinic. Saf. Health Work 2020, 11, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Martínez, F.J.; Barrajón-Catalán, E.; Micol, V. Tackling Antibiotic Resistance with Compounds of Natural Origin: A Comprehensive Review. Biomedicines 2020, 8, 405. [Google Scholar] [CrossRef] [PubMed]
- Karioti, A.; Sokovic, M.; Ciric, A.; Koukoulitsa, C.; Bilia, A.R.; Skaltsa, H. Antimicrobial properties of Quercus ilex L. proanthocyanidin dimers and simple phenolics: Evaluation of their synergistic activity with conventional antimicrobials and prediction of their pharmacokinetic profile. J. Agric. Food Chem. 2011, 59, 6412–6422. [Google Scholar] [CrossRef]
- Guitynavard, F.; Moradi Tabriz, H.; Samadi, A.; Jazayeri, S.A.; Fasihi-Ramandi, M.; Mirzaei, A.; Khoshchehreh, M.; Abedi Yarandi, V. Investigating the Anti-Urinary Tract Infection Effect of Cornu’s Mas Extract in the Rat. Transl. Res. Urol. 2021, 3, 67–73. [Google Scholar] [CrossRef]
- Guitynavard, F.; Mirjavadi, S.J.; Rakebi, M.M.; Mirsadeghi, S.A.; Khoshchehreh, M.; Pakdel, A.; Mohammadi Farsani, R.; Rahimi, M.R. Comparison of Anti-Inflammatory and Anti-Infection Impact of Cornelian Cherries, Sucralfate, and Intravesical Hyaluronic Acid in a Rat Model of Interstitial Cystitis. Transl. Res. Urol. 2022, 4, 120–126. [Google Scholar] [CrossRef]
- Dadkhah, N.; Shirani, M.; Etemadifar, S.; Mirtalebi, M. The effect of Cornus mas in preventing recurrent urinary tract infections in women: A randomized controlled trial. Adv. Herb. Med. 2016, 2, 39–46. [Google Scholar]
- Okragla, E.; Chraniuk, M.; Wolska, L. Microtox Test as a Tool to Assess Antimicrobial Properties of Herbal Infusions Used in Urinary Tract Infections. Acta Pol. Pharm. 2017, 74, 895–901. [Google Scholar]
- Ebani, V.V.; Nardoni, S.; Bertelloni, F.; Pistelli, L.; Mancianti, F. Antimicrobial Activity of Five Essential Oils against Bacteria and Fungi Responsible for Urinary Tract Infections. Molecules 2018, 23, 1668. [Google Scholar] [CrossRef] [PubMed]
- Chou, H.-I.; Chen, K.-S.; Wang, H.-C.; Lee, W.-M. Effects of cranberry extract on prevention of urinary tract infection in dogs and on adhesion of Escherichia coli to Madin-Darby canine kidney cells. Am. J. Vet. Res. 2016, 77, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Biasibetti, E.; Capucchio, M.T.; Cocca, T.; Bigliati, M.; Bruni, N.; Martello, E. A pilot study to evaluate alternative approaches for treatment of urinary tract infections in dogs. Asian J. Biome Pharm. Sci. 2019, 9, 7–9. [Google Scholar] [CrossRef]
- Shashank, J.; Kumar, K.S.; Kumar, V.A.; Kumar, B.A.; Lakshman, M. Efficacy of punarnava (Boerhaavia diffusa) in the therapeutic management of bacterial lower urinary tract infection (Cystitis) in geriatric dogs. Pharma Innov. J. 2023, 12, 1337–1343. [Google Scholar]
- Sørensen, T.M.; Holmslykke, M.; Nordlund, M.; Siersma, V.; Jessen, L.R. Pre-test probability of urinary tract infection in dogs with clinical signs of lower urinary tract disease. Vet. J. 2019, 247, 65–70. [Google Scholar] [CrossRef] [PubMed]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Antimicrobial Susceptibility Testing EUCAST Disk Diffusion Method; EUCAST: Seongnam-si, Republic of Korea, 2020. [Google Scholar]
- Nadăș, G.C.; Novac, C.Ș.; Matei, I.A.; Bouari, C.M.; Gal, Z.M.; Tamas-Krumpe, O.M.; Macri, A.M.; Fiț, N.I. Prevalence of Antimicrobial Resistant Bacteria from Conjunctival Flora in an Eye Infection Prone Breed (Saint Bernard). Molecules 2021, 26, 2219. [Google Scholar] [CrossRef] [PubMed]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 14.0. 2024. Available online: http://www.eucast.org (accessed on 7 June 2024).
- Alabi, E.D.; Bindawa, B.L.; Mzungu, I.; Adesoji, A.T. Characterization of selected multidrug-resistant bacteria from clinical and hospital environmental sources using Vitek 2 compact system. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Vlase, A.-M.; Toiu, A.; Tomuță, I.; Vlase, L.; Muntean, D.; Casian, T.; Fizeșan, I.; Nadăș, G.C.; Novac, C.Ș.; Tămaș, M.; et al. Epilobium Species: From Optimization of the Extraction Process to Evaluation of Biological Properties. Antioxidants 2023, 12, 91. [Google Scholar] [CrossRef]
- Widelski, J.; Okińczyc, P.; Paluch, E.; Mroczek, T.; Szperlik, J.; Żuk, M.; Sroka, Z.; Sakipova, Z.; Chinou, I.; Skalicka-Woźniak, K.; et al. The Antimicrobial Properties of Poplar and Aspen–Poplar Propolises and Their Active Components against Selected Microorganisms, including Helicobacter pylori. Pathogens 2022, 11, 191. [Google Scholar] [CrossRef]
Dogs % | Cats % | Total | |||||
---|---|---|---|---|---|---|---|
Gender | Male | Female | Male | Female | 36 | ||
55 (n = 11) | 45 (n = 9) | 56.25 (n = 9) | 43.75 (n = 7) | ||||
Age | Young | Adult | Geriatric | Young | Adult | Geriatric | 31 * |
37.5 (n = 6) | 50 (n = 8) | 12.5 (n = 2) | 53.34 (n = 8) | 33.33 (n = 5) | 13.33 (n = 2) | ||
Breed | Yes | No | Yes | No | 36 | ||
65 (n = 13) | 35 (n = 7) | 12.5 (n = 2) | 87.5 (n = 14) | ||||
Antibiotic usage | Yes | No | Yes | No | 36 | ||
30 (n = 6) | 70 (n = 14) | 25 (n = 4) | 75 (n = 12) |
Bacterial Isolates | % in Dogs | % in Cats | Total | p Value |
---|---|---|---|---|
Escherichia coli * | 20 (n = 5) | 33.33 (n = 8) | 13 | p = 0.0088 |
Enterococcus faecalis * | 8 (n = 2) | 20.83 (n = 5) | 7 | p = 0.0418 |
Proteus mirabilis | 28 (n = 7) | 0 | 7 | N /A |
Enterococcus faecium | 4 (n = 1) | 12.5 (n = 3) | 4 | p = 0.1138 |
Klebsiella pneumoniae * | 8 (n = 2) | 0 | 2 | N /A |
Acinetobacter baumannii | 4 (n = 1) | 4.17 (n = 1) | 2 | p = 0.3173 |
Enterobacter cloacae | 4 (n = 1) | 0 | 1 | N/A |
Klebsiella oxytoca | 4 (n = 1) | 0 | 1 | N/A |
Staphylococcus aureus | 4 (n = 1) | 0 | 1 | N/A |
Staphylococcus pseudintermedius | 4 (n = 1) | 4.17 (n = 1) | 2 | p = 0.3173 |
Staphylococcus lentus | 0 | 8.33 (n = 2) | 2 | N/A |
Staphylococcus equorum | 0 | 4.17 (n = 1) | 1 | N/A |
Staphylococcus sciuri | 0 | 4.17 (n = 1) | 1 | N/A |
Staphylococcus haemolyticus | 0 | 4.17 (n = 1) | 1 | N/A |
Pseudomonas luteola | 4 (n = 1) | 0 | 1 | N/A |
Kocuria rosea | 4 (n = 1) | 0 | 1 | N/A |
Kocuria rhizophila | 4 (n = 1) | 0 | 1 | N/A |
Leclercia adecarboxylata | 0 | 4.17 (n = 1) | 1 | N/A |
Total | n = 25 | n = 24 | 49 | N/A |
MIC Index MIC (μg GAE/μL)/MBC (μg GAE/μL) | ||
---|---|---|
Bacterial Isolates | Cornus mas L. | Sorbus aucuparia L. |
E. coli 1 | 8 | 8 |
0.16/0.02 | 0.19/0.02 | |
E. coli 2 | 4 | 8 |
0.16/0.04 | 0.39/0.05 | |
P. mirabilis 1 | 2 | 1 |
0.16/0.08 | 0.05/0.05 | |
P. mirabilis 2 | 1 | 1 |
0.08/0.08 | 0.05/0.05 | |
K. pneumoniae | 4 | 8 |
0.16/0.04 | 0.10/0.01 | |
K. oxytoca | 4 | 8 |
0.16/0.04 | 0.10/0.01 | |
Ps. luteola | 4 | 2 |
0.08/0.02 | 0.10/0.05 | |
E. cloacae | 2 | 4 |
0.16/0.08 | 0.19/0.05 | |
Ac. baumannii | 2 | 4 |
0.16/0.08 | 0.19/0.05 | |
E. faecalis | 8 | 8 |
0.08/0.01 | 0.10/0.01 | |
E. faecium | 2 | 4 |
0.16/0.08 | 0.19/0.05 | |
S. lentus | 4 | 4 |
0.16/0.04 | 0.10/0.02 | |
S. pseudintermedius | 1 | 2 |
0.08/0.08 | 0.10/0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aurori, M.; Novac, C.Ș.; Nadăș, G.C.; Crăciun, S.; Fiţ, N.; Andrei, S. The Antimicrobial Effect of Cornus mas L. and Sorbus aucuparia L. Fruit Extracts against Resistant Uropathogens in Correlation with the Prevalence of Urinary Tract Infections in Companion Animals. Pharmaceuticals 2024, 17, 814. https://doi.org/10.3390/ph17060814
Aurori M, Novac CȘ, Nadăș GC, Crăciun S, Fiţ N, Andrei S. The Antimicrobial Effect of Cornus mas L. and Sorbus aucuparia L. Fruit Extracts against Resistant Uropathogens in Correlation with the Prevalence of Urinary Tract Infections in Companion Animals. Pharmaceuticals. 2024; 17(6):814. https://doi.org/10.3390/ph17060814
Chicago/Turabian StyleAurori, Mara, Cristiana Ștefania Novac, George Cosmin Nadăș, Smaranda Crăciun, Nicodim Fiţ, and Sanda Andrei. 2024. "The Antimicrobial Effect of Cornus mas L. and Sorbus aucuparia L. Fruit Extracts against Resistant Uropathogens in Correlation with the Prevalence of Urinary Tract Infections in Companion Animals" Pharmaceuticals 17, no. 6: 814. https://doi.org/10.3390/ph17060814
APA StyleAurori, M., Novac, C. Ș., Nadăș, G. C., Crăciun, S., Fiţ, N., & Andrei, S. (2024). The Antimicrobial Effect of Cornus mas L. and Sorbus aucuparia L. Fruit Extracts against Resistant Uropathogens in Correlation with the Prevalence of Urinary Tract Infections in Companion Animals. Pharmaceuticals, 17(6), 814. https://doi.org/10.3390/ph17060814