Strategies to Improve Cannabidiol Bioavailability and Drug Delivery
Abstract
:1. Introduction
2. Strategies to Improve the Oral Bioavailability of CBD (Preclinical Studies)
Route | Dose (mg/kg) | Vehicle | Formulation Category | Tmax (h) | Cmax (ng/mL) | AUC (ng/mL × h) | Cmax (ng/mL)/Dose (mg/kg) | AUC (ng/mL × h)/Dose (mg/kg) | Cmax (ng/mL)/Tmax (h)/Dose (mg/kg) | Ref |
---|---|---|---|---|---|---|---|---|---|---|
Rat | ||||||||||
Oral | 19.3 | MCT | Lipid-based | 6 | 128 | 445 | 6.63 | 23.1 | 1.11 | [6] |
Oral | 20 | Sesame oil (Epidiolex) | Lipid-based | 1 | 629 | 2766 | 31.45 | 138 | 31.5 | [6] |
Oral | 12 | Sesame oil (LCT) | Lipid-based | 3 | 308 | 932 | 25.7 | 77.7 | 8.56 | [7] |
Oral | 12 | Sesame oil | Lipid-based | 4 | 225 | 821 | 18.8 | 68.4 | 4.69 | [8] |
Oral | 12 | Oleic acid | Lipid-based | 3 | 134 | 604 | 11.2 | 50.3 | 3.72 | [8] |
Oral | 12 | Linoleic acid | Lipid-based | 4 | 108 | 602 | 9.00 | 50.2 | 2.25 | [8] |
Oral | 12 | 2-OG + oleic acid | Lipid-based | 6 | 71 | 512 | 5.92 | 42.7 | 0.99 | [8] |
Oral | 12 | Oleic acid + glycerol | Lipid-based | 3 | 125 | 584 | 10.4 | 48.7 | 3.47 | [8] |
Oral | 12 | Glycerol trioleate | Lipid-based | 3 | 154 | 560 | 12.8 | 46.7 | 4.28 | [8] |
Oral | 25 | Sesame oil | Lipid-based | 2.5 | 724 | 2702 | 29.0 | 108 | 11.6 | [9] |
Oral | 25 | Sesame oil + surf | Lipid-based | 2 | 562 | 2131 | 22.5 | 85.2 | 11.2 | [9] |
Oral | 12 | Sesame oil | Lipid-based | 3 | 164 | 865 | 13.7 | 72.1 | 4.56 | [10] |
Oral | 12 | Coconut oil | Lipid-based | 5 | 84 | 413 | 7 | 34.4 | 1.40 | [10] |
Oral | 12 | Rapeseed oil | Lipid-based | 5 | 118 | 587 | 9.83 | 48.9 | 1.97 | [10] |
Oral | 10 | Sunflower oil | Lipid-based | 2 | 96.5 | 292 | 9.65 | 9.30 | 1.40 | [11] |
Oral | 12 | Sesame oil | Lipid-based | 3 | 209 | 865 | 17.4 | 72.1 | 5.81 | [12] |
Oral | 12 | Soybean oil | Lipid-based | 3 | 165 | 775 | 13.8 | 64.6 | 4.58 | [12] |
Oral | 12 | Peanut oil | Lipid-based | 3 | 153 | 737 | 12.8 | 61.4 | 4.25 | [12] |
Oral | 12 | Olive oil | Lipid-based | 2 | 258 | 835 | 21.5 | 69.6 | 10.75 | [12] |
Oral | 12 | Sunflower oil | Lipid-based | 3 | 112 | 551 | 9.33 | 45.9 | 3.11 | [12] |
Oral | 12 | Coconut oil | Lipid-based | 5 | 96 | 413 | 8 | 34.4 | 1.60 | [12] |
Oral | 100 | Olive oil | Lipid-based | 8 | 2720 | 26,700 | 27.2 | 267 | 3.40 | [13] |
Oral | 15 | Sesame oil | Lipid-based | 4 | 136 | 660 | 9.07 | 44.0 | 2.27 | [14] |
Oral | 18.75 | Sunflower oil | Lipid-based | 4.05 | 8.95 | 66.8 | 0.48 | 3.56 | 0.12 | [15] |
Oral | 20 | Nanoemulsion | Emulsion-based | 1 | 454 | 1949 | 22.7 | 97.5 | 22.7 | [6] |
Oral | 18.75 | Sunflower oil + lecithin | Emulsion-based | 2.54 | 34.4 | 153 | 1.83 | 8.16 | 0.72 | [15] |
Oral | 15 | Sesame-SNEDDS | Emulsion-based | 1.08 | 137 | 611 | 9.13 | 40.7 | 8.46 | [16] |
Oral | 15 | MCT-SNEDDS | Emulsion-based | 1 | 101 | 579 | 6.73 | 38.6 | 6.73 | [16] |
Oral | 15 | Cocoa butter-SNEDDS | Emulsion-based | 6 | 458 | 2864 | 30.5 | 191 | 5.09 | [16] |
Oral | 15 | Tricaprin-SNEDDS | Emulsion-based | 5 | 261 | 2041 | 17.4 | 136 | 3.48 | [16] |
Oral | 15 | Piperine-PNL | Emulsion-based | 2 | 178 | 593 | 11.9 | 39.5 | 5.93 | [16] |
Oral | 15 | Piperine-PNL | Emulsion-based | 1.8 | 168 | 809 | 11.2 | 53.9 | 6.22 | [16] |
Oral | 15 | PNL | Emulsion-based | 1.2 | 130 | 286 | 8.67 | 19.1 | 7.22 | [16] |
Oral | 15 | PNL | Emulsion-based | 1.11 | 137 | 300 | 9.13 | 20.0 | 8.23 | [17] |
Oral | 15 | Piperine-PNL | Emulsion-based | 1.67 | 170 | 570 | 11.3 | 38.0 | 6.79 | [17] |
Oral | 15 | Curcumin-PNL | Emulsion-based | 1.56 | 63 | 168 | 4.2 | 11.2 | 2.69 | [17] |
Oral | 15 | Resveratrol-PNL | Emulsion-based | 1.9 | 96 | 202 | 6.4 | 13.5 | 3.37 | [17] |
Oral | 50 | Nanoemulsion | Emulsion-based | 2.4 | 3230 | 22,400 | 64.6 | 448 | 26.9 | [13] |
Oral | 40 | MCT protein–maltodextrin | Emulsion-based | 4 | 1190 | 8560 | 29.8 | 214 | 7.44 | [18] |
Oral | 40 | MCT/LCT protein–maltodextrin | Emulsion-based | 2 | 2120 | 12,190 | 53 | 305 | 26.5 | [18] |
Oral | 40 | LCT protein–maltodextrin | Emulsion-based | 2 | 1890 | 12,500 | 47.3 | 313 | 23.6 | [18] |
Oral | 14.5 | Pure CBD suspension | Liquid | 4 | 1.1 | 3.7 | 0.08 | 0.26 | 0.02 | [19] |
Oral | 10 | PG | Liquid | 2 | 28 | 93 | 2.80 | 147 | 32.4 | [20] |
Oral | 12 | PG | Liquid | 2 | 81 | 356 | 6.75 | 29.7 | 3.38 | [12] |
Oral | 12 | PG | Liquid | 3 | 87 | 327 | 7.25 | 27.3 | 2.42 | [7] |
Oral | 12 | PG:EtOH:water | Liquid | 5 | 55 | 356 | 4.58 | 29.7 | 0.92 | [10] |
Oral | 40 | Zein NP whey protein | Nanotechnology | 2 | 466 | 2912 | 11.65 | 72.8 | 5.83 | [21] |
Oral | 12.6 | Nanocrystals | Nanotechnology | 1.25 | 151 | 847 | 12.0 | 67.2 | 9.61 | [14] |
Oral | 14.5 | Nanoparticles | Nanotechnology | 0.3 | 21 | 51.9 | 1.45 | 3.58 | 4.83 | [19] |
Oral | 40 | Free-form CBD | Solid/Resin | 4 | 232 | 1657 | 5.80 | 41.4 | 1.45 | [21] |
Oral | 15 | Lipid-free | Solid/Resin | 1.07 | 39 | 90 | 2.60 | 6.00 | 2.43 | [17] |
Oral | 48.00 | Isolate | Solid/Resin | 3 | 739 | 5307 | 15.4 | 111 | 5.13 | [22] |
Horse | ||||||||||
Oral | 10 | Sesame oil | Lipid-based | 3.5 | 55.7 | 778 | 5.57 | 77.8 | 1.59 | [23] |
Oral | 10 | Micellar | Emulsion-based | 2 | 143 | 830 | 14.3 | 83.0 | 7.14 | [23] |
Dog | ||||||||||
Oral | 5.77 | Oil | Lipid-based | 2 | 625 | 147 | 108 | 25.5 | 54.2 | [24] |
Oral | 5.77 | Microencapsulated oil beads | Lipid-based | 6 | 346 | 104 | 60.0 | 17.9 | 10 | [24] |
Oral | 11.5 | Oil | Lipid-based | 4 | 846 | 317 | 73.6 | 27.5 | 18.3 | [24] |
Oral | 11.5 | Microencapsulated oil beads | Lipid-based | 4 | 578 | 177 | 50.3 | 15.4 | 12.5 | [24] |
Oral | 1 | MCT | Lipid-based | 2.17 | 207 | 648 | 207 | 648 | 95.3 | [25] |
Oral | 8.33 | Cannef tablets | Solid/Resin | 3.5 | 217 | 1376 | 26.1 | 165 | 7.43 | [26] |
Transmucosal | 1 | MCT | Lipid-based | 1.92 | 200 | 536 | 200 | 536 | 104 | [25] |
Mice | ||||||||||
Oral | 5 | MCT (Miglyol 812 N) | Lipid-based | 0.3 | 8 | 14.9 | 1.60 | 2.98 | 5.13 | [27] |
Oral | 5 | Capsules | Emulsion-based | 0.3 | 10.9 | 16.3 | 2.18 | 3.26 | 7.27 | [27] |
Oral | 5 | Capsules + DCA | Emulsion-based | 1 | 11 | 6.5 | 2.20 | 1.30 | 2.2 | [27] |
Oral | 20 | Soybean oil + fat | Emulsion-based | 2 | 130 | 551 | 6.48 | 27.6 | 3.24 | [28] |
Oral | 30 | Gel | Solid/Resin | 1 | 236.2 | 428 | 7.87 | 14.3 | 7.87 | [29] |
3. Strategies to Improve the Oral Bioavailability of CBD (Clinical Studies)
Route | Dose (mg/kg) * | Vehicle | Formulation Category | Tmax (h) | Cmax (ng/mL) | AUC (ng/mL × h) | Cmax (ng/mL)/Dose (mg/kg) | AUC (ng/mL × h)/Dose (mg/kg) | Cmax (ng/mL)/Tmax (h)/Dose (mg/kg) | Ref |
---|---|---|---|---|---|---|---|---|---|---|
Oral | 0.33 | MCT | Lipid-based | 3 | 3.05 | 19.2 | 9.15 | 57.7 | 3.05 | [38] |
Oral | 0.67 | MCT | Lipid-based | 5.2 | 14 | 73.8 | 21 | 111 | 4.04 | [39] |
Oral | 0.13 | MCT | Lipid-based | 5.1 | 0.84 | 3.4 | 6.31 | 25.5 | 1.24 | [40] |
Oral | 0.40 | Lipid-soluble | Lipid-based | 1.5 | 0.65 | 1.51 | 1.63 | 3.77 | 1.08 | [41] |
Oral | 0.60 | Generic | Lipid-based | 1.88 | 16.8 | 37.5 | 28 | 62.6 | 14.9 | [42] |
Oral | 1.20 | Generic | Lipid-based | 2.05 | 23.5 | 119 | 19.6 | 98.8 | 9.55 | [42] |
Oral | 0.67 | Epidiolex | Lipid-based | 2.03 | 6.3 | 20.1 | 9.45 | 30.1 | 4.66 | [43] |
Oral | 0.53 | MCT | Lipid-based | 4.26 | 3.5 | 11.9 | 6.55 | 22.4 | 1.54 | [44] |
Oral | 0.53 | GML | Lipid-based | 1.59 | 6.47 | 15.8 | 12.1 | 29.5 | 7.6 | [44] |
Oral | 1.20 | Sesame oil (gelcap) | Lipid-based | 4 | 14 | 66 | 11.7 | 55 | 2.92 | [45] |
Oral | 1.33 | Syrup | Lipid-based | 3.2 | 2.8 | 10.3 | 2.1 | 7.73 | 0.66 | [46] |
Oral | 1.33 | Epidiolex | Lipid-based | 3.3 | 20.5 | 64.1 | 15.4 | 48.1 | 4.66 | [46] |
Oral | 1.6 | MCT | Lipid-based | 4.89 | 13.9 | 122 | 8.7 | 76.3 | 1.78 | [47] |
Oral | 20 | Epidiolex | Lipid-based | 4 | 292 | 1517 | 14.6 | 75.9 | 3.66 | [48] |
Oral | 40 | Epidiolex | Lipid-based | 5 | 533 | 2669 | 13.3 | 66.7 | 2.67 | [48] |
Oral | 60 | Epidiolex | Lipid-based | 5 | 722 | 3215 | 12 | 53.6 | 2.41 | [48] |
Oral | 80 | Epidiolex | Lipid-based | 5 | 782 | 3696 | 9.78 | 46.2 | 1.96 | [48] |
Oral | 10 | Epidiolex | Lipid-based | 5.11 | 336 | 1587 | 33.6 | 159 | 6.58 | [49] |
Oral | 20 | Epidiolex | Lipid-based | 6.13 | 525 | 2650 | 26.2 | 132 | 4.28 | [49] |
Oral | 60 | Epidiolex | Lipid-based | 4.07 | 427 | 2339 | 7.12 | 39 | 1.75 | [49] |
Oral | 5.33 | Corn oil (gelcap) | Lipid-based | 3 | 181 | 704 | 33.9 | 132 | 11.3 | [50] |
Oral | 5.33 | Corn oil (gelcap) | Lipid-based | 1.5 | 114 | 482 | 21.4 | 90.4 | 14.3 | [50] |
Oral | 10.7 | Corn oil (gelcap) | Lipid-based | 3 | 221 | 867 | 20.7 | 81.3 | 6.91 | [50] |
Oral | 10.7 | Corn oil (gelcap) | Lipid-based | 4 | 157 | 722 | 14.7 | 67.7 | 3.68 | [50] |
Oral | 2 | Corn oil | Lipid-based | 2 | 82.6 | 269 | 41.3 | 61.5 | 20.7 | [51] |
Oral | 0.4 | MCT | Lipid-based | 1.28 | 3.5 | 13.81 | 8.85 | 34.5 | 6.91 | [52] |
Oral | 0.4 | Powder | Lipid-based | 1.53 | 2.88 | 9.96 | 7.2 | 24.9 | 4.71 | [52] |
Oral | 0.4 | MCT | Lipid-based | 0.7 | 5.57 | 10.77 | 13.9 | 26.9 | 19.9 | [52] |
Oral | 0.33 | SEDDS | Emulsion-based | 1 | 13.5 | 32.6 | 40.6 | 97.9 | 40.6 | [38] |
Oral | 0.13 | Solutech | Emulsion-based | 0.96 | 2 | 3.6 | 15 | 27 | 15.6 | [40] |
Oral | 0.40 | Water-soluble | Emulsion-based | 0.9 | 2.82 | 6.8 | 7.05 | 17 | 7.83 | [41] |
Oral | 0.53 | SEDDS | Emulsion-based | 1.68 | 6.94 | 17.7 | 13 | 33.3 | 7.74 | [44] |
Oral | 1.20 | SNEDDS (gelcap) | Emulsion-based | 2 | 18 | 61 | 15 | 50.8 | 7.5 | [45] |
Oral | 0.13 | PNL | Emulsion-based | 3 | 2.1 | 6.9 | 15.8 | 51.8 | 5.25 | [53] |
Oral | 0.13 | SEDDS | Emulsion-based | 1.64 | 2.94 | 9.85 | 22.1 | 73.9 | 13.4 | [54] |
Oral | 0.60 | TurboCBD | Solidified | 2.17 | 21.2 | 47.7 | 35.3 | 79.4 | 16.3 | [42] |
Oral | 1.20 | TurboCBD | Solidified | 1.83 | 77.6 | 181 | 64.7 | 151 | 35.3 | [42] |
Oral | 1.20 | Powder (hardcap) | Solid/Capsule | 8.4 | 0.8 | 8 | 0.67 | 6.67 | 0.08 | [45] |
Oral | 1.33 | Powder (gelcap) | Solid/Capsule | 2.5 | 17.8 | 42.5 | 13.4 | 31.9 | 5.34 | [46] |
Oral | 1.33 | Gelcap | Solid/Capsule | 4 | 11.1 | 31.5 | 8.33 | 23.6 | 2.08 | [55] |
Oral | 0.13 | Gelatin matrix pellets | Solid/Capsule | 3 | 3.22 | 9.64 | 24.2 | 72.3 | 8.05 | [56] |
Oral | 1.33 | Gelatin matrix pellets | Solid/Capsule | 3.5 | 47.4 | 150 | 35.6 | 112 | 10.2 | [56] |
Oral | 10.7 | Capsules | Solid/Capsule | 3 | 77.9 | 580 | 7.30 | 54.4 | 2.43 | [57] |
Oral | 0.13 | Capsules | Solid/Capsule | 1.27 | 2.47 | 6.03 | 18.5 | 45.3 | 14.6 | [58] |
Oral | 2 | Powder | Solid/Capsule | 2.5 | 20.7 | 67.4 | 10.4 | 14.1 | 4.14 | [51] |
Transmucosal | 0.08 | Water-soluble NP | Emulsion-based | 1 | 0.53 | 0.87 | 6.63 | 10.9 | 6.63 | [59] |
Transmucosal | 0.24 | Water-soluble NP | Emulsion-based | 1 | 4.62 | 8.90 | 19.3 | 37.1 | 19.3 | [59] |
Transmucosal | 0.13 | Sativex | Liquid | 3.5 | 2.05 | 7.3 | 15.4 | 54.8 | 4.39 | [56] |
Transmucosal | 0.13 | Sativex | Liquid | 3.18 | 2.05 | 7.3 | 15.4 | 54.8 | 4.83 | [54] |
Transmucosal | 0.13 | Sativex | Liquid | 1 | 0.5 | 3.1 | 3.75 | 23.3 | 3.75 | [53] |
Transmucosal | 0.27 | Sativex | Liquid | 4.5 | 4.6 | 29.3 | 17.3 | 110 | 3.83 | [39] |
Transmucosal | 0.13 | EtOH:PG | Liquid | 1.63 | 2.5 | 7.12 | 18.8 | 53.4 | 11.5 | [58] |
Transmucosal | 0.13 | EtOH:PG | Liquid | 2.8 | 3.02 | 6.8 | 22.7 | 51 | 8.09 | [58] |
Transmucosal | 0.13 | EtOH:PG | Liquid | 1.39 | 1.15 | 5.64 | 8.63 | 42.3 | 6.21 | [60] |
Transmucosal | 0.13 | EtOH:PG | Liquid | 4 | 3.66 | 23.1 | 27.5 | 173 | 6.86 | [60] |
Transmucosal | 0.13 | EtOH:PG | Liquid | 1 | 1.03 | 5.1 | 7.73 | 38.3 | 7.73 | [61] |
Transmucosal | 0.13 | EtOH:PG | Liquid | 1.38 | 0.66 | 3.54 | 4.95 | 26.6 | 3.59 | [61] |
Transmucosal | 0.13 | EtOH:PG | Liquid | 1.15 | 0.63 | 3 | 4.73 | 22.5 | 4.11 | [61] |
Transmucosal | 0.07 | Sativex | Liquid | 3.7 | 1.6 | 4.5 | 24 | 67.5 | 6.49 | [62] |
Transmucosal | 0.20 | Sativex | Liquid | 4 | 6.7 | 18.1 | 33.5 | 90.5 | 8.38 | [62] |
Transmucosal | 0.33 | Wafer | Solidified | 4.5 | 9.1 | 33.5 | 27.3 | 101 | 6.07 | [39] |
Transmucosal | 0.67 | Wafer | Solidified | 4.1 | 15 | 71 | 22.5 | 107 | 5.49 | [39] |
3.1. Lipid-Based Formulations
3.2. Emulsion-Based Formulations
3.3. Solidified Formulations
3.4. Encapsulated Formulations
4. Novel Routes of CBD Administration
Route | Dose (mg/kg) * | Vehicle | Formulation Category | Tmax (h) | Cmax (ng/mL) | AUC (ng/mL × h) | Cmax (ng/mL)/Dose (mg/kg) | AUC (ng/mL × h)/Dose (mg/kg) | Cmax (ng/mL)/Tmax (h)/Dose (mg/kg) | Ref |
---|---|---|---|---|---|---|---|---|---|---|
Rat | ||||||||||
Intravenous | 0.2 | PEG:saline:EtOH | Liquid | – | 3596 | 104 | 17,980 | 518 | – | [65] |
Intravenous | 2.5 | Capryol + CremophorEL + TranscutolP + water | Liquid | 0.08 | 1178 | 623 | 471 | 249 | 5654 | [15] |
Intravenous | 4 | PG | Liquid | 0.08 | 2100 | 1380 | 525 | 345 | 6300 | [7] |
Intravenous | 15.5 | Saline | Liquid | 0.5 | 5216 | 26,870 | 337 | 1734 | 673 | [66] |
Intravenous | 4 | PG | Liquid | 0.08 | 872 | 674 | 218 | 168 | 2724 | [14] |
Intravenous | 5 | Saline | Liquid | – | – | 1446 | – | 289 | 0.00 | [22] |
Intranasal | 0.2 | PEG | Liquid | 0.35 | 35.4 | 152 | 177 | 758 | 506 | [65] |
Intranasal | 0.2 | PEG:saline:EtOH | Liquid | 0.48 | 27.4 | 43.3 | 137 | 216 | 285 | [65] |
Intranasal | 0.2 | PEG:saline:EtOH: glycocholate | Liquid | 0.47 | 30.2 | 41.8 | 151 | 209 | 322 | [65] |
Intranasal | 0.2 | PEG:saline:EtOH:DBC | Liquid | 0.33 | 19.9 | 34.6 | 100 | 173 | 302 | [65] |
Intranasal | 15.5 | Saline | Liquid | 0.5 | 2710 | 13,038 | 175 | 841 | 350 | [66] |
Intranasal | 15.5 | Nanoemulsion | Emulsion-based | 0.5 | 2610 | 14,723 | 168 | 950 | 337 | [66] |
Inhalation | 0.9 | Sunflower oil | Liquid | 5 | 217 | 132 | 1 | 8.58 | 0.11 | [11] |
Inhalation | 1.7 | Ethanol | Liquid | 5 | 263 | 227 | 22 | 46.6 | 44 | [11] |
Inhalation | 3.5 | MCT | Liquid | 5 | 567 | 513 | 10 | 29.2 | 4.83 | [11] |
Inhalation | 6.7 | PG | Liquid | 5 | 888 | 950 | 241 | 147 | 48.2 | [11] |
Inhalation | 13.9 | PG | Liquid | 60 | 2400 | 2030 | 155 | 134 | 30.9 | [11] |
Inhalation | 10 | PG | Liquid | 0.5 | 220 | 466 | 173 | 146 | 2.88 | [20] |
Subcutaneous | 10 | PG | Lipid-based | 7 | 8 | 85.8 | 133 | 142 | 26.5 | [20] |
Intramuscular | 4.2 | Nanocrystals | Nanotechnology | 0.69 | 239 | 1459 | 57.0 | 348 | 82.6 | [14] |
Horse | ||||||||||
Intravenous | 1 | Chremophor + EtOH + saline | Liquid | 0.08 | 1000 | 580.4 | 1000 | 580 | 12,000 | [23] |
Dog | ||||||||||
Intravenous | 2.25 | EtOH | Liquid | – | – | 2706 | – | 1203 | – | [67] |
Intravenous | 4.5 | EtOH | Liquid | – | – | 6095 | – | 1354 | – | [67] |
Intranasal | 1.67 | PEG:NaCl | Liquid | 0.49 | 28 | 61.3 | 16.8 | 36.8 | 34.2 | [26] |
Transdermal | 5.77 | Cream | Lipid-based | 10 | 74.3 | 11.7 | 12.9 | 2.03 | 1.29 | [24] |
Transdermal | 11.5 | Cream | Lipid-based | 12 | 278 | 29.7 | 24.1 | 2.57 | 2.00 | [24] |
Mice | ||||||||||
Intravenous | 10 | Soybean oil + fat | Emulsion-based | 0.17 | 2343 | 3191 | 234 | 319 | 1403 | [28] |
Intranasal | 30 | Suspension | Liquid | 0.29 | 1205 | 2968 | 40.2 | 98.9 | 139 | [29] |
Guinea pigs | ||||||||||
Intravenous | 1 | PG | Liquid | 0.03 | 269 | 175 | 269 | 175 | 8070 | [65] |
Transdermal | 22.5 | Gel (PG:water) | Solid/Resin | 38.4 | 8.6 | 276 | 0.38 | 12.3 | 0.01 | [65] |
Transdermal | 22.5 | Gel (PG:water) + TranscutolHP | Solid/Resin | 31.2 | 35.6 | 888 | 1.58 | 39.5 | 0.05 | [65] |
Human | ||||||||||
Intravenous | 0.27 | EtOH | Liquid | 0.05 | 686 | 1000 | 2573 | 3751 | 51,450 | [68] |
Inhalation | 0.26 | Marijuana cigarettes | Smoke | 0.05 | 110 | 291 | 430 | 1137 | 8594 | [68] |
Inhalation | 0.13 | DPI | Solid | 0.06 | 18.78 | 7.66 | 141 | 57.5 | 2224 | [43] |
Inhalation | 1.33 | CBD dominant | Aerosol | 0.10 | 171 | 151 | 128 | 113 | 1283 | [46] |
Inhalation | 1.33 | Pure CBD | Aerosol | 0.10 | 105 | 73.9 | 78.5 | 55.4 | 785 | [46] |
Inhalation | 1.33 | CBD dominant | Aerosol | 0.2 | 181.4 | 185.8 | 136 | 139 | 680 | [55] |
Inhalation | 1.33 | Pure CBD | Aerosol | 0.2 | 104.6 | 108 | 78.5 | 81.0 | 392 | [55] |
Transdermal | 1.33 | Gefion GT4 tech | Emulsion-based | 8 | 0.58 | 3.33 | 0.43 | 2.50 | 0.05 | [69] |
4.1. Transdermal
4.2. Inhalation
4.3. Transmucosal
4.4. Intranasal
4.5. Intravenous
4.6. Intramuscular
4.7. Intrarectal
4.8. Subcutaneous
5. Tissue Distribution of CBD
6. Does an Improved CBD PK Profile Lead to Better Efficacy?
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- O’Sullivan, S.E.; Jensen, S.S.; Nikolajsen, G.N.; Bruun, H.Z.; Bhuller, R.; Hoeng, J. The therapeutic potential of purified cannabidiol. J. Cannabis Res. 2023, 5, 21. [Google Scholar] [CrossRef] [PubMed]
- Perucca, E.; Bialer, M. Critical aspects affecting cannabidiol oral bioavailability and metabolic elimination, and related clinical implications. CNS Drugs 2020, 34, 795–800. [Google Scholar] [CrossRef] [PubMed]
- Cohen, N.T.; Bahar, B.; Conry, J.A.; Schreiber, J.M. Variability in Serum Concentrations and Clinical Response in Artisanal Versus Pharmaceutical Cannabidiol Treatment of Pediatric Pharmacoresistant Epilepsy. J. Pediatr. Pharmacol. Ther. 2022, 27, 558–563. [Google Scholar] [CrossRef] [PubMed]
- Laux, L.C.; Bebin, E.M.; Checketts, D.; Chez, M.; Flamini, R.; Marsh, E.D.; Miller, I.; Nichol, K.; Park, Y.; Segal, E.; et al. Long-term safety and efficacy of cannabidiol in children and adults with treatment resistant Lennox-Gastaut syndrome or Dravet syndrome: Expanded access program results. Epilepsy Res. 2019, 154, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Millar, S.A.; Maguire, R.F.; Yates, A.S.; O’Sullivan, S.E. Towards Better Delivery of Cannabidiol (CBD). Pharmaceuticals 2020, 13, 219. [Google Scholar] [CrossRef] [PubMed]
- Kok, L.Y.; Bannigan, P.; Sanaee, F.; Evans, J.C.; Dunne, M.; Regenold, M.; Ahmed, L.; Dubins, D.; Allen, C. Development and pharmacokinetic evaluation of a self-nanoemulsifying drug delivery system for the oral delivery of cannabidiol. Eur. J. Pharm. Sci. 2022, 168, 106058. [Google Scholar] [CrossRef] [PubMed]
- Zgair, A.; Wong, J.C.; Lee, J.B.; Mistry, J.; Sivak, O.; Wasan, K.M.; Hennig, I.M.; Barrett, D.A.; Constantinescu, C.S.; Fischer, P.M.; et al. Dietary fats and pharmaceutical lipid excipients increase systemic exposure to orally administered cannabis and cannabis-based medicines. Am. J. Transl. Res. 2016, 8, 3448–3459. [Google Scholar]
- Feng, W.; Qin, C.; Chu, Y.; Berton, M.; Lee, J.B.; Zgair, A.; Bettonte, S.; Stocks, M.J.; Constantinescu, C.S.; Barrett, D.A.; et al. Natural sesame oil is superior to pre-digested lipid formulations and purified triglycerides in promoting the intestinal lymphatic transport and systemic bioavailability of cannabidiol. Eur. J. Pharm. Biopharm. 2021, 162, 43–49. [Google Scholar] [CrossRef]
- Feng, W.; Qin, C.; Cipolla, E.; Lee, J.B.; Zgair, A.; Chu, Y.; Ortori, C.A.; Stocks, M.J.; Constantinescu, C.S.; Barrett, D.A.; et al. Inclusion of Medium-Chain Triglyceride in Lipid-Based Formulation of Cannabidiol Facilitates Micellar Solubilization In Vitro, but In Vivo Performance Remains Superior with Pure Sesame Oil Vehicle. Pharmaceutics 2021, 13, 1349. [Google Scholar] [CrossRef]
- Brookes, A.; Jewell, A.; Feng, W.; Bradshaw, T.D.; Butler, J.; Gershkovich, P. Oral lipid-based formulations alter delivery of cannabidiol to different anatomical regions in the brain. Int. J. Pharm. 2023, 635, 122651. [Google Scholar] [CrossRef]
- Schwotzer, D.; Kulpa, J.; Trexler, K.; Dye, W.; Jantzi, J.; Irshad, H.; Ware, M.A.; Bonn-Miller, M.; McDonald, J.; Lefever, T. Pharmacokinetics of Cannabidiol in Sprague-Dawley Rats After Oral and Pulmonary Administration. Cannabis Cannabinoid. Res. 2023, 8, 360–373. [Google Scholar] [CrossRef]
- Feng, W.; Qin, C.; Abdelrazig, S.; Bai, Z.; Raji, M.; Darwish, R.; Chu, Y.; Ji, L.; Gray, D.A.; Stocks, M.J.; et al. Vegetable oils composition affects the intestinal lymphatic transport and systemic bioavailability of co-administered lipophilic drug cannabidiol. Int. J. Pharm. 2022, 624, 121947. [Google Scholar] [CrossRef]
- Nakano, Y.; Tajima, M.; Sugiyama, E.; Sato, V.H.; Sato, H. Development of a Novel Nano-emulsion Formulation to Improve Intestinal Absorption of Cannabidiol. Med. Cannabis Cannabinoids 2019, 2, 35–42. [Google Scholar] [CrossRef]
- Fu, X.; Xu, S.; Li, Z.; Chen, K.; Fan, H.; Wang, Y.; Xie, Z.; Kou, L.; Zhang, S. Enhanced Intramuscular Bioavailability of Cannabidiol Using Nanocrystals: Formulation, In Vitro Appraisal, and Pharmacokinetics. AAPS PharmSciTech 2022, 23, 85. [Google Scholar] [CrossRef]
- Jelinek, P.; Rousarova, J.; Rysanek, P.; Jezkova, M.; Havlujova, T.; Pozniak, J.; Kozlik, P.; Krizek, T.; Kucera, T.; Sima, M.; et al. Application of Oil-in-Water Cannabidiol Emulsion for the Treatment of Rheumatoid Arthritis. Cannabis Cannabinoid Res. 2022. [Google Scholar] [CrossRef] [PubMed]
- Izgelov, D.; Shmoeli, E.; Domb, A.J.; Hoffman, A. The effect of medium chain and long chain triglycerides incorporated in self-nano emulsifying drug delivery systems on oral absorption of cannabinoids in rats. Int. J. Pharm. 2020, 580, 119201. [Google Scholar] [CrossRef] [PubMed]
- Cherniakov, I.; Izgelov, D.; Domb, A.J.; Hoffman, A. The effect of Pro NanoLipospheres (PNL) formulation containing natural absorption enhancers on the oral bioavailability of delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) in a rat model. Eur. J. Pharm. Sci. 2017, 109, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Dong, C.; Lu, Y.; Freeman, K.; Wang, C.; Guo, M. Digestion behavior, in vitro and in vivo bioavailability of cannabidiol in emulsions stabilized by whey protein-maltodextrin conjugate: Impact of carrier oil. Colloids Surf. B Biointerfaces 2023, 223, 113154. [Google Scholar] [CrossRef] [PubMed]
- Shreiber-Livne, I.; Sulimani, L.; Shapira, A.; Procaccia, S.; Meiri, D.; Sosnik, A. Poly(ethylene glycol)-b-poly(epsilon-caprolactone) nanoparticles as a platform for the improved oral delivery of cannabidiol. Drug Deliv. Transl. Res. 2023, 13, 3192–3203. [Google Scholar] [CrossRef] [PubMed]
- Hlozek, T.; Uttl, L.; Kaderabek, L.; Balikova, M.; Lhotkova, E.; Horsley, R.R.; Novakova, P.; Sichova, K.; Stefkova, K.; Tyls, F.; et al. Pharmacokinetic and behavioural profile of THC, CBD, and THC+CBD combination after pulmonary, oral, and subcutaneous administration in rats and confirmation of conversion in vivo of CBD to THC. Eur. Neuropsychopharmacol. 2017, 27, 1223–1237. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, J.; Sun, Y.; Freeman, K.; McHenry, M.A.; Wang, C.; Guo, M. Enhanced Stability and Oral Bioavailability of Cannabidiol in Zein and Whey Protein Composite Nanoparticles by a Modified Anti-Solvent Approach. Foods 2022, 11, 376. [Google Scholar] [CrossRef]
- Berthold, E.C.; Kamble, S.H.; Kanumuri, S.R.R.; Kuntz, M.A.; Senetra, A.S.; Chiang, Y.H.; McMahon, L.R.; McCurdy, C.R.; Sharma, A. Comparative Pharmacokinetics of Commercially Available Cannabidiol Isolate, Broad-Spectrum, and Full-Spectrum Products. Eur. J. Drug Metab. Pharmacokinet. 2023, 48, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Sanchez de Medina, A.; Serrano-Rodriguez, J.M.; Diez de Castro, E.; Garcia-Valverde, M.T.; Saitua, A.; Becero, M.; Munoz, A.; Ferreiro-Vera, C.; Sanchez de Medina, V. Pharmacokinetics and oral bioavailability of cannabidiol in horses after intravenous and oral administration with oil and micellar formulations. Equine Vet. J. 2023, 55, 1094–1103. [Google Scholar] [CrossRef]
- Bartner, L.R.; McGrath, S.; Rao, S.; Hyatt, L.K.; Wittenburg, L.A. Pharmacokinetics of cannabidiol administered by 3 delivery methods at 2 different dosages to healthy dogs. Can. J. Vet. Res. 2018, 82, 178–183. [Google Scholar]
- della Rocca, G.; Paoletti, F.; Conti, M.B.; Galarini, R.; Chiaradia, E.; Sforna, M.; Dall’Aglio, C.; Polisca, A.; Di Salvo, A. Pharmacokinetics of cannabidiol following single oral and oral transmucosal administration in dogs. Front. Vet. Sci. 2023, 9, 1104152. [Google Scholar] [CrossRef] [PubMed]
- Polidoro, D.; Temmerman, R.; Devreese, M.; Charalambous, M.; Ham, L.V.; Cornelis, I.; Broeckx, B.J.G.; Mandigers, P.J.J.; Fischer, A.; Storch, J.; et al. Pharmacokinetics of Cannabidiol Following Intranasal, Intrarectal, and Oral Administration in Healthy Dogs. Front. Vet. Sci. 2022, 9, 899940. [Google Scholar] [CrossRef] [PubMed]
- Majimbi, M.; Brook, E.; Galettis, P.; Eden, E.; Al-Salami, H.; Mooranian, A.; Al-Sallami, H.; Lam, V.; Mamo, J.C.L.; Takechi, R. Sodium alginate microencapsulation improves the short-term oral bioavailability of cannabidiol when administered with deoxycholic acid. PLoS ONE 2021, 16, e0243858. [Google Scholar] [CrossRef]
- Xu, C.; Chang, T.; Du, Y.; Yu, C.; Tan, X.; Li, X. Pharmacokinetics of oral and intravenous cannabidiol and its antidepressant-like effects in chronic mild stress mouse model. Environ. Toxicol. Pharmacol. 2019, 70, 103202. [Google Scholar] [CrossRef]
- Pang, L.; Zhu, S.; Ma, J.; Zhu, L.; Liu, Y.; Ou, G.; Li, R.; Wang, Y.; Liang, Y.; Jin, X.; et al. Intranasal temperature-sensitive hydrogels of cannabidiol inclusion complex for the treatment of post-traumatic stress disorder. Acta Pharm. Sin. B 2021, 11, 2031–2047. [Google Scholar] [CrossRef]
- Zgair, A.; Lee, J.B.; Wong, J.C.M.; Taha, D.A.; Aram, J.; Di Virgilio, D.; McArthur, J.W.; Cheng, Y.K.; Hennig, I.M.; Barrett, D.A.; et al. Oral administration of cannabis with lipids leads to high levels of cannabinoids in the intestinal lymphatic system and prominent immunomodulation. Sci. Rep. 2017, 7, 14542. [Google Scholar] [CrossRef]
- Artelo Biosciences. Pipeline. Available online: https://artelobio.com/pipeline/ (accessed on 14 September 2023).
- Medexus Pharmaceuticals and Vireohealth LLC. Novel Methylated Cyclodextrin Complexes. Patent Number. CA2476833C. Available online: https://patents.google.com/patent/CA2476833C (accessed on 14 September 2023).
- Avecho. Available online: https://avecho.com.au/portfolio/cannabinoids/ (accessed on 14 September 2023).
- Aphios. Available online: https://aphios.com/investors/investors-overview/aphios-pharma-llc/ (accessed on 14 September 2023).
- Bruun, H.Z.; Boesen, D.S.; Nielsen, B.P. Fast Disintegrating Cannabinoid Tablets. 2019. Available online: https://patents.google.com/patent/WO2020211915A1/ (accessed on 14 September 2023).
- Bruun, H.Z.; Boesen, D.S.; Eriksen, A. Lozenge for Improved Delivery of Cannabinoids. 2019. Available online: https://patents.google.com/patent/CA3040532A1/en (accessed on 14 September 2023).
- Bruun, H.Z.; Boesen, D.S.; Eriksen, A.; Wittorff, H. Oral Cannabinoid Tablet. 2019. Available online: https://patents.google.com/patent/US10925853B2 (accessed on 14 September 2023).
- Knaub, K.; Sartorius, T.; Dharsono, T.; Wacker, R.; Wilhelm, M.; Schon, C. A Novel Self-Emulsifying Drug Delivery System (SEDDS) Based on VESIsorb((R)) Formulation Technology Improving the Oral Bioavailability of Cannabidiol in Healthy Subjects. Molecules 2019, 24, 2967. [Google Scholar] [CrossRef]
- Hosseini, A.; McLachlan, A.J.; Lickliter, J.D. A phase I trial of the safety, tolerability and pharmacokinetics of cannabidiol administered as single-dose oil solution and single and multiple doses of a sublingual wafer in healthy volunteers. Brit. J. Clin. Pharmacol. 2021, 87, 2070–2077. [Google Scholar] [CrossRef]
- Berl, V.; Hurd, Y.L.; Lipshutz, B.H.; Roggen, M.; Mathur, E.J.; Evans, M. A Randomized, Triple-Blind, Comparator-Controlled Parallel Study Investigating the Pharmacokinetics of Cannabidiol and Tetrahydrocannabinol in a Novel Delivery System, Solutech, in Association with Cannabis Use History. Cannabis Cannabinoid Res. 2022, 7, 777–789. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, J.M.; Vazquez, A.R.; Remijan, N.D.; Trotter, R.E.; McMillan, T.V.; Freedman, K.E.; Wei, Y.; Woelfel, K.A.; Arnold, O.R.; Wolfe, L.M.; et al. Evaluation of pharmacokinetics and acute anti-inflammatory potential of two oral cannabidiol preparations in healthy adults. Phytother. Res. 2020, 34, 1696–1703. [Google Scholar] [CrossRef] [PubMed]
- Patrician, A.; Versic-Bratincevic, M.; Mijacika, T.; Banic, I.; Marendic, M.; Sutlovic, D.; Dujic, Z.; Ainslie, P.N. Examination of a New Delivery Approach for Oral Cannabidiol in Healthy Subjects: A Randomized, Double-Blinded, Placebo-Controlled Pharmacokinetics Study. Adv. Ther. 2019, 36, 3196–3210. [Google Scholar] [CrossRef] [PubMed]
- Devinsky, O.; Kraft, K.; Rusch, L.; Fein, M.; Leone-Bay, A. Improved bioavailability with dry powder cannabidiol inhalation: A phase 1 clinical study. J. Pharm. Sci. 2021, 110, 3946–3952. [Google Scholar] [CrossRef] [PubMed]
- De Pra, M.A.A.; Vardanega, R.; Loss, C.G. Lipid-based formulations to increase cannabidiol bioavailability: In vitro digestion tests, pre-clinical assessment and clinical trial. Int. J. Pharm. 2021, 609, 121159. [Google Scholar] [CrossRef] [PubMed]
- Izgelov, D.; Davidson, E.; Barasch, D.; Regev, A.; Domb, A.J.; Hoffman, A. Pharmacokinetic investigation of synthetic cannabidiol oral formulations in healthy volunteers. Eur. J. Pharm. Biopharm. 2020, 154, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Bergeria, C.L.; Spindle, T.R.; Cone, E.J.; Sholler, D.; Goffi, E.; Mitchell, J.M.; Winecker, R.E.; Bigelow, G.E.; Flegel, R.; Vandrey, R. Pharmacokinetic profile of ∆9-tetrahydrocannabinol, cannabidiol and metabolites in blood following vaporization and oral ingestion of cannabidiol products. J. Anal. Toxicol. 2022, 46, 583–591. [Google Scholar] [CrossRef] [PubMed]
- MacNair, L.; Kulpa, J.; Hill, M.L.; Eglit, G.M.L.; Mosesova, I.; Bonn-Miller, M.O.; Peters, E.N. Sex Differences in the Pharmacokinetics of Cannabidiol and Metabolites Following Oral Administration of a Cannabidiol-Dominant Cannabis Oil in Healthy Adults. Cannabis Cannabinoid Res. 2023. [Google Scholar] [CrossRef]
- Taylor, L.; Gidal, B.; Blakey, G.; Tayo, B.; Morrison, G. A phase I, randomized, double-blind, placebo-controlled, single ascending dose, multiple dose, and food effect trial of the safety, tolerability and pharmacokinetics of highly purified cannabidiol in healthy subjects. CNS Drugs 2018, 32, 1053–1067. [Google Scholar] [CrossRef]
- Schoedel, K.A.; Szeto, I.; Setnik, B.; Sellers, E.M.; Levy-Cooperman, N.; Mills, C.; Etges, T.; Sommerville, K. Abuse potential assessment of cannabidiol (CBD) in recreational polydrug users: A randomized, double-blind, controlled trial. Epilepsy Behav. 2018, 88, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Manini, A.F.; Yiannoulos, G.; Bergamaschi, M.M.; Hernandez, S.; Olmedo, R.; Barnes, A.J.; Winkel, G.; Sinha, R.; Jutras-Aswad, D.; Huestis, M.A.; et al. Safety and Pharmacokinetics of Oral Cannabidiol When Administered Concomitantly With Intravenous Fentanyl in Humans. J. Addict. Med. 2015, 9, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Crippa, J.A.; Pereira Junior, L.C.; Pereira, L.C.; Zimmermann, P.M.; Brum Junior, L.; Rechia, L.M.; Dias, I.; Hallak, J.E.; Campos, A.C.; Guimaraes, F.S.; et al. Effect of two oral formulations of cannabidiol on responses to emotional stimuli in healthy human volunteers: Pharmaceutical vehicle matters. Braz. J. Psychiatry 2022, 44, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Williams, N.N.B.; Ewell, T.R.; Abbotts, K.S.S.; Harms, K.J.; Woelfel, K.A.; Dooley, G.P.; Weir, T.L.; Bell, C. Comparison of Five Oral Cannabidiol Preparations in Adult Humans: Pharmacokinetics, Body Composition, and Heart Rate Variability. Pharmaceuticals 2021, 14, 35. [Google Scholar] [CrossRef] [PubMed]
- Cherniakov, I.; Izgelov, D.; Barasch, D.; Davidson, E.; Domb, A.J.; Hoffman, A. Piperine-pro-nanolipospheres as a novel oral delivery system of cannabinoids: Pharmacokinetic evaluation in healthy volunteers in comparison to buccal spray administration. J. Control. Release 2017, 266, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Atsmon, J.; Cherniakov, I.; Izgelov, D.; Hoffman, A.; Domb, A.J.; Deutsch, L.; Deutsch, F.; Heffetz, D.; Sacks, H. PTL401, a New Formulation Based on Pro-Nano Dispersion Technology, Improves Oral Cannabinoids Bioavailability in Healthy Volunteers. J. Pharm. Sci. 2018, 107, 1423–1429. [Google Scholar] [CrossRef] [PubMed]
- Spindle, T.R.; Cone, E.J.; Goffi, E.; Weerts, E.M.; Mitchell, J.M.; Winecker, R.E.; Bigelow, G.E.; Flegel, R.R.; Vandrey, R. Pharmacodynamic effects of vaporized and oral cannabidiol (CBD) and vaporized CBD-dominant cannabis in infrequent cannabis users. Drug Alcohol. Depend. 2020, 211, 107937. [Google Scholar] [CrossRef] [PubMed]
- Atsmon, J.; Heffetz, D.; Deutsch, L.; Deutsch, F.; Sacks, H. Single-Dose Pharmacokinetics of Oral Cannabidiol Following Administration of PTL101: A New Formulation Based on Gelatin Matrix Pellets Technology. Clin. Pharmacol. Drug Dev. 2018, 7, 751–758. [Google Scholar] [CrossRef]
- Haney, M.; Malcolm, R.J.; Babalonis, S.; Nuzzo, P.A.; Cooper, Z.D.; Bedi, G.; Gray, K.M.; McRae-Clark, A.; Lofwall, M.R.; Sparenborg, S.; et al. Oral Cannabidiol does not Alter the Subjective, Reinforcing or Cardiovascular Effects of Smoked Cannabis. Neuropsychopharmacology 2016, 41, 1974–1982. [Google Scholar] [CrossRef]
- Guy, G.W.; Robson, P.J. A Phase I, Open Label, Four-Way Crossover Study to Compare the Pharmacokinetic Profiles of a Single Dose of 20 mg of a Cannabis Based Medicine Extract (CBME) Administered on 3 Different Areas of the Buccal Mucosa and to Investigate the Pharmacokinetics of CBME per Oral in Healthy Male and Female Volunteers (GWPK0112). J. Cannabis Ther. 2004, 3, 79–120. [Google Scholar] [CrossRef]
- Vitetta, L.; Butcher, B.; Henson, J.D.; Rutolo, D.; Hall, S. A pilot safety, tolerability and pharmacokinetic study of an oro-buccal administered cannabidiol-dominant anti-inflammatory formulation in healthy individuals: A randomized placebo-controlled single-blinded study. Inflammopharmacol. 2021, 29, 1361–1370. [Google Scholar] [CrossRef]
- Stott, C.G.; White, L.; Wright, S.; Wilbraham, D.; Guy, G.W. A phase I study to assess the effect of food on the single dose bioavailability of the THC/CBD oromucosal spray. Eur. J. Clin. Pharmacol. 2013, 69, 825–834. [Google Scholar] [CrossRef] [PubMed]
- Stott, C.; White, L.; Wright, S.; Wilbraham, D.; Guy, G. A Phase I, open-label, randomized, crossover study in three parallel groups to evaluate the effect of Rifampicin, Ketoconazole, and Omeprazole on the pharmacokinetics of THC/CBD oromucosal spray in healthy volunteers. SpringerPlus 2013, 2, 236. [Google Scholar] [CrossRef]
- Karschner, E.L.; Darwin, W.D.; Goodwin, R.S.; Wright, S.; Huestis, M.A. Plasma Cannabinoid Pharmacokinetics following Controlled Oral Δ9-Tetrahydrocannabinol and Oromucosal Cannabis Extract Administration. Clin. Chem. 2011, 57, 66–75. [Google Scholar] [CrossRef]
- Lim, S.Y.; Sharan, S.; Woo, S. Model-based analysis of cannabidiol dose-exposure relationship and bioavailability. Pharmacother J. Hum. Pharmacol. Drug Ther. 2020, 40, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Sholler, D.J.; Spindle, T.R.; Cone, E.J.; Goffi, E.; Kuntz, D.; Mitchell, J.M.; Winecker, R.E.; Bigelow, G.E.; Flegel, R.R.; Vandrey, R. Urinary Pharmacokinetic Profile of Cannabidiol (CBD), Δ9-Tetrahydrocannabinol (THC) and Their Metabolites following Oral and Vaporized CBD and Vaporized CBD-Dominant Cannabis Administration. J. Anal. Toxicol. 2022, 46, 494–503. [Google Scholar] [CrossRef]
- Paudel, K.S.; Hammell, D.C.; Agu, R.U.; Valiveti, S.; Stinchcomb, A.L. Cannabidiol bioavailability after nasal and transdermal application: Effect of permeation enhancers. Drug Dev. Ind. Pharm. 2010, 36, 1088–1097. [Google Scholar] [CrossRef]
- Ahmed, B.; Rizwanullah, M.; Mir, S.R.; Akhtar, M.S.; Amin, S. Development of cannabidiol nanoemulsion for direct nose to brain delivery: Statistical optimization, in vitroandin vivoevaluation. BioMed. Mater. 2022, 17, 065009. [Google Scholar] [CrossRef] [PubMed]
- Samara, E.; Bialer, M.; Mechoulam, R. Pharmacokinetics of cannabidiol in dogs. Drug Metab. Dispos. 1988, 16, 469–472. [Google Scholar]
- Ohlsson, A.; Lindgren, J.E.; Andersson, S.; Agurell, S.; Gillespie, H.; Hollister, L.E. Single-dose kinetics of deuterium-labelled cannabidiol in man after smoking and intravenous administration. Biomed. Environ. Mass Spectrom. 1986, 13, 77–83. [Google Scholar] [CrossRef]
- Varadi, G.; Zhu, Z.; Crowley, H.D.; Moulin, M.; Dey, R.; Lewis, E.D.; Evans, M. Examining the Systemic Bioavailability of Cannabidiol and Tetrahydrocannabinol from a Novel Transdermal Delivery System in Healthy Adults: A Single-Arm, Open-Label, Exploratory Study. Adv. Ther. 2023, 40, 282–293. [Google Scholar] [CrossRef]
- Heineman, J.T.; Forster, G.L.; Stephens, K.L.; Cottler, P.S.; Timko, M.P.; De George, B.R., Jr. A Randomized Controlled Trial of Topical Cannabidiol for the Treatment of Thumb Basal Joint Arthritis. J. Hand. Surg. Am. 2022, 47, 611–620. [Google Scholar] [CrossRef]
- Xu, D.H.; Cullen, B.D.; Tang, M.; Fang, Y. The effectiveness of topical cannabidiol oil in symptomatic relief of peripheral neuropathy of the lower extremities. Curr. Pharm. Biotechnol. 2020, 21, 390–402. [Google Scholar] [CrossRef]
- Berry-Kravis, E.; Hagerman, R.; Budimirovic, D.; Erickson, C.; Heussler, H.; Tartaglia, N.; Cohen, J.; Tassone, F.; Dobbins, T.; Merikle, E.; et al. A randomized, controlled trial of ZYN002 cannabidiol transdermal gel in children and adolescents with fragile X syndrome (CONNECT-FX). J. Neurodev. Disord. 2022, 14, 56. [Google Scholar] [CrossRef]
- Junaid, M.S.A.; Tijani, A.O.; Puri, A.; Banga, A.K. In vitro percutaneous absorption studies of cannabidiol using human skin: Exploring the effect of drug concentration, chemical enhancers, and essential oils. Int. J. Pharmaceut. 2022, 616, 121540. [Google Scholar] [CrossRef]
- Radwan-Pragłowska, J.; Janus, Ł.; Piątkowski, M.; Sierakowska, A.; Szajna, E.; Matýsek, D.; Bogdał, D. Development of Stimuli-Responsive Chitosan/ZnO NPs Transdermal Systems for Controlled Cannabidiol Delivery. Polymers 2021, 13, 211. [Google Scholar] [CrossRef]
- Sivesind, T.E.; Maghfour, J.; Rietcheck, H.; Kamel, K.; Malik, A.S.; Dellavalle, R.P. Cannabinoids for the Treatment of Dermatologic Conditions. JID Innov. 2022, 2, 100095. [Google Scholar] [CrossRef] [PubMed]
- ZynerbaPharmaceuticals. ZygelTM (ZYN002 Cannabidiol Gel). Available online: https://www.zynerba.com/in-development/zygel/ (accessed on 14 September 2023).
- Kolli, A.R.; Calvino-Martin, F.; Kuczaj, A.K.; Wong, E.T.; Titz, B.; Xiang, Y.; Lebrun, S.; Schlage, W.K.; Vanscheeuwijck, P.; Hoeng, J. Deconvolution of systemic pharmacokinetics predicts inhaled aerosol dosimetry of nicotine. Eur. J. Pharm. Sci. 2023, 180, 106321. [Google Scholar] [CrossRef] [PubMed]
- Spindle, T.R.; Cone, E.J.; Kuntz, D.; Mitchell, J.M.; Bigelow, G.E.; Flegel, R.; Vandrey, R. Urinary Pharmacokinetic Profile of Cannabinoids Following Administration of Vaporized and Oral Cannabidiol and Vaporized CBD-Dominant Cannabis. J. Anal. Toxicol. 2020, 44, 109–125. [Google Scholar] [CrossRef] [PubMed]
- Mannila, J.; Jarvinen, T.; Jarvinen, K.; Jarho, P. Precipitation complexation method produces cannabidiol/beta-cyclodextrin inclusion complex suitable for sublingual administration of cannabidiol. J. Pharm. Sci. 2007, 96, 312–319. [Google Scholar] [CrossRef]
- Itin, C.; Barasch, D.; Domb, A.J.; Hoffman, A. Prolonged oral transmucosal delivery of highly lipophilic drug cannabidiol. Int. J. Pharmaceut. 2020, 581, 119276. [Google Scholar] [CrossRef]
- Tabboon, P.; Pongjanyakul, T.; Limpongsa, E.; Jaipakdee, N. In Vitro Release, Mucosal Permeation and Deposition of Cannabidiol from Liquisolid Systems: The Influence of Liquid Vehicles. Pharmaceutics 2022, 14, 1787. [Google Scholar] [CrossRef]
- Tabboon, P.; Pongjanyakul, T.; Limpongsa, E.; Jaipakdee, N. Mucosal Delivery of Cannabidiol: Influence of Vehicles and Enhancers. Pharmaceutics 2022, 14, 1687. [Google Scholar] [CrossRef]
- Chung, S.; Peters, J.M.; Detyniecki, K.; Tatum, W.; Rabinowicz, A.L.; Carrazana, E. The nose has it: Opportunities and challenges for intranasal drug administration for neurologic conditions including seizure clusters. Epilepsy Behav. Rep. 2023, 21, 100581. [Google Scholar] [CrossRef] [PubMed]
- Matarazzo, A.P.; Elisei, L.M.S.; Carvalho, F.C.; Bonfílio, R.; Ruela, A.L.M.; Galdino, G.; Pereira, G.R. Mucoadhesive nanostructured lipid carriers as a cannabidiol nasal delivery system for the treatment of neuropathic pain. Eur. J. Pharmaceut. Sci. 2021, 159, 105698. [Google Scholar] [CrossRef] [PubMed]
- Virpax® Pharmaceuticals. NobrXiol™. Available online: https://virpaxpharma.com/products/#NobrXiol (accessed on 14 September 2023).
- Barata, L.; Arruza, L.; Rodríguez, M.-J.; Aleo, E.; Vierge, E.; Criado, E.; Sobrino, E.; Vargas, C.; Ceprián, M.; Gutiérrez-Rodríguez, A.; et al. Neuroprotection by cannabidiol and hypothermia in a piglet model of newborn hypoxic-ischemic brain damage. Neuropharmacology 2019, 146, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Fouad, A.A.; Jresat, I. Therapeutic potential of cannabidiol against ischemia/reperfusion liver injury in rats. Eur. J. Pharmacol. 2011, 670, 216–223. [Google Scholar] [CrossRef]
- Wong, H.; Cairns, B.E. Cannabidiol, cannabinol and their combinations act as peripheral analgesics in a rat model of myofascial pain. Arch. Oral Biol. 2019, 104, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Moqejwa, T.; Marimuthu, T.; Kondiah, P.P.D.; Choonara, Y.E. Development of Stable Nano-Sized Transfersomes as a Rectal Colloid for Enhanced Delivery of Cannabidiol. Pharmaceutics 2022, 14, 703. [Google Scholar] [CrossRef] [PubMed]
- CardiolTherapeutics. Available online: https://www.cardiolrx.com/pipeline/ (accessed on 14 September 2023).
- Valeritas. Cannabidiol (CBD) Effectively Delivered Subcutaneously with Valeritas Proprietary h-Patch™ Wearable Device in Preclinical Study. Available online: https://www.sec.gov/Archives/edgar/data/1619250/000161925019000087/exhibit991073019.htm (accessed on 14 September 2023).
- Spittler, A.P.; Helbling, J.E.; McGrath, S.; Gustafson, D.L.; Santangelo, K.S.; Sadar, M.J. Plasma and joint tissue pharmacokinetics of two doses of oral cannabidiol oil in guinea pigs (Cavia porcellus). J. Vet. Pharmacol. Ther. 2021, 44, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Yocom, A.F.; O’Fallon, E.S.; Gustafson, D.L.; Contino, E.K. Pharmacokinetics, safety, and synovial fluid concentrations of single- and multiple-dose oral administration of 1 and 3 mg/kg cannabidiol in horses. J. Equine Vet. Sci. 2022, 113, 103933. [Google Scholar] [CrossRef] [PubMed]
- Child, R.B.; Tallon, M.J. Cannabidiol (CBD) dosing: Plasma pharmacokinetics and effects on accumulation in skeletal muscle, liver and adipose tissue. Nutrients 2022, 14, 2101. [Google Scholar] [CrossRef]
- Hatziagapiou, K.; Bethanis, K.; Koniari, E.; Christoforides, E.; Nikola, O.; Andreou, A.; Mantzou, A.; Chrousos, G.P.; Kanaka-Gantenbein, C.; Lambrou, G.I. Biophysical Studies and In Vitro Effects of Tumor Cell Lines of Cannabidiol and Its Cyclodextrin Inclusion Complexes. Pharmaceutics 2022, 14, 706. [Google Scholar] [CrossRef]
- Hernán Pérez de la Ossa, D.; Ligresti, A.; Gil-Alegre, M.E.; Aberturas, M.R.; Molpeceres, J.; Di Marzo, V.; Torres Suárez, A.I. Poly-ε-caprolactone microspheres as a drug delivery system for cannabinoid administration: Development, characterization and in vitro evaluation of their antitumoral efficacy. J. Control. Release 2012, 161, 927–932. [Google Scholar] [CrossRef]
- Aparicio-Blanco, J.; Sebastián, V.; Benoit, J.P.; Torres-Suárez, A.I. Lipid nanocapsules decorated and loaded with cannabidiol as targeted prolonged release carriers for glioma therapy: In vitro screening of critical parameters. Eur. J. Pharm. Biopharm. 2019, 134, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Zhan, Y.; Zheng, L.; Wei, Q.; Xu, S.; Qin, Z. Cannabidiol-Loaded Poly Lactic-Co-Glycolic Acid Nanoparticles with Improved Bioavailability as a Potential for Osteoarthritis Therapeutic. ChemBioChem 2023, 24, e202200698. [Google Scholar] [CrossRef]
- Schicho, R.; Storr, M. Topical and Systemic Cannabidiol Improves Trinitrobenzene Sulfonic Acid Colitis in Mice. Pharmacology 2012, 89, 149–155. [Google Scholar] [CrossRef]
- Duchi, S.; Ovadia, H.; Touitou, E. Nasal administration of drugs as a new non-invasive strategy for efficient treatment of multiple sclerosis. J. Neuroimmunol. 2013, 258, 32–40. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Sullivan, S.E.; Jensen, S.S.; Kolli, A.R.; Nikolajsen, G.N.; Bruun, H.Z.; Hoeng, J. Strategies to Improve Cannabidiol Bioavailability and Drug Delivery. Pharmaceuticals 2024, 17, 244. https://doi.org/10.3390/ph17020244
O’Sullivan SE, Jensen SS, Kolli AR, Nikolajsen GN, Bruun HZ, Hoeng J. Strategies to Improve Cannabidiol Bioavailability and Drug Delivery. Pharmaceuticals. 2024; 17(2):244. https://doi.org/10.3390/ph17020244
Chicago/Turabian StyleO’Sullivan, Saoirse Elizabeth, Sanne Skov Jensen, Aditya Reddy Kolli, Gitte Nykjær Nikolajsen, Heidi Ziegler Bruun, and Julia Hoeng. 2024. "Strategies to Improve Cannabidiol Bioavailability and Drug Delivery" Pharmaceuticals 17, no. 2: 244. https://doi.org/10.3390/ph17020244
APA StyleO’Sullivan, S. E., Jensen, S. S., Kolli, A. R., Nikolajsen, G. N., Bruun, H. Z., & Hoeng, J. (2024). Strategies to Improve Cannabidiol Bioavailability and Drug Delivery. Pharmaceuticals, 17(2), 244. https://doi.org/10.3390/ph17020244