A Dietary Plant Extract Formulation Helps Reduce Flea Populations in Cats: A Double-Blind Randomized Study
Abstract
:1. Introduction
2. Results
2.1. Tolerance
2.2. Antiparasitic Activity
2.3. Dermatological Examination
3. Discussion
4. Material and Methods
4.1. Reagents and Chemical Products
4.2. Animals
4.3. Evaluation of Antiparasitic Activity
4.4. Clinical Evaluation of Tolerance
4.5. Clinical Evaluation of Dermatological Follow-Up
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farkas, R.; Gyurkovszky, M.; Solymosi, N.; Beugnet, F. Prevalence of flea infestation in dogs and cats in Hungary combined with a survey of owner awareness. Med. Vet. Entomol. 2009, 23, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Kalvelage, H.; Munster, M. Ctenocephalides canis and Ctenocephalides felis infestations of dogs and cats. Biology of the agent, epizootiology, pathogenesis, clinical signs, diagnosis and control. Tierarztl. Prax. 1991, 19, 200–206. [Google Scholar] [PubMed]
- Rinaldi, L.; Spera, G.; Musella, V.; Carbone, S.; Veneziano, V.; Iori, A.; Cringoli, G. A survey of fleas on dogs in southern Italy. Vet. Parasitol. 2007, 148, 375–378. [Google Scholar] [CrossRef] [PubMed]
- Hajipour, N.; Keighobadi, M.; Minas, A.; Abad, R.; Golabi, M.; Badali, A. Prevalence of flea infestation in stray cats in North West of Iran, Iran. Biol. Forum Int. J. 2015, 7, 575–580. [Google Scholar]
- Franc, M.; Choquart, P.; Cadiergues, M.C. Species of fleas found on dogs in France. Rev. Med. Vet. 1998, 149, 135–140. [Google Scholar]
- Iannino, F.; Sulli, N.; Maitino, A.; Pascucci, I.; Pampiglione, G.; Salucci, S. Fleas of dog and cat: Species, biology and flea-borne diseases. Vet. Ital. 2017, 53, 277–288. [Google Scholar] [CrossRef]
- McElroy, K.M.; Blagburn, B.L.; Breitschwerdt, E.B.; Mead, P.S.; McQuiston, J.H. Flea-associated zoonotic diseases of cats in the USA: Bartonellosis, flea-borne rickettsioses, and plague. Trends Parasitol. 2010, 26, 197–204. [Google Scholar] [CrossRef]
- Shaw, S.E.; Kenny, M.J.; Tasker, S.; Birtles, R.J. Pathogen carriage by the cat flea Ctenocephalides felis (Bouche) in the United Kingdom. Vet. Microbiol. 2004, 102, 183–188. [Google Scholar] [CrossRef]
- Vobis, M.; D’Haese, J.; Mehlhorn, H.; Mencke, N. Evidence of horizontal transmission of feline leukemia virus by the cat flea (Ctenocephalides felis). Parasitol. Res. 2003, 91, 467–470. [Google Scholar] [CrossRef]
- Traversa, D. Fleas infesting pets in the era of emerging extra-intestinal nematodes. Parasites Vectors 2013, 6, 59. [Google Scholar] [CrossRef] [Green Version]
- Wilkerson, M.J.; Bagladi-Swanson, M.; Wheeler, D.W.; Floyd-Hawkins, K.; Craig, C.; Lee, K.W.; Dryden, M. The immunopathogenesis of flea allergy dermatitis in dogs, an experimental study. Vet. Immunol. Immunopathol. 2004, 99, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Association-Interprofessionnelle-d’Etude-du-Médicament-Vétérinaire. Marché 2020 France Chiffres Clés. 2020. Available online: https://www.simv.org/sites/default/files/marche_2020_france_chiffres_aiemv_publics_-_annuel_2020.pdf (accessed on 28 December 2022).
- Selzer, P.M.; Epe, C. Antiparasitics in Animal Health: Quo Vadis? Trends Parasitol. 2021, 37, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Coles, T.B.; Dryden, M.W. Insecticide/acaricide resistance in fleas and ticks infesting dogs and cats. Parasites Vectors 2014, 7, 8. [Google Scholar] [CrossRef] [Green Version]
- Bekele, D. Review on insecticidal and repellent activity of plant products for malaria mosquito control. Biomed. Res. Rev. 2018, 2, 1–7. [Google Scholar] [CrossRef]
- Treutter, D. Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol. 2005, 7, 581–591. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Koul, O.; Walia, S.; Dhaliwal, G.S. Essential Oils as Green Pesticides: Potential and Constraints. Biopestic. Int. 2008, 4, 63–84. [Google Scholar]
- Maia, M.F.; Moore, S.J. Plant-based insect repellents: A review of their efficacy, development and testing. Malar. J. 2011, 10, S11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batista, L.C.D.S.; Cid, Y.P.; De Almeida, A.P.; Prudêncio, E.R.; Riger, C.J.; De Souza, M.A.A.; Coumendouros, K.; Chaves, D.S.A. In vitro efficacy of essential oils and extracts of Schinus molle L. against Ctenocephalides felis felis. Parasitology 2016, 143, 627–638. [Google Scholar] [CrossRef]
- Tabari, M.A.; Youssefi, M.R.; Maggi, F.; Benelli, G. Toxic and repellent activity of selected monoterpenoids (thymol, carvacrol and linalool) against the castor bean tick, Ixodes ricinus (Acari: Ixodidae). Vet. Parasitol. 2017, 245, 86–91. [Google Scholar] [CrossRef]
- Strothmann, A.L.; Berne, M.E.A.; Capella, G.D.A.; Moura, M.Q.D.; Terto, W.D.D.S.; Costa, C.M.D.; Pinheiro, N.B. Antiparasitic treatment using herbs and spices: A review of the literature of the phytotherapy. Braz. J. Vet. Med. 2022, 44, e004722. [Google Scholar] [CrossRef] [PubMed]
- Miresmailli, S.; Isman, M.B. Efficacy and persistence of rosemary oil as an acaricide against twospotted spider mite (Acari: Tetranychidae) on greenhouse tomato. J. Econ. Entomol. 2006, 99, 2015–2023. [Google Scholar] [CrossRef] [PubMed]
- Petrisor, G.; Motelica, L.; Craciun, L.N.; Oprea, O.C.; Ficai, D.; Ficai, A. Melissa officinalis: Composition, Pharmacological Effects and Derived Release Systems: A Review. Int. J. Mol. Sci. 2022, 23, 3591. [Google Scholar] [CrossRef] [PubMed]
- Mandal, D.; Sarkar, T.; Chakraborty, R. Critical Review on Nutritional, Bioactive, and Medicinal Potential of Spices and Herbs and Their Application in Food Fortification and Nanotechnology. Appl. Biochem. Biotechnol. 2023, 195, 1319–1513. [Google Scholar] [CrossRef]
- Ekiert, H.; Klimek-Szczykutowicz, M.; Rzepiela, A.; Klin, P.; Szopa, A. Artemisia Species with High Biological Values as a Potential Source of Medicinal and Cosmetic Raw Materials. Molecules 2022, 27, 6427. [Google Scholar] [CrossRef]
- Boukhatem, M.N.; Ferhat, M.A.; Kameli, A.; Saidi, F.; Kebir, H.T. Lemon grass (Cymbopogon citratus) essential oil as a potent anti-inflammatory and antifungal drugs. Libyan J. Med. 2014, 9, 25431. [Google Scholar] [CrossRef] [PubMed]
- Pohlit, A.M.; Lopes, N.P.; Gama, R.A.; Tadei, W.P.; Neto, V.F. Patent literature on mosquito repellent inventions which contain plant essential oils—A review. Planta Med. 2011, 77, 598–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moog, F.; Plichart, G.V.; Blua, J.L.; Cadiergues, M.C. Evaluation of a plant-based food supplement to control flea populations in dogs: A prospective double-blind randomized study. Int. J. Parasitol. Drugs Drug Resist. 2020, 12, 35–38. [Google Scholar] [CrossRef]
- Harborne, J.B.; Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry 2000, 55, 481–504. [Google Scholar] [CrossRef]
- Grayer, R.J.; Harborne, J.B.; Kimmins, F.M.; Stevenson, P.C.; Wijayagunasekera, H.N.P. Phenolics in rice phloem sap as sucking deterrents to the brown planthopper, Nilaparvata lugens. Int. Symp. Nat. Phenols Plant Resist. 1994, 381, 691–694. [Google Scholar] [CrossRef]
- Kielkiewicz, M. The appearance of phenolics in tomato leaf tissues exposed to spider mite attack. Int. Symp. Nat. Phenols Plant Resist. 1994, 381, 687–690. [Google Scholar] [CrossRef]
- Boncan, D.A.T.; Tsang, S.S.K.; Li, C.; Lee, I.H.T.; Lam, H.M.; Chan, T.F.; Hui, J.H.L. Terpenes and Terpenoids in Plants: Interactions with Environment and Insects. Int. J. Mol. Sci. 2020, 21, 7382. [Google Scholar] [CrossRef] [PubMed]
- Matos, R.B.; Braga-de-Souza, S.; Pitanga, B.P.; Silva, V.D.; Jesus, E.E.; Pinheiro, A.M.; Costa Mde, F.; El-Bacha Rdos, S.; Ribeiro, C.S.; Costa, S.L. Flavonoids modulate the proliferation of Neospora caninum in glial cell primary cultures. Korean J. Parasitol. 2014, 52, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Perez-Vizcaino, F.; Fraga, C.G. Research trends in flavonoids and health. Arch. Biochem. Biophys. 2018, 646, 107–112. [Google Scholar] [CrossRef]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef]
- Breitschwerdt, E.B.; Maggi, R.G.; Chomel, B.B.; Lappin, M.R. Bartonellosis: An emerging infectious disease of zoonotic importance to animals and human beings. J. Vet. Emerg. Crit. Care 2010, 20, 8–30. [Google Scholar] [CrossRef]
- Eisen, R.J.; Gage, K.L. Transmission of flea-borne zoonotic agents. Annu. Rev. Entomol. 2012, 57, 61–82. [Google Scholar] [CrossRef] [Green Version]
- EMEA/CVMP/EWP/005/2000-Rev.3. Guideline for the Testing and Evaluation of the Efficacy of Antiparasitic Substances for the Treatment and Prevention of Tick and Flea Infestation in Dogs and Cats. 2016. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-testing-evaluation-efficacy-antiparastic-substances-treatment-prevention-tick-flea_en.pdf (accessed on 28 December 2022).
- Rust, M.K. The Biology and Ecology of Cat Fleas and Advancements in Their Pest Management: A Review. Insects 2017, 8, 118. [Google Scholar] [CrossRef] [Green Version]
- Murphy, D. Environmental risk assessment of veterinary medicines. Vet. Rec. 2018, 183, 697. [Google Scholar] [CrossRef]
- Powell, K.; Foster, C.; Evans, S. Environmental dangers of veterinary antiparasitic agents. Vet. Rec. 2018, 183, 599–600. [Google Scholar] [CrossRef]
- Tao, L.; Hoang, K.M.; Hunter, M.D.; de Roode, J.C. Fitness costs of animal medication: Antiparasitic plant chemicals reduce fitness of monarch butterfly hosts. J. Anim. Ecol. 2016, 85, 1246–1254. [Google Scholar] [CrossRef] [PubMed]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Am. Mosq. Control Assoc. 1925, 3, 302–303. [Google Scholar] [CrossRef]
D0 | D14 | D30 | D60 | D90 | D120 | D150 | ||
---|---|---|---|---|---|---|---|---|
Group A | Count range | 11–19 | 13–16 | 10–17 | 10–17 | 10–20 | 10–18 | 10–18 |
Mean | 14.5 | 14.4 | 12.6 | 13.6 | 15 | 14.6 | 14.3 | |
SD | 2.4 | 1.0 | 1.9 | 2.3 | 2.6 | 2.3 | 2.5 | |
Group B | Count range | 14–32 | 3–25 | 4–25 | 4–18 | 0–13 | 2–10 | 1–8 |
Mean | 21.7 | 14.8 | 9.2 | 10.9 | 7.2 | 5 | 3.3 | |
SD | 5.7 | 7.5 | 6.1 | 5.3 | 3.9 | 2.4 | 2.1 | |
t-test p value (significance p < 0.05) | 0.002 | 0.87 | 0.112 | 0.16 | <0.0001 | <0.0001 | <0.0001 | |
* | * | * | * | |||||
Efficacy % treatment vs. placebo | −50% | −3% | 27% | 20% | 52% | 66% | 77% | |
Efficacy % placebo (t) vs. D0 | / | 1% | 13% | 6% | −3% | −1% | 1% | |
Efficacy % treatment (t) vs. D0 | / | 32% | 58% | 50% | 67% | 77% | 85% |
Observer | General Behavior | Appetite | Digestive Signs | Respiratory Signs | Neurologic Signs | Skin Signs | Pruritus |
---|---|---|---|---|---|---|---|
owner | daily observation | daily observation | daily observation | daily observation | daily observation | daily observation | daily observation |
investigator | observation during the visit | abdominal palpation | auscultation | observation during the visit | evaluation of alopecia excoriations papules pustules crusts eosinophilic plaques | observation during the visit |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banuls, D.; Brun, J.; Blua, J.-L.; Cadiergues, M.C. A Dietary Plant Extract Formulation Helps Reduce Flea Populations in Cats: A Double-Blind Randomized Study. Pharmaceuticals 2023, 16, 195. https://doi.org/10.3390/ph16020195
Banuls D, Brun J, Blua J-L, Cadiergues MC. A Dietary Plant Extract Formulation Helps Reduce Flea Populations in Cats: A Double-Blind Randomized Study. Pharmaceuticals. 2023; 16(2):195. https://doi.org/10.3390/ph16020195
Chicago/Turabian StyleBanuls, Damien, Jessie Brun, Jean-Louis Blua, and Marie Christine Cadiergues. 2023. "A Dietary Plant Extract Formulation Helps Reduce Flea Populations in Cats: A Double-Blind Randomized Study" Pharmaceuticals 16, no. 2: 195. https://doi.org/10.3390/ph16020195
APA StyleBanuls, D., Brun, J., Blua, J. -L., & Cadiergues, M. C. (2023). A Dietary Plant Extract Formulation Helps Reduce Flea Populations in Cats: A Double-Blind Randomized Study. Pharmaceuticals, 16(2), 195. https://doi.org/10.3390/ph16020195