Fisetin in Cancer: Attributes, Developmental Aspects, and Nanotherapeutics
Abstract
:1. Introduction
2. Physicochemical Properties and Synthesis of Fisetin
3. Mechanism of Action
4. Pharmacokinetics and Bioavailability of Fisetin
5. Novel Formulation Strategies and Drug Delivery System of Fisetin
5.1. Complexation
5.2. Self-Nanoemulsifying Drug Delivery System (SNEDDS)
5.3. Lipid Vesicles
5.4. Lipid-Based Nanoparticles
5.5. Polymeric Micelles and Nanoparticles
6. Patents Related to Fisetin
7. Conclusion and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Latest Global Cancer Data: Cancer Burden Rises to 19.3 Million New Cases and 10.0 Million Cancer Deaths in 2020; International Agency for Research on Cancer: Lyon, France, 2020; pp. 13–15. [Google Scholar]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Liberti, M.V.; Locasale, J.W. The Warburg Effect: How Does It Benefit Cancer Cells? Trends Biochem. Sci. 2016, 41, 211–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Y. Tumorigenesis as a Process of Gradual Loss of Original Cell Identity and Gain of Properties of Neural Precursor/Progenitor Cells. Cell Biosci. 2017, 7, 61. [Google Scholar] [CrossRef] [Green Version]
- Lindsey, S.; Langhans, S.A. Crosstalk of Oncogenic Signaling Pathways during Epithelial-Mesenchymal Transition. Front. Oncol. 2014, 4, 358. [Google Scholar] [CrossRef] [PubMed]
- Kontomanolis, E.N.; Koutras, A.; Syllaios, A.; Schizas, D.; Mastoraki, A.; Garmpis, N.; Diakosavvas, M.; Angelou, K.; Tsatsaris, G.; Pagkalos, A.; et al. Role of Oncogenes and Tumor-Suppressor Genes in Carcinogenesis: A Review. Anticancer Res. 2020, 40, 6009–6015. [Google Scholar] [CrossRef] [PubMed]
- Korgaonkar, N.; Yadav, K.S. Understanding the Biology and Advent of Physics of Cancer with Perspicacity in Current Treatment Therapy. Life Sci. 2019, 239, 117060. [Google Scholar] [CrossRef]
- Sak, K. Cytotoxicity of Dietary Flavonoids on Different Human Cancer Types. Pharmacogn. Rev. 2014, 8, 122–146. [Google Scholar] [CrossRef] [Green Version]
- Raffa, D.; Maggio, B.; Raimondi, M.V.; Plescia, F.; Daidone, G. Recent Discoveries of Anticancer Flavonoids. Eur. J. Med. Chem. 2017, 142, 213–228. [Google Scholar] [CrossRef]
- Hodek, P.; Trefil, P.; Stiborová, M. Flavonoids-Potent and Versatile Biologically Active Compounds Interacting with Cytochromes P450. Chem. Biol. Interact. 2002, 139, 1–21. [Google Scholar] [CrossRef]
- Jang, H.S.; Kook, S.H.; Son, Y.O.; Kim, J.G.; Jeon, Y.M.; Jang, Y.S.; Choi, K.C.; Kim, J.; Han, S.K.; Lee, K.Y.; et al. Flavonoids Purified from Rhus Verniciflua Stokes Actively Inhibit Cell Growth and Induce Apoptosis in Human Osteosarcoma Cells. Biochim. Biophys. Acta-Gen. Subj. 2005, 1726, 309–316. [Google Scholar] [CrossRef]
- Moon, Y.J.; Wang, X.; Morris, M.E. Dietary Flavonoids: Effects on Xenobiotic and Carcinogen Metabolism. Toxicol. In Vitro 2006, 20, 187–210. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Ma, X.; Li, Q.; Yang, Y.; Xu, X.; Sun, J.; Yu, M.; Cao, K.; Yang, L.; Yang, G.; et al. Anti-cancer Effects of Fisetin on Mammary Carcinoma Cells via Regulation of the PI3K/Akt/MTOR Pathway: In Vitro and in Vivo Studies. Int. J. Mol. Med. 2018, 42, 811–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Zhang, H.; Zhu, Z.; Zhang, Q.; Ma, X.; Cui, Z.; Yao, T. Effects and Mechanism of Flavonoids from Astragalus Complanatus on Breast Cancer Growth. Naunyn. Schmiedebergs. Arch. Pharmacol. 2015, 388, 965–972. [Google Scholar] [CrossRef]
- Dinakar, Y.H.; Kumar, H.; Mudavath, S.L.; Jain, R.; Ajmeer, R.; Jain, V. Role of STAT3 in the Initiation, Progression, Proliferation and Metastasis of Breast Cancer and Strategies to Deliver JAK and STAT3 Inhibitors. Life Sci. 2022, 309, 120996. [Google Scholar] [CrossRef] [PubMed]
- Nde, C.; Zingue, S.; Winter, E.; Creczynski-Pasa, T.; Michel, T.; Fernandez, X.; Njamen, D.; Clyne, C. Flavonoids, Breast Cancer Chemopreventive and/or Chemotherapeutic Agents. Curr. Med. Chem. 2015, 22, 3434–3446. [Google Scholar] [CrossRef]
- Abotaleb, M.; Samuel, S.M.; Varghese, E.; Varghese, S.; Kubatka, P.; Liskova, A.; Büsselberg, D. Flavonoids in Cancer and Apoptosis. Cancers 2019, 11, 28. [Google Scholar] [CrossRef] [Green Version]
- Syed, D.; Adhami, V.; Khan, M.; Mukhtar, H. Inhibition of Akt/MTOR Signaling by the Dietary Flavonoid Fisetin. Anticancer. Agents Med. Chem. 2013, 13, 995–1001. [Google Scholar] [CrossRef]
- Ravichandran, N.; Suresh, G.; Ramesh, B.; Vijaiyan Siva, G. Fisetin, a Novel Flavonol Attenuates Benzo(a)Pyrene-Induced Lung Carcinogenesis in Swiss Albino Mice. Food Chem. Toxicol. 2011, 49, 1141–1147. [Google Scholar] [CrossRef]
- Touil, Y.S.; Seguin, J.; Scherman, D.; Chabot, G.G. Improved Antiangiogenic and Antitumour Activity of the Combination of the Natural Flavonoid Fisetin and Cyclophosphamide in Lewis Lung Carcinoma-Bearing Mice. Cancer Chemother. Pharmacol. 2011, 68, 445–455. [Google Scholar] [CrossRef] [Green Version]
- Syed, D.N.; Afaq, F.; Maddodi, N.; Johnson, J.J.; Sarfaraz, S.; Ahmad, A.; Setaluri, V.; Mukhtar, H. Inhibition of Human Melanoma Cell Growth by the Dietary Flavonoid Fisetin Is Associated with Disruption of Wnt/β-Catenin Signaling and Decreased Mitf Levels. J. Investig. Dermatol. 2011, 131, 1291–1299. [Google Scholar] [CrossRef]
- Murtaza, I.; Adhami, V.M.; Hafeez, B.B.; Saleem, M.; Mukhtar, H. Fisetin, a Natural Flavonoid, Targets Chemoresistant Human Pancreatic Cancer AsPC-1 Cells through DR3-Mediated Inhibition of NF-ΚB. Int. J. Cancer 2009, 125, 2465–2473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhat, T.A.; Nambiar, D.; Pal, A.; Agarwal, R.; Singh, R.P. Fisetin Inhibits Various Attributes of Angiogenesis in Vitro and in Vivo-Implications for Angioprevention. Carcinogenesis 2012, 33, 385–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohd Yusof, Y.A. Gingerol and Its Role in Chronic Diseases. Adv. Exp. Med. Biol. 2016, 929, 177–207. [Google Scholar] [CrossRef]
- Rengarajan, T.; Yaacob, N.S. The Flavonoid Fisetin as an Anticancer Agent Targeting the Growth Signaling Pathways. Eur. J. Pharmacol. 2016, 789, 8–16. [Google Scholar] [CrossRef]
- Sechi, M.; Syed, D.N.; Pala, N.; Mariani, A.; Marceddu, S.; Brunetti, A.; Mukhtar, H.; Sanna, V. Nanoencapsulation of Dietary Flavonoid Fisetin: Formulation and in Vitro Antioxidant and α-Glucosidase Inhibition Activities. Mater. Sci. Eng. C 2016, 68, 594–602. [Google Scholar] [CrossRef]
- Li, J.; Cheng, Y.; Qu, W.; Sun, Y.; Wang, Z.; Wang, H.; Tian, B. Fisetin, a Dietary Flavonoid, Induces Cell Cycle Arrest and Apoptosis through Activation of P53 and Inhibition of NF-Kappa B Pathways in Bladder Cancer Cells. Basic Clin. Pharmacol. Toxicol. 2011, 108, 84–93. [Google Scholar] [CrossRef] [PubMed]
- PeiMing, Y.; HoHsing, T.; ChihWen, P.; WenShu, C.; ShuJun, C. Dietary Flavonoid Fisetin Targets Caspase-3-Deficient Human Breast Cancer MCF-7 Cells by Induction of Caspase-7-Associated Apoptosis and Inhibition of Autophagy. Int. J. Oncol. 2012, 40, 469–478. [Google Scholar]
- Kang, K.A.; Piao, M.J.; Hyun, J.W. Fisetin Induces Apoptosis in Human Nonsmall Lung Cancer Cells via a Mitochondria-Mediated Pathway. Vitr. Cell. Dev. Biol.-Anim. 2015, 51, 300–309. [Google Scholar] [CrossRef]
- Drug Bank. Available online: https://go.drugbank.com/Drugs/DB07795. (accessed on 5 December 2022).
- Kashyap, D.; Sharma, A.; Sak, K.; Tuli, H.S.; Buttar, H.S.; Bishayee, A. Fisetin: A Bioactive Phytochemical with Potential for Cancer Prevention and Pharmacotherapy. Life Sci. 2018, 194, 75–87. [Google Scholar] [CrossRef]
- Fisetin Item No. 15246. Available online: https://www.caymanchem.com/pdfs/15246.pdf. (accessed on 5 December 2022).
- Kimira, M.; Arai, Y.; Shimoi, K.; Watanabe, S. Japanese Intake of Flavonoids and Isoflavonoids from Foods. J. Epidemiol. 1998, 8, 168–175. [Google Scholar] [CrossRef] [Green Version]
- Surnis, S.A.; Patil, P.S.; Jadhav, R.H. Extraction, Isolation and Quantification of Bioactive Compound (Fisetin) and Its Product Formulation. Int. J. Eng. Res. 2016, 5, 56–58. [Google Scholar] [CrossRef]
- Tsurudome, N.; Minami, Y.; Kajiya, K. Fisetin, a Major Component Derived from Mulberry (Morus Australis Poir.) Leaves, Prevents Vascular Abnormal Contraction. BioFactors 2022, 48, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Direito, R.; Reis, C.; Roque, L.; Gonçalves, M.; Sanches-Silva, A.; Gaspar, M.M.; Pinto, R.; Rocha, J.; Sepodes, B.; Bronze, M.R.; et al. Phytosomes with Persimmon (Diospyros Kaki l.) Extract: Preparation and Preliminary Demonstration of in Vivo Tolerability. Pharmaceutics 2019, 11, 296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostanecki, S.; Lampe, V.; Tambor, J. Synthese Des Fisetins. Ber. der Dtsch. Chem. Ges. 1904, 37, 784–791. [Google Scholar] [CrossRef]
- Grynkiewicz, G.; Demchuk, O.M. New Perspectives for Fisetin. Front. Chem. 2019, 7, 697. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Chang, D.J.; Baratte, B.; Meijer, L.; Schulze-Gahmen, U. Crystal Structure of a Human Cyclin-Dependent Kinase 6 Complex with a Flavonol Inhibitor, Fisetin. J. Med. Chem. 2005, 48, 737–743. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.A.; Lee, S.; Kim, D.E.; Kim, M.; Kwon, B.M.; Han, D.C. Fisetin, a Dietary Flavonoid, Induces Apoptosis of Cancer Cells by Inhibiting HSF1 Activity through Blocking Its Binding to the Hsp70 Promoter. Carcinogenesis 2015, 36, 696–706. [Google Scholar] [CrossRef]
- Kammerud, S.C.; Metge, B.J.; Elhamamsy, A.R.; Weeks, S.E.; Alsheikh, H.A.; Mattheyses, A.L.; Shevde, L.A.; Samant, R.S. Novel Role of the Dietary Flavonoid Fisetin in Suppressing RRNA Biogenesis. Lab Investig. 2021, 101, 1439–1448. [Google Scholar] [CrossRef]
- Salmela, A.L.; Pouwels, J.; Varis, A.; Kukkonen, A.M.; Toivonen, P.; Halonen, P.K.; Perälä, M.; Kallioniemi, O.; Gorbsky, G.J.; Kallio, M.J. Dietary Flavonoid Fisetin Induces a Forced Exit from Mitosis by Targeting the Mitotic Spindle Checkpoint. Carcinogenesis 2009, 30, 1032–1040. [Google Scholar] [CrossRef] [Green Version]
- Sung, B.; Pandey, M.K.; Aggarwal, B.B. Fisetin, an Inhibitor of Cyclin-Dependent Kinase 6, down-Regulates Nuclear Factor-ΚB-Regulated Cell Proliferation, Antiapoptotic and Metastatic Gene Products through the Suppression of TAK-1 and Receptor-Interacting Protein-Regulated IκBα Kinase Activatio. Mol. Pharmacol. 2007, 71, 1703–1714. [Google Scholar] [CrossRef]
- Adhami, V.M.; Syed, D.N.; Khan, N.; Mukhtar, H. Dietary Flavonoid Fisetin: A Novel Dual Inhibitor of PI3K/Akt and MTOR for Prostate Cancer Management. Biochem. Pharmacol. 2012, 84, 1277–1281. [Google Scholar] [CrossRef] [PubMed]
- Pal, H.C.; Sharma, S.; Strickland, L.R.; Katiyar, S.K.; Ballestas, M.E.; Athar, M.; Elmets, C.A.; Afaq, F. Fisetin Inhibits Human Melanoma Cell Invasion through Promotion of Mesenchymal to Epithelial Transition and by Targeting MAPK and NFκB Signaling Pathways. PLoS ONE 2014, 9, e86338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noh, E.M.; Park, Y.J.; Kim, J.M.; Kim, M.S.; Kim, H.R.; Song, H.K.; Hong, O.Y.; So, H.S.; Yang, S.H.; Kim, J.S.; et al. Fisetin Regulates TPA-Induced Breast Cell Invasion by Suppressing Matrix Metalloproteinase-9 Activation via the PKC/ROS/MAPK Pathways. Eur. J. Pharmacol. 2015, 764, 79–86. [Google Scholar] [CrossRef]
- Smith, M.L.; Murphy, K.; Doucette, C.D.; Greenshields, A.L.; Hoskin, D.W. The Dietary Flavonoid Fisetin Causes Cell Cycle Arrest, Caspase-Dependent Apoptosis, and Enhanced Cytotoxicity of Chemotherapeutic Drugs in Triple-Negative Breast Cancer Cells. J. Cell. Biochem. 2016, 117, 1913–1925. [Google Scholar] [CrossRef]
- Imran, M.; Saeed, F.; Gilani, S.A.; Shariati, M.A.; Imran, A.; Afzaal, M.; Atif, M.; Tufail, T.; Anjum, F.M. Fisetin: An Anticancer Perspective. Food Sci. Nutr. 2021, 9, 3–16. [Google Scholar] [CrossRef]
- Mohapatra, M.; Mishra, A.K. Photophysical Behavior of Fisetin in Dimyristoylphosphatidylcholine Liposome Membrane. J. Phys. Chem. B 2011, 115, 9962–9970. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.W.; Yoon, Y.; Kim, M.Y.; Baik, S.K.; Ryu, H.; Park, I.H.; Eom, Y.W. 12-O-Tetradecanoylphorbol-13-Acetate Reduces Activation of Hepatic Stellate Cells by Inhibiting the Hippo Pathway Transcriptional Coactivator YAP. Cells 2022, 12, 91. [Google Scholar] [CrossRef]
- Chuang, J.Y.; Chang, P.C.; Shen, Y.C.; Lin, C.; Tsai, C.F.; Chen, J.H.; Yeh, W.L.; Wu, L.H.; Lin, H.Y.; Liu, Y.S.; et al. Regulatory Effects of Fisetin on Microglial Activation. Molecules 2014, 19, 8820–8839. [Google Scholar] [CrossRef] [Green Version]
- Chiruta, C.; Schubert, D.; Dargusch, R.; Maher, P. Chemical Modification of the Multitarget Neuroprotective Compound Fisetin. J. Med. Chem. 2012, 55, 378–389. [Google Scholar] [CrossRef]
- Youns, M.; Hegazy, W.A.H. The Natural Flavonoid Fisetin Inhibits Cellular Proliferation of Hepatic, Colorectal, and Pancreatic Cancer Cells through Modulation of Multiple Signaling Pathways. PLoS ONE 2017, 12, e0169335. [Google Scholar] [CrossRef] [Green Version]
- Jankun, J.; Selman, S.H.; Aniola, J.; Skrzypczak-Jankun, E. Nutraceutical Inhibitors of Urokinase: Potential Applications in Prostate Cancer Prevention and Treatment. Oncol. Rep. 2006, 16, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Chou, R.H.; Hsieh, S.C.; Yu, Y.L.; Huang, M.H.; Huang, Y.C.; Hsieh, Y.H. Fisetin Inhibits Migration and Invasion of Human Cervical Cancer Cells by Down-Regulating Urokinase Plasminogen Activator Expression through Suppressing the P38 MAPK-Dependent NF-ΚB Signaling Pathway. PLoS ONE 2013, 8, e71983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, W.; Zhu, J.; Zou, S.; Li, X.; Huang, J. The Efficient Expression of Human Fibroblast Collagenase in Escherichia Coli and the Discovery of Flavonoid Inhibitors. J. Enzyme Inhib. Med. Chem. 2013, 28, 741–746. [Google Scholar] [CrossRef] [PubMed]
- Olaharski, A.J.; Mondrala, S.T.; Eastmond, D.A. Chromosomal Malsegregation and Micronucleus Induction in Vitro by the DNA Topoisomerase II Inhibitor Fisetin. Mutat. Res.-Genet. Toxicol. Environ. Mutagen 2005, 582, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Shia, C.-S.; Tsai, S.-Y.; Kuo, S.-C.; Hou, Y.-C.; Chao, P.-D.L. Metabolism and Pharmacokinetics of Antihemolysis Effects of Fisetin and Its Serum Metabolites. J. Agric. Food Chem. 2009, 57, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Bothiraja, C.; Yojana, B.D.; Pawar, A.P.; Shaikh, K.S.; Thorat, U.H. Fisetin-Loaded Nanocochleates: Formulation, Characterisation, in Vitro Anticancer Testing, Bioavailability and Biodistribution Study. Expert Opin. Drug Deliv. 2014, 11, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Syed, D.N.; Ahmad, N.; Mukhtar, H. Fisetin: A Dietary Antioxidant for Health Promotion. Antioxidants Redox Signal. 2013, 19, 151–162. [Google Scholar] [CrossRef]
- Jeong, D.; Choi, J.M.; Choi, Y.; Jeong, K.; Cho, E.; Jung, S. Complexation of Fisetin with Novel Cyclosophoroase Dimer to Improve Solubility and Bioavailability. Carbohydr. Polym. 2013, 97, 196–202. [Google Scholar] [CrossRef]
- Seguin, J.; Brullé, L.; Boyer, R.; Lu, Y.M.; Ramos Romano, M.; Touil, Y.S.; Scherman, D.; Bessodes, M.; Mignet, N.; Chabot, G.G. Liposomal Encapsulation of the Natural Flavonoid Fisetin Improves Bioavailability and Antitumor Efficacy. Int. J. Pharm. 2013, 444, 146–154. [Google Scholar] [CrossRef]
- Dzakwan, M.; Ganet, E.P.; Rachmat, M.; Wikarsa, S. Nanosized and Enhancement of Solubility Fisetin. Asian J. Pharm. Res. Dev. 2019, 7, 6–10. [Google Scholar] [CrossRef]
- Mehta, P.; Pawar, A.; Mahadik, K.; Bothiraja, C. Emerging Novel Drug Delivery Strategies for Bioactive Flavonol Fisetin in Biomedicine. Biomed. Pharmacother. 2018, 106, 1282–1291. [Google Scholar] [CrossRef] [PubMed]
- Moolakkadath, T.; Aqil, M.; Ahad, A.; Imam, S.S.; Praveen, A.; Sultana, Y.; Mujeeb, M. Preparation and Optimization of Fisetin Loaded Glycerol Based Soft Nanovesicles by Box-Behnken Design. Int. J. Pharm. 2020, 578, 119125. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Yuan, X.; Chu, K.; Zhang, H.; Ji, W.; Rui, M. Preparation and Optimization of Poly (Lactic Acid) Nanoparticles Loaded with Fisetin to Improve Anti-Cancer Therapy. Int. J. Biol. Macromol. 2019, 125, 700–710. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, P.; Singha Roy, A.; Chaudhury, S.; Jana, S.K.; Chaudhury, K.; Dasgupta, S. Preparation of Albumin Based Nanoparticles for Delivery of Fisetin and Evaluation of Its Cytotoxic Activity. Int. J. Biol. Macromol. 2016, 86, 408–417. [Google Scholar] [CrossRef]
- Kadari, A.; Gudem, S.; Kulhari, H.; Bhandi, M.M.; Borkar, R.M.; Kolapalli, V.R.M.; Sistla, R. Enhanced Oral Bioavailability and Anticancer Efficacy of Fisetin by Encapsulating as Inclusion Complex with HPβCD in Polymeric Nanoparticles. Drug Deliv. 2017, 24, 224–232. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.R.; Khursheed, R.; Kumar, R.R.; Awasthi, A.; Sharma, N.; Khurana, S.; Kapoor, B.; Khurana, N.; Singh, S.K.; Gowthamarajan, K.; et al. Self-Nanoemulsifying Drug Delivery System of Fisetin: Formulation, Optimization, Characterization and Cytotoxicity Assessment. J. Drug Deliv. Sci. Technol. 2019, 54, 101252. [Google Scholar] [CrossRef]
- Ragelle, H.; Crauste-Manciet, S.; Seguin, J.; Brossard, D.; Scherman, D.; Arnaud, P.; Chabot, G.G. Nanoemulsion Formulation of Fisetin Improves Bioavailability and Antitumour Activity in Mice. Int. J. Pharm. 2012, 427, 452–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, X.; Zou, J.; Fang, Y.; Meng, Y.; Xiao, C.; Fu, J.; Liu, S.; Bai, P.; Yao, Y. Fisetin and Polymeric Micelles Encapsulating Fisetin Exhibit Potent Cytotoxic Effects towards Ovarian Cancer Cells. BMC Complement. Altern. Med. 2018, 18, 91. [Google Scholar] [CrossRef] [Green Version]
- Moolakkadath, T.; Aqil, M.; Ahad, A.; Imam, S.S.; Praveen, A.; Sultana, Y.; Mujeeb, M.; Iqbal, Z. Fisetin Loaded Binary Ethosomes for Management of Skin Cancer by Dermal Application on UV Exposed Mice. Int. J. Pharm. 2019, 560, 78–91. [Google Scholar] [CrossRef]
- Crauste-Manciet, S.; Larquet, E.; Khawand, K.; Bessodes, M.; Chabot, G.G.; Brossard, D.; Mignet, N. Lipidic Spherulites: Formulation Optimisation by Paired Optical and Cryoelectron Microscopy. Eur. J. Pharm. Biopharm. 2013, 85, 1088–1094. [Google Scholar] [CrossRef]
- Mignet, N.; Seguin, J.; Romano, M.R.; Brullé, L.; Touil, Y.S.; Scherman, D.; Bessodes, M.; Chabot, G.G. Development of a Liposomal Formulation of the Natural Flavonoid Fisetin. Int. J. Pharm. 2012, 423, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Vadaye Kheiry, E.; Parivar, K.; Baharara, J.; Fazly Bazzaz, B.S.; Iranbakhsh, A. The Osteogenesis of Bacterial Cellulose Scaffold Loaded with Fisetin. Iran. J. Basic Med. Sci. 2018, 21, 965–971. [Google Scholar] [CrossRef] [PubMed]
- Pawar, A.; Singh, S.; Rajalakshmi, S.; Shaikh, K.; Bothiraja, C. Development of Fisetin-Loaded Folate Functionalized Pluronic Micelles for Breast Cancer Targeting. Artif. Cells Nanomed. Biotechnol. 2018, 46, 347–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Zhang, D.Z.; Wang, Y.X. Bioflavonoid Fisetin Loaded α-Tocopherol-Poly(Lactic Acid)-Based Polymeric Micelles for Enhanced Anticancer Efficacy in Breast Cancers. Pharm. Res. 2017, 34, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Haimhoffer, Á.; Rusznyák, Á.; Réti-Nagy, K.; Vasvári, G.; Váradi, J.; Vecsernyés, M.; Bácskay, I.; Fehér, P.; Ujhelyi, Z.; Fenyvesi, F. Cyclodextrins in Drug Delivery Systems and Their Effects on Biological Barriers. Sci. Pharm. 2019, 87, 33. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.Q.; Jiang, K.M.; An, K.; Ren, S.H.; Xie, X.G.; Jin, Y.; Lin, J. Novel Water-Soluble Fisetin/Cyclodextrins Inclusion Complexes: Preparation, Characterization, Molecular Docking and Bioavailability. Carbohydr. Res. 2015, 418, 20–28. [Google Scholar] [CrossRef]
- Kazi, M.; Al-Swairi, M.; Ahmad, A.; Raish, M.; Alanazi, F.K.; Badran, M.M.; Khan, A.A.; Alanazi, A.M.; Hussain, M.D. Evaluation of Self-Nanoemulsifying Drug Delivery Systems (SNEDDS) for Poorly Water-Soluble Talinolol: Preparation, in Vitro and in Vivo Assessment. Front. Pharmacol. 2019, 10, 459. [Google Scholar] [CrossRef] [Green Version]
- Verma, P.; Pathak, K. Therapeutic and Cosmeceutical Potential of Ethosomes: An Overview. J. Adv. Pharm. Technol. Res. 2010, 1, 274–282. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.; Mazumder, R.; Padhi, S. Glycerosomes: Advanced Liposomal Drug Delivery System. Indian J. Pharm. Sci. 2020, 82, 385–397. [Google Scholar] [CrossRef]
- Jain, V.; Kumar, H.; Chand, P.; Jain, S.; S, P. Lipid-Based Nanocarriers as Drug Delivery System and Its Applications. In Nanopharmaceutical Advanced Delivery Systems; Wiley Online Library: New York, NY, USA, 2021; pp. 1–29. [Google Scholar]
- Kulbacka, J.; Pucek, A.; Kotulska, M.; Dubińska-Magiera, M.; Rossowska, J.; Rols, M.P.; Wilk, K.A. Electroporation and Lipid Nanoparticles with Cyanine IR-780 and Flavonoids as Efficient Vectors to Enhanced Drug Delivery in Colon Cancer. Bioelectrochemistry 2016, 110, 19–31. [Google Scholar] [CrossRef]
- Talele, P.; Sahu, S.; Mishra, A.K. Physicochemical Characterization of Solid Lipid Nanoparticles Comprised of Glycerol Monostearate and Bile Salts. Colloids Surf. B Biointerfaces 2018, 172, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Gothwal, A.; Khan, I.; Gupta, U. Polymeric Micelles: Recent Advancements in the Delivery of Anticancer Drugs. Pharm. Res. 2016, 33, 18–39. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Mongayt, D.; Torchilin, V.P. Polymeric Micelles for Delivery of Poorly Soluble Drugs: Preparation and Anticancer Activity in Vitro of Paclitaxel Incorporated into Mixed Micelles Based on Poly(Ethylene Glycol)-Lipid Conjugate and Positively Charged Lipids. J. Drug Target. 2005, 13, 73–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.F.; Xu, P.Y.; Fu, C.P.; Kankala, R.K.; Chen, A.Z.; Wang, S. Bin Fabrication of Supercritical Antisolvent (SAS) Process-Assisted Fisetin-Encapsulated Poly (Vinyl Pyrrolidone) (PVP) Nanocomposites for Improved Anticancer Therapy. Nanomaterials 2020, 10, 322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sari, E.N.; Soysal, Y. Molecular and Therapeutic Effects of Fisetin Flavonoid in Diseases. J. Basic Clin. Health Sci. 2020, 4, 190–196. [Google Scholar] [CrossRef]
- City of Hope Medical. Treatment of Frailty With Fisetin (TROFFi) in Breast Cancer Survivors. Available online: https://clinicaltrials.gov/ct2/show/NCT05595499. (accessed on 5 December 2022).
- St. Jude Children’s Research Hospital. An Open-Label Intervention Trial to Reduce Senescence and Improve Frailty in Adult Survivors of Childhood Cancer. Available online: https://clinicaltrials.gov/ct2/show/NCT04733534 (accessed on 5 December 2022).
- Maher, P. How Fisetin Reduces the Impact of Age and Disease on CNS Function. Front. Biosci.-Sch. 2015, 7S, 58–82. [Google Scholar] [CrossRef] [PubMed]
- Al-Ishaq, R.K.; Abotaleb, M.; Kubatka, P.; Kajo, K.; Büsselberg, D. Flavonoids and Their Anti-Diabetic Effects: Cellular Mechanisms and Effects to Improve Blood Sugar Levels. Biomolecules 2019, 9, 430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Croy, S.; Kwon, G. Polymeric Micelles for Drug Delivery. Curr. Pharm. Des. 2006, 12, 4669–4684. [Google Scholar] [CrossRef]
- Na, N.-C.; Dong, C.-S.; Jung, M.-S. Composition Comprising Phenolic Compound for Preventing and Treating Liver Cirrhosis. WO Pantent. WO2004002471A1, 8 January 2014. [Google Scholar]
- Cole, G.M.; Fruatshy, S.A.; Maher, P.; Schubert, D. Medical Food for Cognitive Decline. 2012. [Google Scholar]
- Liping, C.; Shengnan, J.; Bingbing, Z.; Xiaodong, X.; Guoping, D. Application of Fisetin in Inhibiting Proliferation of Pancreatic Cancer Cells and Mouse Pancreatic Cancer Tumors 2021.
- Park, S.J.; Kim, K.H.; Yoo, Y.H. Method for Preparing Rhus Verniciflua Stokes Extract Containing Increased Fisetin Content, and Metastasis-Inhibiting Anticancer Agent Composition Containing Same. WO Pantent WO2020075887, 16 April 2020. [Google Scholar]
- Hasan, Afaq Farrukh; Khan, Naghma; Mohammad, A.M. Methods of Treating Androgen Dependent Prostate Cancer By Administering an Active Pharmaceutical Ingredient Being Fisetin, 3,3′,4′,7-Tetrahydroxyflavone or a Derivative Thereof, in an Oral, Transdermal or Topical Dosage Form. U.S. Patent US20100010078A1, 14 January 2010.
- Liping, C.; Jia, S.; Bingbing, Z.; Xiaodong, X.; Guoping, D. Application of Fisetin in Combined Gemcitabine Pancreatic Cancer Treatment 2021.
- Sabarwal, A.; Dheeraj, A.; Singh, R.P.; Kaschula, C.H. 4′-Substituted Analogues of Fisetin and Their Use in the Treatment of Cancer. WO Pantent WO/2022/113047, 2 June 2022. [Google Scholar]
- MacDonald, T.; Kenney, A.M.; Dey, A.; Felker, J. Methods of Treating Brain Cancer and Related Diagnostic Methods 2020.
- Cha, G.J.; Dong, M.S.; Jung, N.C.; Na, C.S. Composition for Prevention and Treatment of Liver Cancer, Containing Phenolic Compound. 2002. [Google Scholar]
Characteristics | Description |
---|---|
Occurrence | Cucumber, Apple, Strawberry, Grape, Persimmon, Onion |
Chemical class | Flavonoid |
IUPAC | 2-(3,4-dihydroxyphenyl)-3,7-dihydroxychromen-4-one |
Chemical formula | C15H10O6 |
Molecular mass | 286.24 g/mol |
Melting point | 330.0 °C |
Density | 1.688 g/mL |
Solubility | Soluble in ethanol, acetone, acetic acid, DMSO, solutions of fixed alkali hydroxides, methanol |
BCS class | Class II (Low soluble and highly permeable) |
Appearance | Crystalline powder |
Log P | 3.2 |
pKa | 7.42 |
Chemical metabolites | Geraldol (3,4′,7-trihydroxy-3′-methoxyflavone), Fisetin-4′-glucoside |
Stability | Stability ≥ 4 years at −20 °C |
Formulation Type | Preparation Method | Components | Indication | Findings | Comments | References |
---|---|---|---|---|---|---|
Soft nanovesicles (glycerol-based) | Glycerosomes for dermal delivery of fisetin | Skin cancer | Enhanced penetration into skin | It was suitable for dermal application | [65] | |
Nanocochleates | Trapping method | Fisetin, DMPC, cholesterol, ethanol, calcium chloride | Breast cancer | Improved therapeutic efficacy | It enhanced anticancer action, safety and bioavailability | [59] |
Poly (lactic acid) nanoparticles | Spontaneous emulsification solvent diffusion (SESD) method | Poly-D,L-lactide, fisetin, Poloxamer 188 and acetonitrile | Colon cancer, breast cancer | Enhance drug solubility and therapeutic action | It enhanced anticancer action | [66] |
Albumin-based nanoparticles | Desolvation method | Albumin and glutaraldehyde | Breast cancer | Increased solubility and stability | It enhanced the action against breast cancer cells | [67] |
Inclusion complex in polymeric nanoparticles | Encapsulation into PLGA NPs as HPbCD complex | Hyroxypropyl b-cyclodextrin | Breast cancer | Higher drug loading capacity, enhanced bioavailability and anticancer action | Improved bioavailability and pharmacokinetics properties | [68] |
Self-nano-emulsifying system | Lauroglycol FCC, Transcutol P, tween 80, Castor oil | Cancer, Parkinson’s disease | Improved biopharmaceutical properties like dissolution and rate of permeability | It was nontoxic and showed stability on change in temperature, dilution and pH | [69] | |
Nano-emulsion formulation | Miglyol 812N, Tween 80, water, Labrasol, Lipoid E80 | Antitumor (Lung carcinoma) | Increase in bioavailability by 24-fold | Improved bioavailability and antitumor action | [70] | |
Nano-encapsulation | Nanoprecipitation method | (PCL) and PLGA-PEG-COOH | Antioxidant activity and anti-hyperglycemic effect | FS release is protected and preserved in gastric simulated conditions, and controls intestinal release | It controlled the release of antioxidant and anti-hyperglycemic FS | [25] |
Polymeric micelles | The micelles self-assemble into structures. | Monomethyl poly, ε-caprolactone | Ovarian cancer | Enhanced cytotoxicity and apoptosis induction | Enhanced solubility and bioavailability | [71] |
Binary ethosomes | Fisetin, Phospholipid 90G. Ethanol, Chloroform, sodium hydroxide | Management of skin cancer | Improved dermal delivery of the fisetin | Primarily used in management of skin cancer | [72] | |
Spherulites | Shearing of a lipidic lamellar phase is subjected to dispersion | Polyoxyethylene sorbitan ester, LipoidÒ E80, Polysorbate 80 | Anticancer | Encapsulation potential is higher and slow-release capacity | Increased encapsulated payload of a hydrophobic compound | [73] |
Liposomal formulation | DMSO, Cholesterol, phospholipids, Hepes/phosphate buffers | Anticancer | It had cytotoxicity and morphological effect | It is suitable for in vivo administration | [74] | |
Liposomal encapsulation | Formulation developed using DOPC and DODA-PEG2000 | Antitumor (Lung carcinoma) | Increased bioavailability upon 47-fold | Enhanced bioavailability and anticancer effect | [62] | |
Bacterial cellulose scaffold | Prepared from Gluconaceter xylinus | Treating bone defects | No toxic effect over increased cell viability | Induced osteogenic differentiation and localized delivery | [75] | |
Folate functionalized pluronic micelles | Thin-film hydration method | Fisetin, Pluronic F127 (PF), Folic Acid, Di-cyclohexyl carbodiimide, Carbonyl di-imidazole | Breast cancer targeting | It increases solubility, bioavailability and active targetability increased its therapeutic efficacy | Six-fold increase in bioavailability and prolonged circulation time, plasma elimination and no toxicity | [76] |
α-Tocopherol-Poly (lactic acid)-Based Polymeric Micelles | L,L-lactide, D-α-tocopheryl polyethylene glycol 1000 succinate | Breast Cancer | Higher cellular uptake | Effective in treatment of breast cancers | [77] |
Title | Applications | Description | References |
---|---|---|---|
Application of fisetin in inhibiting proliferation of pancreatic cancer cells and mouse pancreatic cancer tumors | Inhibition of pancreatic cancer tumor proliferation | The invention provides new uses of fisetin to inhibit pancreatic cancer cell and mouse pancreatic cancer tumor proliferation to reduce the deficiencies of existing pancreatic cancer treatment methods. | [97] |
Method for preparing Rhus verniciflua Stokes extract containing increased fisetin content, and metastasis-inhibiting anticancer agent composition containing same | Improvement in anti-cancer property of fisetin | The invention includes a method for preparing a Rhus verniciflua Stokes extract containing increased fisetin content by converting fustin to fisetin by adding an extract concentrate and reacting at least one catalyst consisting of platinum, chromium, nickel, silicon, copper, and oxides of said metals; and forming a cancer-preventing composition. | [98] |
Method of administering fisetin through oral, transdermal or topical dosage form | Treatment of androgen-dependent prostate cancer in males. | Fisetin treatment inhibits PI3K and Akt, resulting in inhibition of cell growth followed by apoptosis of human prostate cancer LNCaP cells. | [99] |
Application of fisetin in combined gemcitabine pancreatic cancer treatment | Combination treatment for pancreatic cancer | The invention provides an application of fisetin in the treatment of pancreatic cancer in combination with gemcitabine; that is, its use increases the curative effect of gemcitabine chemotherapy, thereby making up for the deficiency in existing pancreatic cancer chemotherapy drug resistance. | [100] |
4’-substituted analogues of fisetin and their use in the treatment of cancer | For the treatment of cancer | This invention relates to novel compounds that are 4’-substituted analogues of the flavonol fisetin. The invention further provides for pharmaceutical compositions comprising these compounds, and the use of these compounds and compositions in the treatment of cancer in particular, but not exclusively, in the treatment of epithelial cancers. | [101] |
Methods of treating brain cancer and related diagnostic methods | For the treatment of medulloblastoma | Treating medulloblastoma using a combination of STAT3 and YB-1 inhibitor, that is, 2-(3,4-dihydroxyphenyl)-3,7-dihydroxy-4H-chromen-4-one (fisetin), and also for diagnostic purposes. | [102] |
Composition comprising phenolic compound for prevention and treatment of liver cancer | For the treatment of liver cancer | The invention discovered a compound that inhibits the proliferation of liver cancer cells in some phenolic compounds, and a composition containing the same has the effect of preventing and treating liver cancer. | [103] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, R.M.; Kumar, H.; Bhatt, T.; Jain, R.; Panchal, K.; Chaurasiya, A.; Jain, V. Fisetin in Cancer: Attributes, Developmental Aspects, and Nanotherapeutics. Pharmaceuticals 2023, 16, 196. https://doi.org/10.3390/ph16020196
Kumar RM, Kumar H, Bhatt T, Jain R, Panchal K, Chaurasiya A, Jain V. Fisetin in Cancer: Attributes, Developmental Aspects, and Nanotherapeutics. Pharmaceuticals. 2023; 16(2):196. https://doi.org/10.3390/ph16020196
Chicago/Turabian StyleKumar, Rachna M., Hitesh Kumar, Tanvi Bhatt, Rupshee Jain, Kanan Panchal, Akash Chaurasiya, and Vikas Jain. 2023. "Fisetin in Cancer: Attributes, Developmental Aspects, and Nanotherapeutics" Pharmaceuticals 16, no. 2: 196. https://doi.org/10.3390/ph16020196
APA StyleKumar, R. M., Kumar, H., Bhatt, T., Jain, R., Panchal, K., Chaurasiya, A., & Jain, V. (2023). Fisetin in Cancer: Attributes, Developmental Aspects, and Nanotherapeutics. Pharmaceuticals, 16(2), 196. https://doi.org/10.3390/ph16020196